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Abstract. The calculation diagrams of oscillating systems and operation features of vibratory 
finishing machines are considered. The mathematical models of three-mass and four-mass 
oscillating systems are presented. The amplitude values of the oscillating masses displacements are 
derived. The functions of inertial and stiffness parameters optimization are formed. The optimization 
problems are solved with a help of MathCAD software. On the basis of synthesized inertial and 
stiffness parameters, the amplitude-frequency characteristics of the oscillating systems of vibratory 
finishing machines are formed and analyzed. In order to verify the validity of the proposed 
theoretical approaches, the simulation of the mathematical model of the oscillating system motion is 
carried out by means of numerical solving of the system of differential equations of the oscillating 
masses motion. 

The proposed structural diagrams and the operation schemes of the vibratory finishing 
machine, as well as the derived analytical formulas may be used by designers, researchers and 
technologists while improving existent and developing new equipment for vibro-finishing treatment. 

Keywords: lap; vibratory finishing machine; lapping; oscillations; oscillating system; inertial 
parameters; stiffness; amplitude-frequency characteristic. 

Introduction and Problem Statement 
The modelling of operation of mechanical oscillating systems requires the presence of all inertial 

parameters of the masses and the stiffness parameters of the elastic systems [1]. The mechanical 
parameters of the given structure determine the motion conditions of the mechanical oscillating systems 
and define their peculiarities and advantages. Nevertheless, most of the parameters can be defined on the 
basis of solutions of the differential equations of the system motion in certain operational conditions [2]. 
To obtain qualitatively new relations of parameters that ensure the high efficiency of mechanical 
oscillating systems, it is necessary to simplify the differential equations of the mechanical oscillating 
systems motion by imposing on the system essentially new operational conditions that will be reflected in 
certain values of inertial and stiffness parameters. 

This is extremely important in the case when a new vibratory finishing equipment is being 
developed, for which there are no known analytical expressions for determining the required mechanical 
parameters. Therefore, the obtaining of analytical expressions for the rational distribution of mechanical 
parameters is the final result of the scientific research at this stage of investigations. 

The designing and development of modern vibratory finishing machines are impossible without the 
dynamic analysis of their mechanical oscillating systems [1]–[5], which is based on differential equations 
of motion that provide a deep analysis of the processes occurring in mechanical systems, reliably define the 
necessary analytical dependencies, and make it possible to understand the physics of the process. Applying 
the systems modelling using differential equations can guarantee the obtaining of predicted results. 
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Analysis of Modern Information Sources on the Subject of the Article 
In the publications [2]–[6], [13], the stages of designing and the techniques of calculation of inter-

resonant vibratory finishing machines with electromagnetic drive and in-phase laps motion are considered. 
The majority of such machines are developed using the effect of “zero-stiffness”. 

The scientists in publications [7] and [8] describe the fundamental principles of vibration treatment 
and propose the mathematical models allowing the roughness prediction of the working surface of laps. 
They substantiate the parameters of the proposed models of vibratory treatment with a help of experimental 
results and propose the algorithm of constructing the optimal process of vibration finishing treatment. The 
new mathematical model of the vibratory lapping machine of the “bowl” type is considered. This model is 
used for analysis of dynamic behaviour of the mechanical oscillating system taking into account both free 
and forced oscillations. The influence of the basic parameters on the productiveness of the proposed 
machine operation is analysed. 

In the work [9], the structure of the resonant vibratory machine with electromagnetic drive with 
circumferential lateral oscillations of the laps is proposed. The authors assume that the stiffness of the vibration 
isolators is relatively small, so it is not considered in calculations. For the proposed structure of the vibratory 
machine, the differential equations of motion are derived using the corresponding generalized coordinates. The 
expression for calculation of the kinetic energy consisting of the energy of lateral motion of the oscillating masses 
and the energy of their rotation round the centers of masses are derived using the Lagrange method. The analysis 
of the proposed analytical model has shown that it may be reduced to single-mass system with one degree of 
freedom with a sufficient degree of accuracy. This allows sufficient simplifying the derivation of the analytical 
dependencies for calculation of the basic parameters of the structure and the operational modes of the machine 
drive. In addition, this allow to decrease the amount of further experimental investigations while setting up and 
regulating of the process of finishing treatment on such machines. 

