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Abstract. The use of electromechanical model of ideal elastic-tough-plastic material with 
yield delay while investigating the propagation of plane one-dimensional waves is being considered. 
The materials being investigated possesses the property of toughness only in the plastic region and is 
elastic up to the plastic state. The solving of the problem is being carried out in the conditions of 
one-parameter loading when the permanent (steady) uniformly distributed stress is being suddenly 
applied to the boundary surface of non-deformed half-space. The value of applied stress exceeds the 
limit level of elastic state in the case of static deformation and remains unchanged for the whole 
region of disturbed half-space. In order to conduct the corresponding calculation the dependence 
between the components the tensor of normal stress and linear deformations along the load axis is 
being determined. The defining equations of elastic-tough-plastic medium behind the front of the 
wave of transition from elastic to plastic state are being derived and the simple relationship for 
determination of the time (duration) of yield delay is deduced. The basic solution of these equations 
is obtained for the stresses in elastic and plastic region of the half-space. The special representation 
of the basic pattern of changing of lateral (transverse) stresses and longitudinal deformations for the 
region of active loading of material is defined. The distribution of velocities of the half-space points 
in the plastic region is obtained. The difference between the characters of propagation of plane 
elastic-plastic wave and the wave processes in the material with yield delay is shown. 

It is noted that two different solutions are obtained despite of the simple type of loading. The 
first one detects the strange character of medium’s behaviour when the material of disturbed half-
space in the plastic region is in the state of “trembling”, which causes the pulsations of lateral 
(transverse) stresses and the impulses of deformations along the axis that is normal to the boundary 
surface of the half-space. 

Keywords: yield delay, plane elastic-tough-plastic waves, dynamic criterion of plasticity, 
plastic state, overstress, medium “trembling”. 

Introduction 
A lot of publications are devoted to the theoretical research of propagation of plane elastic-plastic 

waves. The earliest works in this field are presented in [1-4]. The further complication of problems related 
with the investigation of such type of dynamic processes took its place due to the changing of the character 
of external loading and taking into account more complete features of materials [5–8]. The works related 
with propagation of waves in materials that possess the feature of yield delay are not so widespread. The 
short overview of the specific features of investigations of dynamic processes in such mediums are 
presented in [9]. In theoretical works related with wave propagation in materials with yield delay, the great 
difficulties and awkwardness of research are noted [10]. The analytical solution may be obtained only for 
the simplest boundary conditions and idealized features of the medium [11]. This is caused by the fact that 
on the basis of Yu. N. Rabotnov model [12] after the exhaustion of delay possibility, the transition from the 
overstressed state to plastic one is carried out almost instantly by means of elastic unloading (relief) if the 
functional condition of Cottrell is satisfied. As a result of this the waves of large discontinuities, which 
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cause very complicated motion pattern when interacting with elastic and plastic waves, arise. The great 
variety of discontinuities in certain problems makes it almost impossible to obtain even numerical solution 
with accurate accounting of all discontinuities [10]. 

Let us carry out the investigation of dynamic state of the material with yield delay, which fill the 
semi-infinite space, on the basis of electromechanical model of the medium [13]. The specific feature of 
the formulated problem consists in the fact that the transition from the elastic state to the plastic one (to the 
lower yield limit) is being carried out not suddenly but during the certain period of time. That is why the 
behaviour of the medium won’t cause the occurrence of the wave front of large discontinuities. Hence, 
there occurs the possibility of considerable simplification of obtaining of general pattern of wave processes 
for such materials. 

Derivation of relation between stress and deformation  
of ideal elastic-plastic material for the plane problem of propagation of compression waves 
When investigating the propagation of elastic-tough-plastic waves in the rod on the basis of 

electromechanical model of the material with yield delay, the assumption related with neglect of inertial 
forces caused by lateral (transverse) deformations were made [14]. In the considered plane problem, such 
assumptions are not necessary because the lateral (transverse) deformations are missing. Let us formulate 
more detailed statement of the problem and determine the necessary features of the medium on the basis of 
single-axis diagram of tension-compression of ideal elastic-plastic material. 

