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Abstract. The use of eectromechanical model of ideal eastic-tough-plastic material with
yield delay while investigating the propagation of plane one-dimensional waves is being considered.
The materials being investigated possesses the property of toughness only in the plastic region and is
elastic up to the plastic state. The solving of the problem is being carried out in the conditions of
one-parameter loading when the permanent (steady) uniformly distributed stress is being suddenly
applied to the boundary surface of non-deformed half-space. The value of applied stress exceeds the
limit level of elastic state in the case of static deformation and remains unchanged for the whole
region of disturbed half-space. In order to conduct the corresponding calculation the dependence
between the components the tensor of normal stress and linear deformations along the load axis is
being determined. The defining equations of eastic-tough-plastic medium behind the front of the
wave of transition from elastic to plastic state are being derived and the simple relationship for
determination of the time (duration) of yield delay is deduced. The basic solution of these equations
is obtained for the stresses in elastic and plastic region of the half-space. The special representation
of the basic pattern of changing of lateral (transverse) stresses and longitudinal deformations for the
region of active loading of material is defined. The distribution of velocities of the half-space points
in the plastic region is obtained. The difference between the characters of propagation of plane
elastic-plastic wave and the wave processes in the material with yield delay is shown.

It is noted that two different solutions are obtained despite of the simple type of loading. The
first one detects the strange character of medium’s behaviour when the material of disturbed half-
space in the plastic region is in the state of “trembling”, which causes the pulsations of lateral
(transverse) stresses and the impulses of deformations along the axis that is normal to the boundary
surface of the half-space.

Keywords: yield delay, plane eastic-tough-plastic waves, dynamic criterion of plasticity,
plastic state, overstress, medium “trembling”.

Introduction

A lot of publications are devoted to the theoretical research of propagation of plane elastic-plastic
waves. The earliest works in this field are presented in [1-4]. The further complication of problems related
with the investigation of such type of dynamic processes took its place due to the changing of the character
of external loading and taking into account more complete features of materials [5-8]. The works reated
with propagation of waves in materials that possess the feature of yield delay are not so widespread. The
short overview of the specific features of investigations of dynamic processes in such mediums are
presented in [9]. In theoretical works related with wave propagation in materials with yield delay, the great
difficulties and awkwardness of research are noted [10]. The analytical solution may be obtained only for
the simplest boundary conditions and idealized features of the medium [11]. Thisis caused by the fact that
on thebasis of Yu. N. Rabotnov model [12] after the exhaustion of delay possibility, the transition from the
overstressed state to plastic one is carried out almost instantly by means of eastic unloading (relief) if the
functional condition of Cottrdl is satisfied. As a result of this the waves of large discontinuities, which
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cause very complicated motion pattern when interacting with elastic and plastic waves, arise. The great
variety of discontinuities in certain problems makes it almost impossible to obtain even numerical solution
with accurate accounting of all discontinuities [10].

Let us carry out the investigation of dynamic state of the material with yield delay, which fill the
semi-infinite space, on the basis of electromechanical model of the medium [13]. The specific feature of
the formulated problem consists in the fact that the transition from the elastic state to the plastic one (to the
lower yield limit) is being carried out not suddenly but during the certain period of time. That is why the
behaviour of the medium won't cause the occurrence of the wave front of large discontinuities. Hence,
there occurs the possibility of considerable simplification of obtaining of general pattern of wave processes
for such materials.

Derivation of relation between stress and defor mation
of ideal elastic-plastic material for the plane problem of propagation of compression waves

When investigating the propagation of eastic-tough-plastic waves in the rod on the basis of
electromechanical model of the material with yield delay, the assumption related with neglect of inertial
forces caused by lateral (transverse) deformations were made [14]. In the considered plane problem, such
assumptions are not necessary because the lateral (transverse) deformations are missing. Let us formulate
more detailed statement of the problem and determine the necessary features of the medium on the basis of
single-axis diagram of tension-compression of ideal elastic-plastic material.

