
UKRAINIAN JOURNAL OF MECHANICAL ENGINEERING AND MATERIALS SCIENCE 
Vol. 3, No. 2, 2017 

Vasyl Olshanskiy1, Stanislav Olshanskiy2, Maksym Slipchenko3 
1 Department of Physics and Theoretical Mechanics, Petro Vasilenko Kharkiv National Technical University  

of Agriculture, 44, Artema Str., Kharkiv, Ukraine, E-mail: OlshanskiyVP@gmail.com 
2 Department of Physics and Theoretical Mechanics, Petro Vasilenko Kharkiv National Technical University  

of Agriculture, 44, Artema Str., Kharkiv,Ukraine,  E-mail: stasolsh77@gmail.com 
3 Department of Physics and Theoretical Mechanics, Petro Vasilenko Kharkiv National Technical University  

of Agriculture, 44, Artema Str., Kharkiv, Ukraine, E-mail: Slipchenko_M@ukr.net 

ON FREE OSCILLATIONS  
OF A QUADRATIC NONLINEAR OSCILLATOR 

Received: October 19, 2017 / Revised: Novemver 30, 2017 / Accepted: December 26, 2017 

© Olshanskiy V., Olshanskiy S., Slipchenko M., 2017 

Abstract. A free oscillations of a system with one degree of freedom, caused either by the 
initial deviation from the stable equilibrium position or by the initial velocity provided by the 
oscillator in this position was considered. Analytical solutions of the nonlinear Cauchy problem for a 
second-order differential equation were constructed. The solutions are expressed in terms of Jacobi's 
periodic elliptic functions relating to occultation of special functions. Compact equals are derived for 
calculating the displacements of the oscillator and the oscillation periods for various methods of 
motion perturbation and for various variants of the elastic characteristic. The restrictions on the 
initial excitations for an oscillator with a soft elastic characteristic are determined, when its free 
oscillations are possible. The existence of a solution of the nonlinear dynamics problem in 
elementary functions is established. The behavior of an oscillator with a soft characteristic of 
elasticity under conditions of its freezing are studied. It is shown that from the derived equals, as 
special cases, the results known in the theory of linear oscillators, as well as oscillators with a purely 
quadratic nonlinearity, without a linear component, follow when the solution of the problem can be 
expressed in terms of Ateb-functions. The aim of the work was to derive new calculation equals for 
determining the displacements of a mechanical system with one degree of freedom under conditions 
of free oscillations, in the absence of friction. To achieve this objective, the representation of the 
second integral of the differential equation of motion due to the incomplete elliptic integral of the 
first kind were used. Using the known tables of the indicated integral, examples of calculations are 
given in which the probability of the derived equals is confirmed. According to the results of the 
study, it is also established that in the case of a quadratic elasticity characteristic of the linear 
component, the motion of the oscillator is described by the periodic elliptic Jacobi function, both in 
providing it with an initial deviation from the stable equilibrium position, and giving it the initial 
velocity in this position. In the case of a soft elasticity characteristic, free oscillations are possible 
only with certain restrictions on the initial perturbations of the system. 

Keywords: quadratically nonlinear oscillator, soft and rigid elasticity characteristic, free 
oscillations, analytical solution, periodic elliptic functions. 

Introduction 
Due to linear oscillations with large amplitudes, emergency destruction of structural elements or 

premature failure of them can occur. Therefore, despite significant advances in the study of nonlinear 
oscillations and a fairly long history of their conduct [1], this topic is still being given considerable 
attention. 

Problem Statement 
The purpose of this article is to construct and approximate new analytical solutions describing the 

free oscillations of a quadratically nonlinear oscillator under two variants of the elastic characteristic. To 
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achieve this goal, a method based on reducing the second integral of the differential equation of motion to 
an incomplete elliptic integral of the first kind is chosen. To achieve this goal, a method based on reducing 
the second integral of the differential equation of motion to an incomplete elliptic integral of the first kind 
is chosen. As a result, the displacement of the oscillator is expressed in terms of periodic Jacobi elliptic 
functions; therefore, for the calculation, one can use tables of these special functions or tables of an 
incomplete elliptic integral of the first kind. The latter are also needed to calculate the periods of 
oscillations. To verify the adequacy of the theoretical results obtained, limit transitions are made, by 
directing one of the two rigidity parameters of the oscillator to zero. Therefore, the limiting variants are 
either a linear oscillator or a purely quadratic one, without a linear component in the elastic response. A 
special rare case is also revealed when the solution of the nonlinear equation of motion is fed into 
elementary functions. 