Let the motion of particles of the medium is carried out by the wave that propagates in non-movable 
and non-stressed half-space along the x-axis, which is perpendicular to the boundary surface (plane). The 
y-axis and z-axis of the Cartesian coordinate system x, y, z lie in this plane. The disturbance is conducted as 
a result of application of permanent uniformly distributes normal stress 0xx Pσ =  to the half-space surface 
(Fig. 1). The other values of stresses and deformations are the functions of coordinate x and time t because 
the load on the half-plane boundary doesn’t depend on y and z. So we may write that the components of the 
tensor of stresses and deformations are as follows: 

0, 0, 0,

0, 0.
xx yy zz xy yz zx

xx yy zz xy yz zx

σ σ σ τ τ τ

ε ε ε ε ε ε

≠ = ≠ = = =

≠ = = = = =
 (1) 

 

 
Fig. 1. The half-space, on the surface of which the uniform normal stress 0Р  acts 

In order to obtain differential equations of dynamic state of material it is necessary to define the 
relationship between xxσ  and xxε  taking into account the diagram of single-axis tension-compression of 
rods σ ε: , which is formed on the basis of experiments under static loading. The typical stress-
deformation curve of compression of rods made of ideal elastic-plastic material is shown in Fig. 2, where 

Sσ  is the yield limit of the material, Sε  is the maximal value of elastic deformation of compression. 
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Fig. 2. Static diagram of single-axis compression of ideal elastic-plastic material of the rod 

Taking into account (1), let us write the Hooke’s law for the region of elastic deformations 
considering the plane problem. On the diagram (Fig. 2), this corresponds to the region [0, ]Sσ σ∈ : 

( )
( )

1 2 ,

10 [ 1 ] ,

xx xx yy

yy xx

E

E

ε σ ν σ

ν σ ν σ

= −

= − −
 (2) 

where E  is Young’s modulus; ν  is Poisson’s ratio. 
After certain transformations we obtain: 

( )
( )( )

1
1 1 2xx xx

E ν
σ ε

ν ν
−

=
+ −

. (3) 

Using (2) and (3), let us determine the values of xxσ  and xxε  which causes plastic deformation of 
the material. As a condition of transition to the plastic state, we take the Mize’s criterion that matches the 
Trask’s criterion in our case. In the considered problem, the yield condition may be written in the simple 
form: 

.xx yy Sσ σ σ− =  (4) 
Substituting yyσ  from (2) to (4), we obtain: 

1 .
1 2

s
xx S

ν
σ σ

ν
−

=
−

 (5) 

Obviously, one can see that .s
xx Sσ σ>  Similarly, for s

xxε  from (3) we obtain: 

( )1 1 .s
xx S SE

ν
ε σ ε ν

+
= = +  (6) 

Let us determine ( )xx xxσ ε  in plastic region. Taking into account the non-compressiability of plastic 
deformation and the condition (4), let us perform the following transformations for volumetric 
deformation: 

2 3 2
2 ,

3 3
xx yye e xx S

xx yy zz xx yy K K
σ σ σ σ

ε ε ε ε ε
+ −

+ + = + = =  (7) 

where 
3(1 2 )

EK
ν

=
−

 is volumetric modulus of elasticity. 

Here we take into account the separation of deformation on elastic and plastic components: 
, .e p e p

xx xx xx yy yy yyε ε ε ε ε ε= + = +  (8) 
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On the basis of (1) we may state that 0xx yyε ε= = . That’s why with a help of (7) we may defind the 

dependence ( )xx xxσ ε  for the material of the half-space, which is in the yield state: 

( )
2 .

3 1 2 3
xx

xx S
Eε

σ σ
ν

= +
−

 (9) 

Using the relationships (3) and (9), let us transform the diagram of single-axis compression of the 
material (Fig. 2) into the dependence ~xx xxσ ε  for the plane problem (Fig. 3). 

 
Fig. 3. The dependence ( )xx xxσ ε  for the complete limitation  

of lateral (transverse) deformations 

In order to carry out the comparative analysis and to use the certain values of obtained data in the 
following investigations, let us consider the propagation of plane elastic-plastic waves when the normal 
stress *

0 xxP σ= , which exceeds the plasticity limit s
xxσ , is suddenly applied to the boundary of the half-

space. Let us write down the dynamic equations of motion for small deformations and missing mass forces: 
2

2 ,xx u
x t

σ
ρ

∂ ∂=
∂ ∂

 (10) 

where u  is the displacement of the medium particles along the x-axis; ρ  is the density of the material that 
fills the half-space. 