Let the motion of particles of the medium is carried out by the wave that propagates in non-movable
and non-stressed half-space along the x-axis, which is perpendicular to the boundary surface (plane). The
y-axis and z-axis of the Cartesian coordinate system x, vy, zliein this plane. The disturbance is conducted as
aresult of application of permanent uniformly distributes normal stress s , = R, to the half-space surface

(Fig. 1). The other values of stresses and deformations are the functions of coordinate x and time t because
the load on the half-plane boundary doesn’t depend on 'y and z. So we may write that the components of the
tensor of stresses and deformations are as follows:

Sxx* 0, Syw=S,10, ty =t,,=t, =0,

D

' 0, ey =€, =6 =e,=e, =0

Py

O

X

'

Fig. 1. The half-space, on the surface of which the uniform normal stress Pp acts

In order to obtain differential equations of dynamic state of material it is necessary to define the
relationship between s, and e,, taking into account the diagram of single-axis tension-compression of
rods s : e, which is formed on the basis of experiments under static loading. The typical stress-
deformation curve of compression of rods made of ideal dastic-plastic material is shown in Fig. 2, where
S g istheyield limit of the material, eg isthe maximal value of elastic deformation of compression.



Propagation of Plane Elastic-Tough-Plastic Waves in the Material with Yield Delay 11

o |

- ¢ S R 9

! £
]
I i

Fig. 2. Satic diagram of single-axis compression of ideal elastic-plastic material of therod

Taking into account (1), let us write the Hooke's law for the region of elastic deformations
considering the plane problem. On the diagram (Fig. 2), this corresponds to theregion s T [0,s g]:

exxzé(sxx- Zhsyy),

. 2
0==[(1-n)s\y, -NnS ,
E[( ) vy xx]
where E isYoung's modulus; N is Poisson’sratio.
After certain transformations we obtain:
S XX :M eXX i (3)
(1+n)(1- 2n)

Using (2) and (3), let us determine the values of s ,, and e, which causes plastic deformation of
the material. As a condition of transition to the plastic state, we take the Miz€'s criterion that matches the
Trask’s criterion in our case. In the considered problem, the yield condition may be written in the simple
form:

Sxx~ Sy =Ss- (4)

Substituting s yy, from (2) to (4), we obtain:

s _1-n
*1-2n

Ss. ®)

Obviously, one can seethat s 3, >s 5. Similarly, for 3, from (3) we obtain:

e)?le%sszes(lm). (6)
Let us determine s ,, (e, ) in plastic region. Taking into account the non-compressiability of plastic
deformation and the condition (4), let us perform the following transformations for volumetric

deformation:
Sxxt25y F,-2Sg
3K 3K

(")

— € e _
e teyy te, =ey t+2ey =

E . . -
where K =————— isvolumetric modulus of elasticity.

3(1- 2n)

Here we take into account the separation of deformation on eastic and plastic components:
B =% TN, By Tey tell. (8)
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Onthe basis of (1) we may statethat e,, =e,, =0. That’swhy with a help of (7) we may defind the

dependence s , (e, ) for the material of the half-space, which isin the yield state:

S =g B 425 ©
3(1-n) 3°°
Using the relationships (3) and (9), let us transform the diagram of single-axis compression of the
material (Fig. 2) into the dependence s ,, ~e,, for the plane problem (Fig. 3).

o

ey
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Fig. 3. The dependence S (exx) for the complete limitation
of lateral (transverse) deformations

In order to carry out the comparative analysis and to use the certain values of obtained data in the
following investigations, let us consider the propagation of plane dastic-plastic waves when the normal
stress By =s ;X which exceeds the plasticity limit s g, is suddenly applied to the boundary of the half-

space. Let uswrite down the dynamic equations of motion for small deformations and missing mass forces:
TS _ . 12U
=r T A lo
where u isthe displacement of the medium particles along the x-axis; r isthe density of the material that
fills the half-space.
Let us differentiate equation (10) with respect to x and relationships for eastic region (3) and for
plastic region (9) twice with respect to time;

'nZsXX:r ‘ng, 1% E(1-n) 'nzexx7 TS _ E 'nzexx_ a1
™2 ftPx ft2 (Q+n)(I-2n) g2 7 g2 3(1- ) qi?
u

Taking into account the fact that e, =‘|]_’ let us exclude the deformation ey, from the system of
X

equations (11):
ﬂzsxxzalz'ﬂzsxx ‘nzsxxzag'ﬂzsxx
1t ™ 2 X2

31:\/ E(1-n) = E

r(1+n)(1- )’ 3(1-n)r

(12)
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The obtained equations (12) allows us to state that & is the velocity of propagation of the front of
elastic wave, on which the stress spasmodically reaches the value of yield limit s 3. Similarly, on the
plastic wave, which propagates with the velocity a, , the new discontinuity (jump) of the disturbance to the

value of applied normal stress s ;X takes place. Hence, the disturbance propagates in the medium in the
form of step-type waves, which are schematically shown in Fig. 4

i
o

2 4
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0

Fig. 4. The propagation of elastic-plagtic waves in the half-gpace

For mation and solving of defining equations of elastic-tough-plastic state
of the material behind the front of yield delay