Review of Modern Information Sources 
Not referring to numerous publications in the form of separate articles, we will single out only 

monograph editions of recent years [2-5], where there are corresponding reviews of literary sources. 
Partially, the problem of nonlinear oscillations of systems of variable mass with dry friction was also 
violated in [6, 7], where approximate analytical methods were used for research. 

Main Material Presentation 
We describe the motion of an oscillator by a differential equation: 

( )2 0,mx x x sign xα β+ + =&&  (1) 

where m  is the mass of the oscillator; ,α β  are characteristics of its elasticity, and 0α ≥ ; ( )x t=  is 
displacement of the oscillator in time t ; the dot denotes the derivative with respect to t . 

We will distinguish between hard ( )0β >  and soft ( )0β <  elasticity characteristics. 
For the initial conditions for (1) we take two versions: 

a) ( )0x a= ; ( )0 0x =& ; 

b) ( )0 0x = ; ( )0 0x υ υ=& . (2) 
In the first, the oscillations are caused by the initial deviation a  of the oscillator from the 

equilibrium position 0x = , and in the second - by the initial velocity 0υ  given to it in this position. 
1. Free oscillations of an oscillator with a rigid characteristic of elasticity. The transition to new 

variables x υ=& , dx
dx
υ

υ=&& , equation (1), for ( )0x >  ( )0t > , we give the form: 

( )21 .d x x
dx m
υ

υ α β= − +  

Its integral, up to a constant C , is the expression: 

2 2 32 .
2 3

C x x
m

α β
υ  = − + 

 
 (3) 

For initial conditions a) in (2) the constant takes the value 2 3.
2 3

C a aα β
= +  Therefore, the speed of 

the oscillator is given by the equal: 

( ) ( )2 2 3 32 ,
2 3

dx a x a x
dt m

α βυ = = − − + −  

or 

( ) 2 22 3 3 .
3 2 2

dx a x a a a x x
dt m

β α α
β β

  
= − − + + + +  

  
 (4) 
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Further integration of expression (4) gives: 

( )
2 2

2
2

2 .
31 3 3 3

2 2 4 4

a

x

du t
maa u u a a

β

α α α
β β β

=
     − + + + + −           

∫  
(5) 

In calculating this integral, we distinguish three cases. Consider the first of these, corresponds to 

small oscillation amplitudes, or weak nonlinearity, when 
2

2
2

3 0
4

aa α α
β β

+ − < . Then the sum in square 

brackets under the root can be submitted in the form of a product, ( )( )u b u d+ +  and: 

2
2

2
1 3 3 3
2 2 4 4

ab a aα α α
β ββ

  
= + + − −       

; 

2
2

2
1 3 3 3
2 2 4 4

ad a aα α α
β ββ

  
= + − − −       

. 

So the expression (5) takes the form: 

( )( )( )
2
3

a

x

du t
mu u b u d
β

α
=

− + +
∫  (6) 

and its left part reduces to an incomplete elliptic integral of the first kind ( ),F kϕ  [8]. Therefore, instead of 
(6), we get: 

( ) 2, ,
2 3

a bF k t
m
βϕ τ+= =  (7) 

where a dk
a b

+=
+

; ( )arcsin am , .a x k
a d

ϕ τ−= =
+

 

From the last expression it follows that: 

( )21 1 , ,x d sn k
a

τ
α

 = − + 
 

 (8) 

where ( ) ( ), sin ,sn k am kτ τ=     – Jacobi's elliptical sine [9, 10]. Let’s carry out the passage to the limit in 

(8) for 0β → . For such a variation of the system: d a→ ; b → ∞ ; 3
2

a b αβ+ → ; 1
2

t
m
ατ → ; 

0k → ; ( ), sinsn kτ τ→  and equal (8) takes the form: 

2 11 2sin cos ,
2

x t t
m m
α α

α

 
= − =  

 
 (9) 

which agrees with the theory of linear oscillators. 
Dependences (7) make it possible to derive a equal for calculating the period of oscillations. If you 

put them in 0х = ; ( )0 arcsin /a a dϕ ϕ= = + ; / 4t T= . Then we arrive at the relation: 

( ) ( )
0

2
, .