Let us differentiate equation (10) with respect to x and relationships for elastic region (3) and for 
plastic region (9) twice with respect to time; 

( )
( )( ) ( )

2 2 2 2 23

2 2 2 2 2 2
1

, , .
1 1 2 3 1 2

xx xx xx xx xxEu E
x t x t t t t

νσ σ ε σ ε
ρ

ν ν ν
−∂ ∂ ∂ ∂ ∂∂

= = =
+ − −∂ ∂ ∂ ∂ ∂ ∂ ∂

 (11) 

Taking into account the fact that ,xx
u
x

ε
∂

=
∂

 let us exclude the deformation xxε  from the system of 

equations (11): 
2 2 2 2

2 2
1 22 2 2 2, ,xx xx xx xxa a

t x t x
σ σ σ σ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂

 

( )
( )( ) ( )1 2

1
, .

1 1 2 3 1
E Ea a

ν
ρ ν ν ν ρ

−
= =

+ − −
 

(12) 
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The obtained equations (12) allows us to state that 1a  is the velocity of propagation of the front of 

elastic wave, on which the stress spasmodically reaches the value of yield limit s
xxσ . Similarly, on the 

plastic wave, which propagates with the velocity 2a , the new discontinuity (jump) of the disturbance to the 

value of applied normal stress *
xxσ  takes place. Hence, the disturbance propagates in the medium in the 

form of step-type waves, which are schematically shown in Fig. 4 

 
Fig. 4. The propagation of elastic-plastic waves in the half-space 

Formation and solving of defining equations of elastic-tough-plastic state  
of the material behind the front of yield delay 

Let us define the pattern of motion of the medium particles in the half-space on the basis of 
electromechanical model of material that possesses the property of yield delay [13]. At the same time, the 
normal stress * s

xx xxσ σ>  is suddenly applied to the boundary surface. As a result of such loading the shock 
(impact) wave will propagates through the medium with the velocity 1a . On the front of this wave, 1x a t= , 

the stress and deformation spasmodically increase to the values of *
xx xxσ σ=  and 

( )( )
( )

*
2

1 1 2
1xx xx xxE

ν ν
ε ε σ

ν
+ −

= =
−

. Unlike the elastic-plastic material, the transition to the stress *
xxσ  is 

carried out not along the curve 0 – 1 – 3 zs shown on the diagram (Fig. 3), but along the straight line  
0 – 1 – 2 described by the equation (3). The region of the half-space, for which staying in the elastic state 
will be exhausted by the time of yield delay τ , will transit to the plastic state. The boundary of transition 
of the material fom elastic state to plastic one may be considered as the front of the wave of yield delay, 
which propagates with the velocity of elastic wave 1a  and is defined by the equation ( )1x a t τ= −  (Fig. 5). 

In the region between the waves fronts ( )1 1a t x a tτ− ≤ ≤ , the material of the half-space will be in 
the elastic state. Behind the front of the yield delay wave, the plasticity state takes place. Let us note that 
according to the problem statement the normal stress along the x-axis in the plastic region will remain 
permanent and equal *

xxσ . The stressed and deformated state in the investigated material doesn’t cause the 
initiation of rotation motion of particles. That’s why, on the basis of the theorem of Cauchi-Helmgolz 
about the velocities of particles of infinitely small part of the medium [15], the velocity of its arbitrary 
particle will consist of the velocity of translational motion of the part as absolutely rigid body and of the 
velocity of pure strain (deformation). On the basis of (10) one may state that the velocity of translational 
motion is permanent and equal to the velocity of particles on the front of yield delay wave. In the case 
when the elastic solution is known, this velocity may be defined as: 

( )( )
( )

( )( )
( )

* *
0 1 2 1

1 1 2 1 1 2
.