In the publication [10], the analysis of kinematic diagrams of various drives of existing plane-
finishing machines is carried out. The peculiarities of cycloidal trajectories of the tools motion on the 
testing equipment for finishing of flat surfaces are investigated. This equipment allow the regulation of the 
parameters of cycloidal trajectories during the treatment. It is established that one can purposely change the 
network density of the tracks of the tools cycloidal trajectories and form the required operational properties 
of the microrelief roughness of the surface being treated. 

In the investigations presented in [11], the kinematic model and the motion simulation of the 
vibration treatment are considered. The description of the motion is verified by the digital video recorder 
with a help of high-speed camera. It is shown that middle kinematic line of path is the circumferential 
spiral motion trajectory depended on the relation between the angular velocity and the translational motion 
speed, as well as on the direction of rotation and the structure of the vibratory machine. The model of 
material disposal intensity has been developed on the basis of the proposed kinematic model. The optimal 
placement of fixators and orientation of the part have been substantiated by means of kinematic analysis. 

The publication [12] presents the invention of the device for double-sided treatment of flat parts. 
One of the working discs can move with a help of the specific driving mechanism and have the device for 
organizing the parts being treated. 

Analyzing the information sources related with vibration finishing treatment, we can state that the 
problems of modelling the operation of vibratory finishing machines and substantiation of the mechanical 
parameters of their oscillating systems are not fully solved. Thus, in the paper [14], there was made an 
effort to develop the mathematical models of three- and four-mass oscillating systems of vibratory 
finishing machines with circumferential trajectories of laps motion. The present paper will continue the 
investigations started earlier in [14] and will consist of the research results related with the dynamic 
analysis of the oscillating systems of the vibratory finishing machines, optimization of their inertial and 
stiffness parameters, construction of amplitude-frequency characteristics and displacement-time graphical 
dependencies for each mass of the oscillating system. 
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Formation of Assumptions and Problems of Research 
Let us consider the three-mass and four-mass oscillating systems of vibratory finishing machines. Let us 

present them as mechanical systems consisting of absolutely rigid bodies connected by elastic elements of the 
certain stiffness. Such assumptions allow significant simplification of the material presentation and ensuring the 
sufficient accuracy of the obtained results. Let us start the investigation from the analysis of the mathematical 
models of the oscillating systems. Herewith, we will consider that the law of changing the stiffness in elastic 
elements does not exceed out the ranges of linearity and corresponds to the Hooke's law. This is absolutely is 
justified if we will consider small oscillations of mechanical oscillating systems in near-resonance modes. 

In further investigations, we will consider entirely sinusoidal law of changing the traction force in 
electromagnetic vibration exciters. In addition, we will consider only the sinusoidal form of the mass 
oscillations being the basic motion form of the mechanical systems, which are in resonance state. During a 
resonance, the mass, which is a part of a certain system, moves according to the sinusoidal law, even if the 
disturbing force has a non-sinusoidal harmonic form of the signal. In this mode, the mechanical oscillating 
system corresponds to one of the sinusoidal harmonics of the disturbing signal, the frequency of which 
coincides with the actual frequency of oscillations of the system itself. From the point of view of energy 
consumption, it is the most efficiently to use sinusoidal vibration disturbance signals in resonant 
mechanical oscillating systems. If the signal is periodic, but not sinusoidal, then its energy will appear 
during the system operation in the forms of heat release and parasitic fluctuations. 