8 3
a bTF k

m
β

ϕ
+

=  

Therefore: 

( ) ( )0
38 ,

2
mT F k

a b
ϕ

β
=

+
 (10) 

and in determining the period of oscillations, tables of an incomplete elliptic integral of the first 
kind can be used [10]. 
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If we pass to the limiting transition 0β →  to a linear oscillator, 0k → , 

( )0 arcsin 1 / 2 / 4ϕ π→ = , ( )0 0,F kϕ ϕ→  then, instead of (10), we obtain the well-known equal: 

2 .mT π
α

=  (11) 

In the second case, when 
2

2
2

3 0
4

aα α
α

β β
+ − < , we have: 

2
a α

β
= ; 2b d a= = . Therefore, the 

expression (5) takes the form of: 

( )
2 .
32

a

x

duI t
ma u u a
β= =

− +∫  

This integral is expressed in terms of elementary functions. Indeed, after making substitutions 
2a u y− = ; 2du ydy= − ; 22 3u a a y+ = − , we get: 

2
0

1 3 22 ln .
33 33

a x dy a a xI t
ma a a xa y
β− + −

= = =
− −−

∫  (12) 

It follows that: 
21 3th

2
tx a ω = − 

 
, 

where 
m
αω = . 

As we see, in the second case the solution of the nonlinear differential equation (1) is expressed in 
elementary functions. 

For such functions, the equal for the period of oscillations reduces, because in (12): 
1 3 1 3 1 2ln ln .

3 43 3 3 3 1
a a T

ma a a a
β+ +

= =
− −

 

So, 
3 14 ln 5,2678
3 1

m mT
α α

+
= ≈

−
. 

Finally, in the third case 
2

2 2
2

3 3 0
4 4

as a α α
β β

 
= + − >  

 
. 

Then expression (5) takes the form: 

( ) ( )2 2

2
3

a

x

du t
ma u u q s

β
=

 − + +  

∫ , (13) 

where 1 3
2 2

q a α
β

 
= + 

 
. 

The left part of (13) also reduces to an incomplete elliptic integral of the first kind. Thus, using the 
reference book [8], we obtain: 

( )* * *
2,
3

F k t
m
βγϕ τ= = , (14) 

where * arctg a x
ϕ

γ
−

= ; * 2
q ak γ
γ

+ +
= ; ( )2 2q a sγ = + + . 
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In accordance with (14): 

( )2
* *

11 tg am ,
2

x k
a a

γ
τ = −   

. (15) 

Calculation of the period of oscillation reduces to the equal: 

( )*
34 ,
2

mT F kψ
βγ

= , (16) 

where 2arctg /aψ γ= . 
To perform the calculations, we need to use tables of an incomplete elliptic integral of the first kind. 

In the limiting case, when 0α → , we have : 2 23
4

s a→ ; 1
2

q a→ ; 3aγ → ; 

*
1 2 3 sin 75
2

k → + = o , *
2

3
a t

m
β

τ → . The equals (15) and (16) are reduced according to: 

21 cn ,sin 75
3

1 3
21 cn ,sin 75

3

a t
mx

a a t
m

β

β

 
−    = −

 
+    

o

o
; 

( )34 74,457; sin 75 6,87
2

m mT F
a aβ β

= ≈
⋅

o , 

where ( )*cn ,sin 75τ o  – Jacobi’s elliptic cosine. 

Previously, such dependencies were derived in [11]. 
2. Free oscillations of an oscillator with a soft elasticity characteristic. Under the initial 

conditions a) in (2) the velocity of the oscillator is described by the expression: 

( ) ( )2 2 3 32
2 3

dx a x a x
dt m

βα
υ = = − − − −  

or 

( )( )( )2
3

dx a x b x x d
dt m

β
= − − − − . (17) 

Here is a restriction /a α β<  and the notation is used: 

2
1 3 3 1 3 0
4 2 2 2 2

b a a a aα α α
β β β

     
= − + − + − >          

     
; 

2
1 3 1 3 3 0
2 2 4 2 2

d a a a aα α α
β β β

     
= − − − + − <          

     
. 

In the case of a soft elasticity characteristic, the initial deflection must satisfy this constraint so that 
free vibrations occur. 