1 1xx xx xxV a a
E E
ν ν ν ν

ε σ σ
ν ν ρ

+ − + −
= = =

− −
 (13) 
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Fig. 5. The distribution of the state regions of the half-space in the plane x, t 

The dependence of the velocity of the arbitrary particle of infinitely small part from its deformation 
in the yield state may be determined on the basis of defining equations of plasticity. The equations that 
define the dynamic condition of material plasticity with yield delay are as follows [13]: 

2
* *1 3

2 2 2 3 2 1 ,
3 3 3 2

1 1, ,
3 3

ij ijnp p e e
ij ij s ij ijij ij

s

e e e
ij ij ij kk ij ij ij kk

S S
S S k e e

S e

µε µε σ
σ

σ δ σ ε δ ε

 
 

     − − = + −         
 
  

= − = −

& & & &

& &&

 (14) 

where *,ij ijS S  are the components of stress deviator in the plastic region and on the boundary of transition 

from elastic region to plastic one; ijσ  are the components of stress tensor: ,e e
ij ijeε& &  are the components of 

the tensor and deviator of velocities of elastic deformations; µ  is the coefficient of viscosity; k  and n  are 
the constants that characterize the material; ijδ  is the symbol of Kronecker. 

Using the association law of plasticity and the equation (14), let us derive the relationship for 

determination of components of the tensor of velocity of plastic deformations p
ijε&  [14]: 

* *1 3
3 2 1
23 1 .

2 3
2

ij ijne e
s ij ij

p s
ijij

ij ij

S S
k e e

S
S S

σ
σ

ε
µ

 
 

  + −   = − 
 
 
 
  

& &
&  (15) 

On the basis of equations (15), let us describe the process of material deformation in the region that 
corresponds to the section 2–3 of the diagram ( )xx xxσ ε  (Fig. 3). Because of the fact that in the case of our 
plane problem the components of the tensor of stresses and defromations have the values defined in 

conditions (1), for the components ijS  we will obtain: ( ) ( )2 1,
3 3xx xx yy yy zz yy xxS S Sσ σ σ σ= − = = − . 

So for 3
2 ij ijS S  and * *3

2 ij ijS S  we may define: 

( ) ( )22 * * * *3 1 3, .
2 3 2ij ij xx yy ij ij xx yyS S S Sσ σ σ σ= − = −  (16) 
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Similarly, for the components e
ije&  we may obtain: 

( ) ( )2 1, .
3 3

e e e e e e e
xx xx yy yy zz xx yye e e e eε ε= − = = − −& && & & &  (17) 

Let us note that according to (1) the components of deformation tensor 0yy zzε ε= = , however 

the components of the tensor of elastic deformations in plastic region 0e e
yy zzε ε= ≠ . So for 3

2
e e
ij ije e& &  

we may wrtite: 

( )23 .
2

e e e e
ij ij xx yye e ε ε= −& && &  (18) 

Taking into account the Hook’s law for elastic components of deformation tensor, after 
corresponding transformations we obtain: 

( ) ( )
2

2
2

13 ,
2

e e
ij ij xx yye e

E

ν
σ σ

+
= −& & & &  (19) 

where ,xx yyσ σ& &  are velocities of changing of normal stresses. 

In order to carry out the further transformations, let us note that Hook’s law is valid on the front of 
the yield delay wave. That’s why on the basis of equations (2) we may write: 

( ) * *1 0.yy xxν σ ν σ− − =  (20) 

Hence, for the relationship (16) we may define: 
2

* * *3 1 2 .
2 1ij ij xxS S ν

σ
ν

− =  − 
 (21) 

Making the substitution of (16), (19), (21) into (15), let us determine the velocity of plastic 

deformation p
xxε& : 

( ) ( ) ( )
( )

2 *2

2
1 1 21 1 .

1

n
xxp nxx xx yy s xx yy
sn

k
E

ν ν σ
ε σ σ σ σ σ

µ ν σ

 + − = − − − − −
 −
 

& & &  (22) 

Let us carry out the additional transformations of the equation (22). In order to simplify its 

presentation let us consider the applied stress *
xxσ  as: 

* 1 .
1 2

s
xx xx s s s

ν
σ σ σ σ σ

ν
−

= + = +
−

 (23) 

Taking into account the plastic non-compressibility of the material, let us write: 

2 0.p p
xx yyε ε+ =  (24) 

If we represent the deformation in the view of (8) and taking into account the fact that it is missing 

in transverse direction 0yyε = , we may write p e
yy yyε ε= − . So, on the basis of (24), after differentiation 

with respect ro time we obtain: 