Calculation Diagrams of Oscillating Systems of Vibratory Finishing Machines 
Let us consider the three-mass (Fig. 1, a) [2], [5], [6], [14] and four-mass (Fig. 1, b) [14] structures of the 

vibratory finishing machine as the basic mechanical oscillating systems for further investigations, in which the 
translational oscillations are implemented. In the three-mass system (Fig. 1, a), the active 1, intermediate 2 and 
lower reactive 3 masses with inertial parameters of am , пm  and рm , correspondingly, perform the translational 

oscillations along the horizontal axis x  according to the generalized coordinates 1x , 2x  and 3x , correspondingly. 
In the four-mass system (Fig. 1, b), the mass вm  of the carrier 8 with parts being treated is also taken into account. 
This mass performs translational oscillations along the horizontal axis x  according the generalized coordinate 4x . 

The active mass 1 is set into motion due to the kinematic excitement from the intermediate mass 2. 
The excitement of the forced oscillations is performed due to the sinusoidal force ( ) ( )sinР t P tω ε= ⋅ +  
( P  is the amplitude value of the disturbing force; t  is time; ε  is the phase shift (difference) between the 
force and the displacement; ω  is the angular frequency of the disturbing force) applied between the 
intermediate 2 and reactive 3 masses. The active 1 and the intermediate 2 masses, as well as the 
intermediate 2 and the reactive 3 masses are connected with each other by elastic systems 5 and 4, 
correspondingly, with stiffnesses 1c  and 2c . In the picture, theses elastic systems are schematically 
represented by the twisted springs. The structures of the vibratory finishing machines are supported by the 
vibration isolators 6 with the stiffness of ізc  placed between the intermediate masses 2 and the fixed 
frames of the machines. Let us adopt that the dissipative forces also act in the system. For this, into the 
dynamic model, we introduce the coefficients of viscous resistance (friction) 1µ , 2µ , 3µ , which are 
proportional to the motion speed of the corresponding masses and represent the hysteresis phenomena in 
the elastic systems 4, 5, and 6, correspondingly. In addition, we take into account the coefficients aµ , nµ  
and pµ  describing the viscous friction during the oscillating masses 1, 2 and 3 relative motion. 

Since the masses 2 ( пm ) and 3 ( рm ) do not interact between each other, according to [2], [5], [14] 

we may neglect the coefficients of dissipation nµ , pµ . At the same time, the coefficient aµ  describing 
the viscous friction during the motion of the active 1 and the intermediate 2 oscillating masses, between 
which the working zone for charging the parts being treated in the vibro-finishing machine is located, 
should be taken into account. In such a case, the whole energy of the vibration exciters is being 
transformed into the heat energy of the parts lapping. 
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Fig.1. Calculation diagrams of vibratory finishing machines with three-mass (a) and four-mass (b) oscillating systems 

In addition, for the four-mass system (Fig. 1, b), we should take into account the coefficient of 
viscous friction 4µ , which is proportional to the carrier 8 motion related to the motion of the lower lap 2 
and also represents the hysteresis phenomena in the elastic element 9. The coefficient aµ , in this case, 
describes the viscous resistance of the mass 1 motion along the mass 8. 

Differential Equations of the Oscillating Masses Motion 
The mathematical model of the vibratory finishing machine, the calculation diagram of which is 

presented in Fig. 1, a, is developed on the basis of the three-mass oscillating system [5], [14], in which the 
translational oscillations of the masses are implemented in horizontal plane. The active 1 ( am ), 
intermediate 2 ( пm ) and reactive 3 ( рm ) masses perform translational oscillations along the horizontal 

axis x  according the generalized coordinates 1x , 2x  and 3x  due to the influence of the disturbing force 

( )p t  [14]. The system of differential equations of the three-mass system motion has the following form: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

1 1 1 2 1 1 2

2 1 2 1 2 2 3 2 1 2 1 2 2 3

3 2

3 2 3 2 2 3 2

0;

sin ;
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п із a

р
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m x c x x c x x c x x x x x
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µ µ
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µ ω ε