Let us define the pattern of motion of the medium particles in the half-space on the basis of
electromechanical model of material that possesses the property of yield delay [13]. At the same time, the
normal stress s ;X >s 3, issuddenly applied to the boundary surface. As aresult of such loading the shock

(impact) wave will propagates through the medium with the velocity & . On thefront of this wave, x=at,

the stress and deformation spasmodically increase to the values of SXXZS;X and

l+n l' 21 * . . . .. * .
%sm. Unlike the elastic-plastic material, the transition to the stress s, is

carried out not along the curve 0 — 1 — 3 zs shown on the diagram (Fig. 3), but along the straight line
0 — 1 — 2 described by the equation (3). The region of the half-space, for which staying in the elastic state
will be exhausted by the time of yield delay t , will transit to the plastic state. The boundary of transition
of the material fom elastic state to plastic one may be considered as the front of the wave of yield delay,

which propagates with the velocity of elastic wave & and is defined by the equation x = al(t -t ) (Fig. 5).

Exx = Coxx =

In the region between the waves fronts a(t-t ) £x £ a;t, the material of the half-space will bein

the elastic state. Behind the front of the yield delay wave, the plasticity state takes place. Let us note that
according to the problem statement the normal stress along the x-axis in the plastic region will remain

permanent and equal s ;X The stressed and deformated state in the investigated material doesn’t cause the

initiation of rotation motion of particles. That's why, on the basis of the theorem of Cauchi-Helmgolz
about the velocities of particles of infinitely small part of the medium [15], the velocity of its arbitrary
particle will consist of the velocity of trandational motion of the part as absolutely rigid body and of the
velocity of pure strain (deformation). On the basis of (10) one may state that the velocity of translational
motion is permanent and equal to the velocity of particles on the front of yield delay wave. In the case
when the elastic solution is known, this velocity may be defined as:

(1+n)(L- ) o« _ [(L+n){2- ) o (13)

Vo =220 = E(l-n) X E@-n)r X
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0
Fig. 5. The distribution of the gate regions of the half-spacein the plane x, t
The dependence of the velocity of the arbitrary particle of infinitely small part from its deformation

in the yield state may be determined on the basis of defining equations of plasticity. The equations that
define the dynamic condition of material plasticity with yield delay are as follows [13]:

e
&
2 2 2a a3
¢S - M AT - S L= TS Tk e 7
é (14)
6

1 1
Sj =sij - 3%iS ke & =4 - §dijé|fk 1

where §;, SG are the components of stress deviator in the plastic region and on the boundary of transition

from elastic region to plastic one; sj; are the components of stress tensor: é”e- , Q’f are the components of

the tensor and deviator of velocities of elastic deformations; m is the coefficient of viscosity; k and n are
the constants that characterize the material; d;; is the symbol of Kronecker.

Using the association law of plasticity and the equation (14), let us derive the reationship for
determination of components of the tensor of velocity of plastic deformations é”p [14]:

3
>m (15)

o -

@> D> > D> D > D> D> D

On the basis of equations (15), let us describe the process of material deformation in the region that
corresponds to the section 2-3 of the diagram s (exx) (Fig. 3). Because of the fact that in the case of our
plane problem the components of the tensor of stresses and defromations have the values defined in

" . . _2 e 1
conditions (1), for the components §; we will obtain: Sy, —§(SXX - SW), Sy =S, _§(SW - sxx).
So for gajaj and ga’] Sj wemay define

* * * \2
gsljslj:%(sxx'syy)21 gSjsij:(Sxx_SW)' (16)
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Similarly, for the components Q? we may aobtain:

&§=2(en- &) & == J(05- &) (17)

L et us note that according to (1) the components of deformation tensor ey, =e, =0, however

the components of the tensor of elastic deformations in plastic region egy =e5, 1 0. So for g&?&?

we may wrtite:
3 2
e =65 65,) (18)
Taking into account the Hook's law for elastic components of deformation tensor, after
corresponding transformations we abtain:
2
3gege - (1N) ’
286 = 5 (S0~ Sy ) (19)
where g, , s, arevelocities of changing of normal stresses.