2 .p e
xx yyε ε=& &  (25) 

Let us write down the Hook’s law for the elastic lateral (transverse) deformations in the plastic 
region: 

( )1 1 .e
yy yy xxE

ε ν σ νσ = − −   (26) 
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Differentiating the equating (26) with respect to time and taking into account the fact that 
*

xx xx constσ σ= = , let us define: 
1 .e

yy yyE
ν

ε σ
−

=& &  (27) 

As a result of substitution of relationships (23), (25), (27) into (22), after carrying out certain 
transformations we obtain the following form of equations (22): 

( ) ( ) ( )
2

2

2
2 1 1 1 2 1 0.

1 1 2
n n

yy yy yy s
n

k
E E

ν ν ν ν
µσ σ σ σ

ν ν
− + − −

+ − + − =
− −

& &  (28) 

In order to perform the corresponding calculations, let us adopt the following numerical values of 
material constants, which were used in the work [13]: 

111 8 6 8 122,1 10 , 2,15 10 , 1,2 10 , 1,5 10 ,sE Pa Pa Pa s k Pa sσ µ= ⋅ = ⋅ = ⋅ ⋅ = ⋅ ⋅  

37800 , 24, 0,25.kg n
m

ρ ν= = =  

If we substitute the values of corresponding constants of material into the equation (28), we obtain: 
16 7 8128,57 10 1,42 10 3,225 10 0.yy yy yyσ σ σ−⋅ + ⋅ + − ⋅ =& &  (29) 

The obtained equation (29) may be characterized as defining one, on the basis of which solution one 
may describe the stressed and deformed state of material of the half-space in the plastic region. However, 
as a variable of this equation it is expedient to choose the internal time for each particle of the medium, 
which may be defined as a time of staying of the certain particle in the yield state. Let us consider this time 

as 
1

.xz t
a

τ= − −  

In order to obtain the solution of the equation (29), it is necessary to determine the value of stress 
yyσ  at the moment of time when z = 0, which will be equal to the stress on the front of the yield delay 

wave. On the basis of (2), let us write: 

( )* *0 .
1yy yy xx

ν
σ σ σ

ν
= =

−
 (30) 

Taking into account the adopted applied stress *
xxσ  equal to (23), after the certain transformations 

we obtain: 
( )

( )( )
2 3

(0) .
1 1 2yy s

ν ν
σ σ

ν ν
−

=
− −

 (31) 

Substituting the numerical values, we obtain ( ) 80 1,79 10 .yy Paσ = ⋅  

The solution of the equation (29) is presented in Fig. 6 in the form of plot ( )yy zσ . While 

determining the solution of the equation (29), the following condition has been adopted: ( )yy zσ&  may 
accepts only positive values. 

In order to obtain the special presentation of the general pattern of changing of the stress yyσ  behind 
the front of the yield delay wave, in the solution of the equation (29) let us make the following change 

1

xz t
a

τ→ − − . In order to carry out the corresponding calculations, it is necessary to determine the 

numarical value of the time (duration) od yield delay τ . 
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Fig. 6. The graphical presentation of the solution 

of the state equation in the plastic region 

The investigation [16] shows that the yield delay time, when suddenly “overstressed” material 

* *3
2 ij ij sS S σ

 
>  

 
 stays in the elastic state, equals the time, during which the yield starting stress may be 

achieved when loading with a certain permanent velocity. That’s why the yield delay time for the arbitrary 
stressed state may be determined as follows: 

* *3
2 ,

3
2

ij ij s

ij ij

S S

S S

σ
τ

−
=

& &
 (32) 

where ijS&  are the components of deviator of velocities of stresses in the elastic state. 

According to the dynamic condition of plasticity (14), the following criterion of material yield limit 
may be obtained [13]: 

22
* *3 3 .

2 2
ne e

ij ij s ij ij
s

kS S e eσ
σ

 = +  
 

& &  (33) 

Let us write down the Hook’s law in the form of the dependence between the components of the 
deviator of stresses and deformations: 

,
2

ije
ij

S
e

G
=  where the shearing modulus equals 

( )
.

2 1
EG

ν
=

+
 (34) 

After the differentiation of the equation (34) with respect to time and after substitution of the result 
into (33), we may write down: 

( )
2

22
* *

2
13 3 .