To obtain the form of displacement of an oscillator, integrate expression (17). Such a transformation 
gives: 

( )( )( )
2
3

a

x

du t
ma u b u u d
β

=
− − −

∫ . (18) 
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In the left part, we have a quadrature that reduces to an incomplete elliptic integral of the first kind 
[8]. Therefore, expression (18) takes the form: 

( ) ( )21,
2 3

b d
F t

m
β

θ η ξ
−

= = , (19) 

where ( )( )
( )( )

arcsin
b d a x
a d b x

θ
− −

=
− −

; a d
b d

η −=
−

. 

As a result, we get the following displacement equal: 

( )

( )

2

2

1 sn ,

1 sn ,

b a d
x a b d

a da
b d

ξ η

ξ η

− −  − =
−−
−

, (20) 

where ( )sn ,ξ η  – Jacobi's elliptic sine. 
From (19) it follows that: 

( ) ( )
*

2
,

8 3
b dTF
m

β
θ η

−
= , 

where * arcsin b d a
a d b

θ −= ⋅
−

. 

Then the period of fluctuations is: 

( ) ( )*
38 ,

2
mT F
b d

θ η
β

=
−

. (21) 

For calculations /x a  and T , we also have to use tables of an incomplete elliptic integral of the first 
kind. 

Let us find out what the limit transition 0β →  gives. In this case: b → ∞ ; d a→ − ; 2a d a− → ; 

0η → ; 1
2

t
m
αξ → ; * / 4θ π→ ; ( ) 1sn , sin

2
t

m
αξ η

 
→   

 
. Equal (20) goes into (9), and equal (21) – in 

(11), that is, the nonlinear oscillator becomes linear. 

In the limiting case, when /a α β→ , we have: b a→ ; 0.5d a→ − ; / 1b a → ; 1a d
b d

−
→

−
 and 

according to (20): 

1x const
a

→ = . (21) 

Having received the initial deviation /a α β= , the oscillator hangs in this position of unstable 
equilibrium. This is how the motion of a quadratically nonlinear oscillator with a soft elasticity 
characteristic manifests itself in this way. 

3. Oscillations caused by the given initial velocity. Using boundary conditions b) in (2), we can 
determine the integration constant in (3) and construct the decoupling again ( )x x t= . But, in order not to 
perform such actions, we will try to adapt already constructed junctions to new initial conditions. For this it 
is necessary to establish a relationship between max x a=  and 0υ , which is connected with the search for 
the root of the cubic equation: 

3 2 2
0

3 3 0
2 2

ma aα
υ

β β
+ − = . (22) 
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In this case, one can search for roots by analytical methods [12]. But, the pain is simple, we need a 
solution to find, according to Newton's scheme, iterations: 

3 2 2
0

1

3 3
2 2

3

n n
n n

n n

ma a
a a

a a

α
υ

β β
α
β

+

+ −
= −

 
+ 

 

, 0,1,2, ...n =  (23) 

As an initial approximation 0a  it is advisable to take the smaller of the numbers: 

0 0
ma υ
α

=  and 230 0
3
2
ma υ
β

= . 

If, on the other hand, the oscillator has a soft elastic characteristic, then instead of (22) we have to 
solve the equation: 

3 2 2
0

3 3 0
2 2

ma aα υ
β β

− + = . 

Here, also, Newton's scheme can be convenient: 
3 2 2

0

1

3 3
2 2

3

n n

n n

n n

ma a
a a

a a

α
υ

β β

α
β

+

− +
= −

 
+  

 

, 0,1,2, ...n = , (24) 

at initial approximation 0 0
ma υ
α

= . 

With a soft characteristic of elasticity, we have to limit the initial velocity by inequality: 
[ ]0 0υ υ< , 

where [ ]0 3m
α αυ
β

= . 

In the case when [ ]0 0υ υ=  the amplitude of deflection /a α β=  and oscillations is absente. 

So, having calculated the deviations x a= , using the given value 0υ , the solutions obtained above 

can be used to calculate the motion, by replacing in them t  by ( )/ 4t T− . Calculation of displacements is 

carried out for ( )/ 4t T≥ , and to determine ( )x t  for smaller ones t , one must use the cyclicity of motion. 
In order to verify the validity of the derived equals, let us consider examples for calculations. 
Example 1. Let us calculate the displacements of a weakly nonlinear oscillator, to which the initial 

velocity 0 2.0656 /m sυ =  is given, for, 2m kg= , 3200 /N mα = , 26400 /N mβ = . To find the initial 
deviation, let's do iteration using equal (23). To do this, we choose an initial approximation of two values: 

0 0 0,0516ma mυ
α

= ≈  and 230 0
3 0,126
2
ma mυ
β

= ≈ . 