In order to carry out the further transformations, let us note that Hook’s law is valid on the front of
theyield delay wave. That’swhy on the basis of equations (2) we may write:

(1-n)s;,y-ns;X=O. (20)
Hence, for the relationship (16) we may define:

3**_@_-2} *62

2SS Tg T, S (21)

Making the substitution of (16), (19), (21) into (15), let us determine the velocity of plastic
deformation &5 :

1§ (1+n)2" 2 [(a- 2)sp, U
62 ==& -5\ -Se- kil (dhy, - sy )N T2 g0 22
XX mé XX W s E% ( XX yy) (l-n)Ss H (22)

Let us carry out the additional transformations of the equation (22). In order to simplify its

P> @

presentation let us consider the applied stress s ;X as.

_1-n
mss"'ss- (23)

Taking into account the plastic non-compressibility of the material, let us write:
el +2ef, =0. (24)
If we represent the deformation in the view of (8) and taking into account the fact that it is missing
in transverse direction ey, =0, we may write ey, =- e§y . S0, on the basis of (24), after differentiation
with respect ro time we obtain:
é5 =24y, (25)
Let us write down the Hook's law for the elastic lateral (transverse) deformations in the plastic
region:

1. N
e§y=Egl-n)sW-nsXXH. (26)
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Differentiating the equating (26) with respect to time and taking into account the fact that
Sy =S ;X =const , let us define:

1-n

As a result of substitution of relationships (23), (25), (27) into (22), after carrying out certain
transformations we obtain the following form of equations (22):

2(1-n 1+n %
() )
E E%
In order to perform the corresponding calculations, let us adopt the following numerical values of
material constants, which were used in the work [13]:

1- Xn 1-n
+s s.=0. 28
1n WSS (28)

+k (-ﬁyy

E=21x0"Pa, s,=21540°Pa, m=1,2x10°Pass, k=15403Pars 12,

r =780059. n=24 n=025
m3

If we substitute the values of corresponding constants of material into the equation (28), we obtain:

8,57 ><10'%W +1,42x10° |§W|%2+s w - 3225 x10° =0, (29)

The obtained equation (29) may be characterized as defining one, on the basis of which solution one
may describe the stressed and deformed state of material of the half-space in the plastic region. However,
as a variable of this eguation it is expedient to choose the internal time for each particle of the medium,
which may be defined as a time of staying of the certain particle in the yield state. L et us consider thistime
asz=t-t- 2.

q
In order to obtain the solution of the equation (29), it is necessary to determine the value of stress

S yy at the moment of time when z = 0, which will be equal to the stress on the front of the yield delay

wave. On the basis of (2), let us write:

* n *
SWZSW(O)ZHSXX. (30)

Taking into account the adopted applied stress s ;X equal to (23), after the certain transformations
we abtain:

2.3
S 4y (0) = (1n( ) < . (31)

-n)(1- 2n)
Substituting the numerical values, we obtain s y (0) =1,79 X108 Pa.
The solution of the equation (29) is presented in Fig. 6 in the form of plot s, (z) . While

determining the solution of the equation (29), the following condition has been adopted: s&yy(z) may
accepts only positive values.

In order to obtain the special presentation of the general pattern of changing of the stress s ,,, behind
the front of the yield delay wave, in the solution of the eguation (29) let us make the following change
z®t-t - al . In order to carry out the corresponding calculations, it is necessary to determine the

il
numarical value of the time (duration) od yield delay t .
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Fig. 6. The graphical presentation of the solution
of the state equation in the plastic region

The invstigation [16] shows that the yield delay time, when suddenly “overstressed” material

g 35{; S{] >s s + stays in the dastic state, equals the time, during which the yield starting stress may be

achieved when Ioadl ng with a certain permanent velocity. That’s why the yield delay time for the arbitrary
stressed state may be determined as follows:
3 * _*
53iSj - Ss
t = (32)

3 i)
a4
where éj are the components of deviator of velocities of stressesin the elastic state.
According to the dynamic condition of plasticity (14), the following criterion of material yield limit

may be obtained [13]:
Bsig s AT o @)

Let us write down the Hook’s law in the form of the dependence between the components of the
deviator of stresses and deformations:

e

€] :j—(j;, where the shearing modulus equals G = (39

2(1+n)’
After the differentiation of the equation (34) with respect to time and after substitution of the result
into (33), we may write down:

2¢ L
BS” 5 = LK (1+n) éj éj _ (35)

Making the transformation of (35), we may deflne.