2 2

n

ij ij s ij ij
s

kS S S S
E

ν
σ

σ

 +   = +     

& &  (35) 

Making the transformation of (35), we may define: 

( )

44 * *

2

3 3 .
2 21

nn
s

ij ij ij ij sn
ES S S S

k

σ
σ

ν

 
= −  

 +

& &  (36) 
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Substituting (36) into (32), we obtain the expression for determination of τ  in the following form: 

( )2

14* *4

1
.

3
2

n

n
n
s ij ij s

k

E S S

ν
τ

σ σ
−

+
=

 
−  

 

 
(37) 

Taking into account (21), (23) and the value 24n = , after certain transformations we may write: 

( ) 512

11
1 1 .

1 2s

k

E

ν ντ
νσ

+  −=  − 
 (38) 

Using in (38) the adopted material constants, we obtain 41,29247 10 .sτ −= ⋅  
The calculated value τ  allows to obtain the general pattern of the stress field ( ),yy x tσ  behind the 

front of the yield delay wave. The result defined on the basis of solution of equation (29) and of 
corresponding changes is presented in Fig. 7. 

 

Fig. 7. The stress field ( ),yy x tσ  behind the front of the yield delat wave 

Taking into account the value of stress ( )* 0yy yyσ σ=  obtained from (31), let uf form the following 

general pattern for the stress field ( ),yy x tσ  (Fig. 8) between the front of elastic wave and the front of 
yield delay wave (Fig. 5). 

On the basis of obtained solution of equation (29), let us define the law of changing of ( )xx zε  
during transition from point 2 to point 3 on the diagram (Fig. 3). Using (24) and Hook’s law (26) written 
for the plastic region, we obtain: 

( ) *22 1 .p e
xx yy yy xxE

ε ε ν σ ν σ = = − −   (39) 

For the elastic deformation e
xxε  on the basis of (2), we may write: 

( )*1 2 .e
xx xx yyE

ε σ ν σ= −  (40) 

Taking into account the separation of deformation (8) for xxε , let us define: 

( )*1 2 2 .e p
xx xx xx yy xxE

ν
ε ε ε σ σ

−
= + = +  (41) 
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Fig. 8. The stress field ( ),yy x tσ  for all regions of the disturbed half-space 

The equation (41) allows to define the law of deformation xxε  changing in the plastic region of 
“overstressed” material. In the point 2 of the diagram (Fig. 3) the deformation xxε  must have the value of 

( )( )
( )

*
2

1 1 2
1xx xxE

ν ν
ε σ

ν
+ −

=
−

. It is obvious that this information may be obtained if the initial value ( )0yyσ  from 

the equality (30) is substituted into the equation (41). Similarly, in the point 3 we may obtain the deformation 

3xxε . Making the change *
xx xxσ σ→  in the equation (9), after simple transformations we obtain: 

3
4 5 .xx sE

ν
ε σ

−
=  (42) 

This deformation is obtained on the final stage of the deformation process from the point 2 to the 
point 3 of the diagram (Fig. 3) if the value yyσ  from (28) is to be substituted into the equation (41) and if 

we adopt that ( ) 0yy tσ → ∞ =& . As the final result after all remarks and explanations, let us substitute the 

solution of equation (29) into (41). We obtain the law of deformation xxε  changing with respect to the 
internal time z  (Fig. 9). 

 
Fig. 9. The law of deformation xxε  changing for the points  

of the half-space which are in the yield state 



Yaroslav Andrusyk 

 

20 

If we make the following change 
1

xz t
a

τ→ − − , we obtain the general pattern of the deformation 

field ( ),xx x tε  in the plastic region (Fig. 10). 

 
Fig. 10. The field of deformations xxε  in the plastic region of the half-space 

Taking into account the value of deformation 2xxε  for the narrow zone that is estimated by the time 

τ  (Fig. 5), we obtain the complete pattern of the deformation field ( ),xx x tε  for all regions of the disturbed 
half-space (Fig. 11). 