µ ω ε

 ⋅ + ⋅ − + + ⋅ − =


⋅ + ⋅ − + ⋅ − + ⋅ + + ⋅ − + ⋅ − +


+ ⋅ = ⋅ +
 ⋅ + ⋅ − + ⋅ − = − ⋅ +

&& & &
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&
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 (1) 

The mathematical model of the vibratory finishing machine developed on the basis of the four-mass 
oscillating system [14], in which the translational oscillations of the masses are implemented in horizontal 
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plane, also takes into account the presence of the carrier 8 with the parts being treated between the upper 1 
and lower 2 laps. This carrier with the parts forms the fourth mass [14]. The system of differential 
equations of the four-mass system motion has the following form: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 2 1 4 1 1 2

2 1 2 1 2 2 3 2 3 2 4
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µ

⋅ + ⋅ − + ⋅ − + ⋅ − =
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 (2) 

Determination of Amplitude Values of the Oscillating Masses Displacements 
Using the general methods of solving the obtained systems of differential equations (1) and (2), let 

us define the analytical expressions of the masses motion by three independent degrees of freedom in the 
following form: 1 1

i tx X e ω⋅ ⋅= ⋅ , 2 2
i tx X e ω⋅ ⋅= ⋅ , 3 3

i tx X e ω⋅ ⋅= ⋅ , 4 4
i tx X e ω⋅ ⋅= ⋅ , where 1 2 3 4, , ,X X X Х  

are the amplitude values of linear forced oscillations by the generalized coordinates 1 2,x x , 3x  and 4x , 

correspondingly. Substituting these expressions into (1) or (2) and cancelling the term i te ω  (where 
1i = − ) in each part of the equations system, after certain transformation [14], we obtain the 

dependencies for determination of the values 1 2 3, ,X X X  of the three-mass oscillating system: 

( )12 23 33
1

12 21 33 11 22 33 11 23 32

P k k k
X

k k k k k k k k k
⋅ ⋅ +

=
⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

; 

( )11 23 33
2

12 21 33 11 22 33 11 23 32

P k k k
X

k k k k k k k k k
− ⋅ ⋅ +

=
⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

; 

( )11 32 12 21 22 11
3

12 21 33 11 22 33 11 23 32

P k k k k k k
X

k k k k k k k k k
⋅ − +

=
⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅

, 

(3) 

where 

( )2
11 1 1a ak c m iω µ µ ω= − ⋅ + ⋅ + ⋅ ; 31 0k = ; 13 0k = ; 

( )2
22 1 2 1 2 3із п ak c c c m iω µ µ µ µ ω= + + − ⋅ + ⋅ + + + ⋅ ; ( )12 21 1 1ak k c i µ µ ω= = − − ⋅ + ⋅ ; 

23 32 2 2k k c i µ ω= = − − ⋅ ⋅ ; 2
33 2 2pk c m iω µ ω= − ⋅ + ⋅ ⋅ . 

Similarly, in [14] there were derived the dependencies for determination of the values 
1 2 3 4, , ,X X X Х  of the four-mass oscillating system: 

( ) ( )12 44 14 42 23 33
1
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X
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=
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(4) 
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( ) ( )11 42 12 41 23 33
4

11 22 33 44 11 23 32 44 11 24 33 42 12 21 33 44

12 41 33 24 21 14 33 42 22 14 33 41 14 23 32 41

P k k k k k k
X

k k k k k k k k k k k k k k k k
k k k k k k k k k k k k k k k k

⋅ ⋅ − ⋅ ⋅ +
= −

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + 
 + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ 

, 

where 

( )2
11 1 1a ak c m iω µ µ ω= − ⋅ + ⋅ + ⋅ ; 12 21 1 1k k c i µ ω= = − − ⋅ ⋅ ; 14 41 ak k i µ ω= = − ⋅ ⋅ ; 

( )2
22 1 2 1 2 3 4із пk c c c m iω µ µ µ µ ω= + + − ⋅ + ⋅ + + + ⋅ ; 23 32 2 2k k c i µ ω= = − − ⋅ ⋅ ; 

2
33 2 2pk c m iω µ ω= − ⋅ + ⋅ ⋅ ; 24 42 3 4k k c iµ ω= = − − ; ( )2

44 3 4в ak c m iω µ µ ω= − ⋅ + ⋅ + ⋅ ; 
34 43 31 13 0k k k k= = = = . 