Vi maas 4
géjéj = =Ss ag SISTIE Ss_ : (36)
V (1n)K28
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Substituting (36) into (32), we aobtain the expression for determination of t in the following form:

‘= k%(1+n)
veFas ot (37)
Ess%lggSij - Ssx
]

Taking into account (21), (23) and the value n =24, after certain transformations we may write:

_K2(1+n)eel-n &

. (38)
Esll &-ag

Using in (38) the adopted material constants, we obtain t =1,29247 X.0" *s.
The calculated value t  allows to obtain the general pattern of the stress field s (x,t) behind the

front of the yield delay wave. The result defined on the basis of solution of equation (29) and of
corresponding changes is presented in Fig. 7.

L _F___'____,.__-w-'"-"!‘_ _
b rr;:\‘, Pa
1. [
e

Fig. 7. The stressfield s y, (X,t) behind the front of the yield delat wave

Taking into account the value of stress s ;,y =s yy(0) obtained from (31), let uf form the following

general pattern for the stress field s yy(x,t) (Fig. 8) between the front of elastic wave and the front of
yield delay wave (Fig. 5).
On the basis of obtained solution of equation (29), let us define the law of changing of ey, (2)

during transition from point 2 to point 3 on the diagram (Fig. 3). Using (24) and Hook’s law (26) written
for the plastic region, we obtain:

24 TN
e)o(:Zesyzgg(l-n)sW-nsmH. (39)
For the dlastic deformation e, on the basis of (2), we may write:
e _1(_~»
eXX—E(sXX- msw). (40)
Taking into account the separation of deformation (8) for ey, , let us define:

1-2n *
(Zs y ts XX) .

ey =B TR = (41)
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Fig. 8. The stressfield s , (X,t) for all regionsof the disturbed half-space

The equation (41) allows to define the law of deformation ey, changing in the plastic region of

“overstressed” material. In the point 2 of the diagram (Fig. 3) the deformation e, must have the value of

1+n)(1- 2n) «

€oyx _(1+n)@d- 2n) 2()1( ] )s x - It is obvious that this information may be obtained if theinitial value s \y, (0) from

-n

the equality (30) is subgtituted into the equation (41). Similarly, in the point 3 we may abtain the deformation
€3y - Making thechange s ,, ® s ;X in the equation (9), after smple transformations we obtain:

_4-m

€3xx Ss. (42)

This deformation is obtained on the final stage of the deformation process from the point 2 to the
point 3 of the diagram (Fig. 3) if the value s ,, from (28) is to be substituted into the equation (41) and if

we adopt that sy, (t ® ¥ ) =0. Asthefinal result after all remarks and explanations, let us substitute the
solution of equation (29) into (41). We obtain the law of deformation e,, changing with respect to the

internal time z (Fig. 9).
oozds
QOIS0 L

Qs

oo

z, 5

LR LTt LT L0 LT ]

Fig. 9. The law of deformation ey, changing for the points
of the half-space which arein theyield state
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If we make the following change z® t-t - é we abtain the general pattern of the deformation

field ey, (x,t) inthe plastic region (Fig. 10).

Fig. 10. Thefield of deformations ey, inthe plastic region of the half-space
Taking into account the value of deformation e,,, for the narrow zone that is estimated by the time

t (Fig. 5), we obtain the complete pattern of the deformation field e, (x,t) for al regions of the disturbed
half-space (Fig. 11).

Fig. 11. Thefield of deformations e, (X,t) for all regions of the disturbed half-space

In order to define the distribushion of velocities v, (x,t) of the material particles in the plastic
region of the half-space, let us use the following relation ship at small deformations:
v _ Tex
v T (43)
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Differentiating (41) with respect to internal time z, we obtain:

6o (2)= 22 () (4

Adopting for convenience the compressing deformations ey, as positive ones and taking into

account (43), (44) and the expression for thetime z, we may write down:

X
t-t-—
&

LA 0 dy(2)dz,
0

vy (xt) =V + 28 (45)

where Vjy is the velocity of particles on the boundary of elastic and plastic regions, which may be

determined with a hdp of (13).
After integrating (45), we obtain thefield of velocities of the half-space particlesin the plastic region
(Fig. 12).