 
Fig. 11. The field of deformations ( ),xx x tε  for all regions of the disturbed half-space 

In order to define the distribushion of velocities ( ),xv x t  of the material particles in the plastic 
region of the half-space, let us use the following relation ship at small deformations: 

.x xxv
x t

ε∂ ∂
=

∂ ∂
 (43) 
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Differentiating (41) with respect to internal time z , we obtain: 

( ) ( ) ( )
2 1 2

.xx yyz z
E

ν
ε σ

−
=& &  (44) 

Adopting for convenience the compressing deformations xxε  as positive ones and taking into 
account (43), (44) and the expression for the time z , we may write down: 

( ) ( )
1

0 1
0

1 2, 2 ,

xt
a

x yyv x t V a z dz
E

τ
ν

σ

− −
−

= + ∫ &  (45) 

where 0V  is the velocity of particles on the boundary of elastic and plastic regions, which may be 
determined with a help of (13). 

After integrating (45), we obtain the field of velocities of the half-space particles in the plastic region 
(Fig. 12). 

 
Fig. 12. The distribution of velocities of the half-space particles in the plastic region 

Derivation and investigation of singular solution of defining equations of elastic-tough-plastic state 
All calculations presented above are based on the solution of equation (29) for derivation of which 

the condition that allow only increasing of the stress ( )yy zσ  has been imposed. This means that we 

neglected the sign of the absolute value of the ( )yy zσ&  in the second summand of the equation (29). This 
has been done consciously (knowingly) because this equation with the modulus has the strange (suprizing) 
solution with singularities. Taking into account the reccomendations [17], let us find this solution in the 
parametric form. 

Let us make the change 83,225 10yy uσ − ⋅ = −  in the equation (29): 

17 6121,42 10 8,57 10 0.u u u−⋅ − ⋅ − =& &  (46) 

Let us introduce the following parameter yyu ω σ= = −& & . Hence, from the equation (46) we obtain: 
17 6121,42 10 8,57 10 .uω ω−⋅ − ⋅ =  (47) 

After differentiating (47) with respect to time z , we may write down: 
7 11

6
12

1,42 10 8,57 10 .
12

signω ω ω ω− − ⋅
= − ⋅  

 
&  (48) 
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Let us rewrite this equation in the following form: 
7 623

12
1,42 10 8,57 10 .

12
d z
d

ω
ω ω

−
−⋅ ⋅

= −  (49) 

After integrating (49), let us find the general integral: 
7 11

6
12

1,42 10 8,57 10 ln .
11

z sign Cω ω ω− −⋅= − − ⋅ +  (50) 

Reverting to the equation (47), after making the recurrent change, we obtain: 
18 6 7 123,225 10 8,57 10 1,42 10 .yyσ ω ω−= ⋅ + ⋅ − ⋅  (51) 

The relations (50) and (51) are the general solution of the differential equation (29) written in the 
parametric form. In order to define the constant of integration in the equation (50), let us find 0ω  on the 

boundary of the front of yield delay wave. After substitution the value ( ) 80 1,79 10yy Paσ = ⋅  into (51), we 

obtain the corresponding equation, after solving of which we obtain 11
0 6,865 10 Pa

s
ω = − ⋅ . On the basis of 

equation (50), we obtain the following value of the constant of integration: 
7 11

6
120 0 0

1,42 10 8,57 10 ln .
11

C signω ω ω− −⋅= + ⋅  (52) 

After substitution of (52) into (50), we may write: 
11 11

6 60 12 120 08,57 10 ln 1,29 10 .z sign sign
ω

ω ω ω ω
ω

− −−  
= ⋅ + ⋅ −  

 
 (53) 

In order to define the value of parameter ω  and of the corresponding moments of time when the 
solution of the equation (29) has the singuliarity in the form of discontinuity point of the first kind, let us 
equate the right part of (49) to zero: 

11
6 6

121,18 10 8,57 10 0.ω −⋅ − ⋅ ⋅ =  (54) 

Solving this equation and choosing the necessary root, we obtain: 
12

2 1,4219 10 .Pa
s

ω = ⋅  (55) 

Now let us define the value of stress yyσ  for the found 2ω . Substituting 2ω  into (51), we obtain: 

( )
18 6 7 8122 2 23,225 10 8,57 10 1,42 10 1,8846 10 .yy Paσ ω ω ω−= ⋅ + ⋅ − ⋅ = ⋅  (56) 