For the three-mass oscillating system, we have the following group of parameters: am , пm , рm , 1c , 

2c , ізc , P , ω , ε , 1µ , 2µ , 3µ , aµ ; and for the four-mass system, we have: am , пm , рm , вm , 1c , 2c , 

3c , ізc , P , ω , ε , 1µ , 2µ , 3µ , 4µ , aµ . 
The values of the active am  and the intermediate пm  masses (the masses of the upper and lower lap, 

correspondingly), as well as the mass вm  of the carrier with parts being treated, are to be given by the 
designer. The frequency ω  and the phase difference ε  of the disturbing force are defined by the 
parameters of the electromagnetic drive. Let us consider the damping coefficients 1µ , 2µ , 3µ , 4µ , aµ  as 
known ones for further calculations. 

Formation of Objective Functions of Problems of Optimization  
of Inertial and Stiffness Parameters of Oscillating Systems 

According to the results of theoretical investigations, we have five determinative parameters: the 
inertial parameters of three oscillating masses and the stiffness coefficients of two elastic systems, putting 
out of the account the dissipation parameters of the mechanical system. Thus, the calculation of the 
oscillating systems of the vibratory finishing machines may be reduced to determination of the values of 
the reactive mass рm  and the stiffness coefficients 1c , 2c , 3c , ізc  when the amplitude value of the 
disturbing force P  is known. That’s why, for the three-mass system of the vibratory finishing machine we 
obtain 4 unknown parameters, and for the four-mass system we have 5 unknown parameters. 

The stiffness ізc  can be chosen as relatively small one taking into account the condition that the 
mechanical oscillating system mounted (installed) on the vibration isolators must have the self-frequency 

вω  that is n  times smaller than the angular frequency of forced oscillations ω : 

в n
ω

ω =  

The larger is the value n , the weaker (safer) is the mechanical interaction between the oscillating 
system and the fixed frame of the machine. Its minimal value is 3 4n = ⋅⋅⋅  [2]. Vibration isolators are to be 
calculated according to the single-mass scheme consisting of one rigid body with the mass equal to the 
total mass of the whole structure and the elastic element of certain stiffness representing the isolator. Thus, 
the stiffness coefficients of vibration isolators for three-mass and four-mass systems can be determined as: 

( )
2

із a n pc m m m
n
ω = + + ⋅ 

 
; 

( )
2

із a n p вc m m m m
n
ω = + + + ⋅ 

 
. 

(5) 

The equation (5) allow to define the dependencies between the stiffness of the vibration isolators ізc  
and the reactive mass рm . Based on this, we can state that for the three-mass system we have 3 unknown 
parameters, and for the four mass system we have 4 unknown parameters. 



Substantiation of Parameters and Analysis of Operational Characteristics… 73 

In order to ensure the highest efficiency of the laps dressing (during the “lap over lap” dressing) and 
the vibration treatment of parts located inside the carrier, it is necessary to maximize the amplitude values 
of displacements of the active and intermediate oscillating masses (i.e., the masses of the upper and the 
lower laps) and to ensure their antiphase motion. Herewith, the carrier should be almost unmovable in 
order to ensure the dressing uniformity of the upper and the lower edge surfaces of the parts being treated. 
That’s why, the first summand of the objective function of optimization problem has the form of: 

– for the three-mass system: 

( ) ( )1 1 1 1 2 2 2 1 2, , , ,p pk X m c c k X m c c∆ = ⋅ + ⋅ ; 

– for the four-mass system: 