We take less, that is 0 0.0516a m=  we accept. Its substitution in (23) and subsequent iterations 
yield: 1 0.050027a m= ; 2 0.050000a m= . In this way 0.05a m= . Further we find that 0.7464b ≈ ; 

0.0536d ≈ ; 0.3607 sin 21.142k ≈ ≈ o ; 20.609tτ ≈ . Further calculation /x a  is carried out according to 
equal (8), using linear interpolation of tabulated values in [10]. In this way, for example, we find that for 

0.5266τ =  / 0.482x a ≈  and for 0.7051τ =  / 0.144x a ≈ . Based on the series of calculations, we plot the 
graph shown in Fig. 1. The dashed part of the graph is obtained as a result of a symmetric spreading of it to 
the left from the ordinate axis to the intersection with the abscissa axis. This part of the graph describes the 
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initial stage of the movement from position 0x =  to position x a= . It is obtained purely geometrically, 
without corresponding calculations. 

 

 
Fig. 1. Graph of oscillations of a weakly nonlinear oscillator  

with a rigid elastic characteristic 

Example 2. In the previous example, let us consider the motion of an oscillator with a small 
nonlinearity. Next we analyze the case of essentially nonlinear oscillations, assuming: 2m kg= , 

3200 /N mα = , 232000 /N mβ = , 0,06a m= . This initial deviation from the position 0x =  can also be 
obtained by giving it the initial velocity 0 2.8397 /m sυ = . For the specified numerical data: 

2 0.001575s = ; 0.105q = ; 0.1697γ ≈ ; * 0.9931 sin 83.242k ≈ ≈ ; / 2.8284aγ ≈ ; * 42.5457tτ ≈ . 
Calculations /x a  are carried out according to equal (15) from the corresponding linear interpolation of 
tabulated data in [10]. So when * 0.3562τ ≈  we get / 0.912x a ≈ , and when * 0.7616τ ≈  - / 0.625x a ≈ . 
The results of calculating the movements of the oscillator for others are presented in the form of a graph in 
Fig. 2. For comparison, the dotted line shows the graph of the motion of the linear oscillator. 

 

 
Fig. 2. Graphs of vibrations of oscillators with a rigid (solid line) 

and linear (nuncle line) elasticity characteristics 

Example 3. Let's find out how the oscillator moves with a soft elasticity characteristic when it gives 
the initial velocity 0 2 /m sυ = . For the calculation we accept: 1m kg= , 4800 /N mα = , 
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248000 /N mβ = . We calculate the admissible initial velocity [ ]0 4 /
3

m s
m

α αυ
β

= = . The initial 

velocity is less than the admissible one, that is, the condition for free oscillations of the oscillator is 
satisfied. To perform iterations according to equal (23). We calculate the initial approximation 

0 0 0,0289ma mυ
α

= ≈ . Further substitution of it in (23) and iteration yields: 1 0.0328a m≈ ; 

2 0.0327a m≈ . So we accept 0.0327a m= . The calculated numerical data is answered by: 

0.1440b ≈ ; 0.0267d ≈ − ; 0.5898 sin 36.144η ≈ ≈ o ; 36.9432tξ ≈ . Further substitution of them into the 
equal (20), using the table of an incomplete elliptic integral of the first kind, determines /x a . So, 
for 0.1748ξ ≈  we get / 0.964x a ≈ , and for 0.5318ξ ≈  – / 0.676x a ≈ . As a result, we plot the 
displacement graph shown in Fig. 3. 

The dotted part of the graph is obtained in a purely geometric way, namely, by extending the graph 
to the left symmetrically about the ordinate axis before crossing with the abscissa axis. 

 

 
Fig. 3. Displacement of oscillator with a soft elasticity characteristic 

Conclusions 
1. Analytical solutions of the Cauchy problem for a nonlinear differential equation of motion are 

expressed in terms of Jacobi periodic elliptic functions. 
2. The derived equals have the ability to calculate the displacements and period of oscillations of a 

quadratically nonlinear oscillator, with both rigid and soft elastic characteristics. The reason for the 
oscillations may be either the initial deviation of the oscillator from the stable equilibrium position or the 
initial velocity in this position. 

3. In the case of a soft elasticity characteristic, free oscillations are possible only if the specified 
limitations on the initial deviation and on the initial velocity are observed. 
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