Substituting the defined ( )2yyσ ω  into the equation (51), let us determine the values of ω  which 
satisfy the obtained equation: 

( )
18 6 7 122 3,225 10 8,57 10 1,42 10 .yyσ ω ω ω−= ⋅ + ⋅ − ⋅  (57) 

The results of calculation allow us to find the following solutions: 
11 12

1 23,743 10 , 1,4219 10 .Pa Pa
s s

ω ω= − ⋅ = ⋅  (58) 

Now we must define 3ω  for which the transition from 2ω  to 3ω  is carried out at the constant time. 
This value may be calculated if we make the change of 0ω  to 2ω  and equate the time z  to zero in the 
equation (53): 

11 11
6 62 12 122 28,57 10 ln 1,29 10 0.sign signω

ω ω ω ω
ω

− =−  
⋅ + ⋅ − =  

 
 (59) 
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Solving this equation, we obtain the following real root: 
12

3 5,735 10 .Pa
s

ω = − ⋅  (60) 

In order to construct the plot of solution of the equation (29) on the basis of its parametric forms (50) 
and (51), it is expedient to find the initial time range 0z∆  when [ ]0 1,ω ω ω∈  and the iteration time 

intervals 1z∆  for [ ]3 1,ω ω ω∈ . On the basis of equation (53) after making the following substitutions, we 
obtain: 

5 5
0 11,875 10 , 5,257 10 .z s z s− −∆ = ⋅ ∆ = ⋅  (61) 

On the basis of the conclusion about the state of the medium between the fronts of the waves (Fig. 5) 
and of the singular solution for the plastic region of the half-space material, let us construct the plot of 
dependence ( )yy zσ  for various time intervals. 

In the case when [ ]0,z τ∈ , the constant stress * 81,79 10уу Paσ = ⋅  is to be transited behind the front 

of the elastic wave. For the time range [ ]0,z zτ τ∈ + ∆ , the law of changing of the stress [ ]0,z zτ τ∈ + ∆  
may be defined on the basis of solution of differential equation (29) written in the parametric form in the 
view of relations (51) and (53). Similarly, for the time range [ ]0 0 1,z z z zτ τ∈ + ∆ + ∆ + ∆  we use the same 
equations but after the changing of 0ω  to 3ω  in the equation (53). For the further time z  course, the 
iteration of these solutions takes place, on the basis of which we may construct the plot of dependence 

( )yy zσ  (Fig. 13). 

 
Fig. 13. The plot of presentation of singular solution of the material state equation 

The spacial pattern of changing of the stress ( ),yy x tσ  may be obtained by making the change 

1

xz t
a

τ→ − − . After making the corresponding numerical calculations we obtain the field of deformations 

shown in Fig. 14. 
The obtained result shows the strange behavior of the material. The strangeness consists in the fact 

that at the constant stress xxσ , the pulsations of stresses in the transverse direction and the impulses of 
deformations along the x-axis take place. The whole material of the disturbed half-space in the plastic 
region becomes speckled caused by its “trembling”. On this stage of investigation it is not possible to 
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define the criterion of truth (validity) of realization of regular or singular solution of the plastic state 
equation. However, the possibility of occurrence of the phenomenon of “trembling” of the material 
supports (confirms) the point of view that plastic deformation should be studied as the wave process. 

 
Fig. 14. The field of stresses ( ),yy x tσ for all regions of the disturbed half-space when the singuliarity  

of the solution of the plastic state equations is taken into account 

Conclusions 
The presentation of use of electromechanical model of ideal elastic-tough-plastic material with yield 

delay is carried out while investigating the propagation of plane one-dimensional waves. The difference of 
propagation of plane elastic-plastic waves in material without yield delay and of propagation of elastic-
tough-plastic waves in the half-space filled by the material that possesses the property of yield delay is 
shown. On the basis of regular solution of the defining equations for ideal elastic-tough-plastic material, 
the field of stresses, deformations and velocities of the medium particles are obtained. The possibility of 
occurrence of singular solution with singularities in the form of discontinuity point of the first kind is 
substantiated. The character of behavior of the half-space material obtained on the basis of such solution 
looks like “trembling”. Such result supports (confirms) the point of view that plastic deformation should be 
studied as the wave process. 
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