( ) ( ) ( )1 1 1 1 2 3 2 2 1 2 3 3
4 1 2 3

1, , , , , ,
, , ,

p p
p

k X m c c c k X m c c c k
X m c c c

∆ = ⋅ + ⋅ + ⋅ , 

(6) 

where 1k , 2k , 3k  are the weight coefficients of each of the summands of the objective function. 
In order to minimize the traction force of the electromagnets and, correspondingly, the power 

consumption for driving the vibratory finishing machine, it is necessary to ensure the minimal value of the 
air gap between the armatures of each of the pairs of electromagnets. Thus, the second summand of the 
objective function has the following form: 

( ) ( )2 4
2 1 2 3 1 2

1
, , , ,p p

k
X m c c X m c c

∆ = ⋅
−

, (7) 

where 4k  is the weight coefficient of this summand of the objective function. 
Therefore, taking into account the dependencies (6) and (7), the general form of the objective 

function of the problem of optimization of inertial and stiffness parameters is as follows: 
– for the three-mass system: 

( ) ( )

( ) ( )

1 1 1 2 2 2 1 2

1 2
4

2 1 2 3 1 2

, , , ,

max1
, , , ,

p p

p p

k X m c c k X m c c

k
X m c c X m c c

 ⋅ + ⋅ +
 
 ∆ = ∆ + ∆ = ⇒

+ ⋅ 
−  

; 

– for the four-mass system: 

( ) ( )

( ) ( ) ( )

1 1 1 2 3 2 2 1 2 3

1 2
3 4

4 1 2 3 2 1 2 3 1 2

, , , , , ,

max1 1
, , , , , , ,

p p

p p p

k X m c c c k X m c c c

k k
X m c c c X m c c X m c c

 ⋅ + ⋅ +
 
 ∆ = ∆ + ∆ = ⇒
+ ⋅ + ⋅ 

−  

. 

(8) 

Numerical Solution of Optimization Problems 
For further solving of optimization problems, let us prescribe the parameters of the implemented 

structure of the vibratory finishing machine [2], [5], [14]: 50 kgаm = , 50 kgпm = , 1.5 kgвm = , 
Н0
мізc ≈ , rad314

s
ω ≈ , and let us neglect the dissipation coefficients. 

Let us numerically solve the problem of optimization of inertial and stiffness parameters of the 
three-mass oscillating system of the vibratory finishing machine with a help of the function of searching 
the local maximum in MathCAD software (Fig. 2). As a result, we obtain the values of the parameters to 

be defined: 2.07 kgрm = , 6
1

N2.515 10
m

c = ⋅ , 2
N0
m

c ≈ . The obtained values are almost the same as the 

values determined in [2] and [5], and ensure one of the most efficient modes of “lap over lap” dressing.  
Herewith, the oscillating system uses the effect of “zero-stiffness” when the reactive mass and the lower 
lap move in-phasely with equal amplitudes. Due to the existence of in-phase motion, the air gap in 
electromagnetic vibration exciter can be minimal because in such a case there is no relative oscillations 
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amplitudes between two adjacent masses. This allows significant decreasing of the value of current flowing 
in the winding of the vibration exciter, as well as the power consumed. 

 

 
Fig. 2. The example of solving the problem of optimization of inertial and stiffness parameters  
of the three-mass oscillating system of the vibratory finishing machine in MathCAD software 

Having defined the optimal parameters of the three-mass oscillating system of the vibratory 
finishing machine, which ensure the efficient “lap over lap” dressing, it is necessary to determine the 
stiffness 3c , when the carrier with parts being treated is placed between the upper and the lower laps. To 
do this, let us use the optimization function (8) for the four-mass oscillating system. Numerically solving 
the optimization problem with a help of the function of the local maximum searching in MathCAD 
software (Fig. 3), we obtain the following value of stiffness of the elastic element between the lower lap 

and the carrier: 3
N0
m

c ≈ . Therefore, we may state that there should be an air gap between the lower lap 

and the carrier having the size, which not exceeds the difference between the amplitudes of their vibrations 
(i.e., the amplitude of the lower lap because the carrier should be almost unmovable). In such a case, there 
is ensured a uniformity of dressing of the upper and the lower edge surfaces of the parts being treated. 

Construction of Amplitude-Frequency Characteristics and Displacement-Time Dependencies 
Having numerically solved of the optimization problem (8) and determining the values of inertial 

and stiffness parameters of the oscillating systems if the vibratory finishing machines, based on the 
equations (3) and (4), let us construct their amplitude-frequency characteristics (Fig. 4) and time 
dependencies of displacements of the oscillating masses (Fig. 5, а). In order to confirm the theoretical 
approaches obtained in the present article, there was carried out a numerical solving of the system of 
differential equations (1) with a help of the RADAUS method in MathCAD software (Fig. 5, b). 

Analyzing the obtained graphical dependencies of the oscillations amplitudes of masses of the 
vibratory finishing machine within the range of frequencies close to resonance (Fig 4), we can see the 
equality of the amplitudes of oscillations of the intermediate mass (lower lap) and the reactive mass 
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(electromagnets armature). This states about their in-phase motion and the realization of “zero-stiffness” 
effect. The amplitude of oscillations of the active mass (upper lap) is in the antiphase to the amplitudes of 
the other two masses, and by the absolute value, it is almost equal to them. (Fig. 4). This is confirmed by 
the results of modelling (simulation) of the oscillating masses motion using the analytical dependencies (3) 
and by the results of numerical solving of the system of differential equations of the oscillating masses 
motion in the MathCAD software (Fig. 5). Approximately at 0.5 s after the system is started (switched on), 
one can see the synchronous motion of the intermediate and the reactive mass in in-phase to the motion of 
the active mass (Fig. 5, b). Herewith, the amplitudes of oscillations of the intermediate and the reactive 
masses become equal approximately at 1 s after the system is started (Fig. 5). 

 

 
Fig. 3. The example of solving the problem of optimization of inertial and stiffness parameters of the four-mass 

oscillating system of the vibratory finishing machine in MathCAD software 
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Fig. 4. Amplitude-frequency characteristics of the three-mass oscillating system of the vibratory finishing machine: 
1 – activve mass; 2 – intermediate mass; 3 – reactive mass 

 

a 

 

b 
Fig. 5. Time dependencies of the oscillating masses displacements: a – constructed on the basis of the formulas (3); 

b – constructed by the results of the numerical solving of the system of differential equations (1) in MathCAD 
software; 1 – activve mass; 2 – intermediate mass; 3 – reactive mass  
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Therefore, the obtained values of the inertial and stiffness parameters of the oscillating systems 
ensure the highest efficiency of the vibratory finishing machine operation [2], [5]. This is explained by the 
presence of the additional (extra) resonance peak, which is inherent to three-mass mechanical oscillating 

systems. In this case, taking into account the assumed consumption about N0
mізc ⇒ , the second 

resonance peak coincides with the zero-frequency of the forced oscillations (Fig. 4). 

Conclusions 
In comparison with the traditionally constructed mechanical oscillating systems, in the present 

paper, we constructed the planar principal and calculation diagrams of the vibratory finishing machine, 
which graphically describes the full pattern of the oscillating masses motion caused by the forced 
disturbance. The considered diagrams allow the further significant simplification of the existence structures 
of the oscillating systems of the vibratory finishing machines and the construction of their spatial diagrams. 

The presented mathematical models of the three-mass and the four-mass oscillating systems allow 
the determination of the amplitude values of the oscillating masses displacements according to the 
prescribed dressing modes at the stage of designing the vibratory finishing machine. 

On the basis of the derived mathematical models, the dynamics of the non-stationary processes of 
the machine operation was analyzed; the amplitude-frequency characteristics of the corresponding 
structures were constructed; the inertial and stiffness parameters of the oscillating systems were 
substantiated and the prospects of further investigations are considered. 
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