Fig. 12. The digtribution of velocities of the half-space particlesin the plastic region

Derivation and investigation of singular solution of defining equations of elastic-tough-plastic state
All calculations presented above are based on the solution of equation (29) for derivation of which
the condition that allow only increasing of the stress s yy(z) has been imposed. This means that we

neglected the sign of the absolute value of the s&yy (z) in the second summand of the equation (29). This

has been done consciously (knowingly) because this equation with the modulus has the strange (suprizing)
solution with singularities. Taking into account the reccomendations [17], let us find this solution in the
parametric form.

Let us makethechange s yy, - 3,225 x0% =-u inthe equation (29):

142 >{].O7|l&|%2- 8,5740 %@ - u=0. (46)
Let usintroduce the following parameter & =w =-d,,. Hence, from the equation (46) we obtain:
142407 |2 - 85740 5w =u. (47)
After differentiating (47) with respect to time z, we may write down:
71 )
W=a%|w|'1zsigrw- 8,57 ﬂO’Gi\&. (48)

a
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Let us rewrite this equation in the following form:
dz 142><107 23 85740°

- . 49
dw | | w (49)
After integrating (49), let usfind the general integral:
711
z=- @M 12 Signw - 8,57 X10° 6In|W|+C (50)

Reverting to the equation (47), after making the recurrent change, we obtain:

Sy =3,225X10°+8,5740 ®w - 1,42>00’ Wiz, (51)

The relations (50) and (51) are the general solution of the differential equation (29) written in the
parametric form. In order to define the constant of integration in the equation (50), let us find wg on the

boundary of the front of yield delay wave. After substitution the value s y,, (O) =1,79x08 Pa into (51), we

obtain the corresponding equation, after solving of which we obtain wg = - 6,865 noll@ . On the basis of
S

equation (50), we obtain the following value of the constant of integration:
1,42x07, .1

C=="7 lwo| 12 signwg +8,57 40" C Injwg) . (52)
After substitution of (52) into (50), we may write;
1 )
2=8,57x10 8 In[~0 +].,29>{].06§W0| 12 Sigw - (W] 12 Signw . (53)
a

In order to define the value of parameter w and of the corresponding moments of time when the
solution of the equation (29) has the singuliarity in the form of discontinuity point of the first kind, let us
equate theright part of (49) to zero:

1
1,18x40° - w12>8,5740"® =0, (54)
Solving this equation and choosing the necessary root, we obtain:
W, =1,4219 otz Pe (55)
S

Now let us define the value of stress s y,, for thefound ws . Substituting ws into (51), we obtain:

S v (W,)=3225x10° + 85740 °w -142><107w2%2=18846x108Pa. (56)
yy \""2 2

Substituting the defined s y, (W,) into the equation (51), et us determine the values of w which
satisfy the obtained equation:

S yy (W) =3,22540% +8,57>00" ®w - 1,4240’ Wi, (57)
The results of calculation allow us to find the following solutions:

W =-3,743 qoitPa W, =1,4219 qoi2Fa. (58)
S S

Now we must define wa for which the transition from w, to ws is carried out at the constant time.
This value may be calculated if we make the change of wy to w, and equate the time z to zero in the
equation (53):

6 0
21+1,29%10 §w2| 12 Signw, - |w| 12 sgnw =0. (59)

85710 61n/"2
w 2
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Solving this equation, we obtain the following real root:
wy =-5,735x1012 72, (60)
S

In order to construct the plot of solution of the equation (29) on the basis of its parametric forms (50)
and (51), it is expedient to find the initial time range Dz, when wi [wp, wy] and the iteration time
intervals Dz for wi [ws,wy|. On the basis of equation (53) after making the following substitutions, we
obtain:

Dz, =1,87540 °s, Dz =5,257%0 °s. (61)

On the basis of the conclusion about the state of the medium between the fronts of the waves (Fig. 5)
and of the singular solution for the plastic region of the half-space material, let us construct the plot of

dependence s ,, () for various timeintervals.

In the case when zi [O,t ] , the constant stress s ;,y =179 108 Pa is to be transited behind the front

of the elastic wave. For the timerange zI [t,t +Dzy], the law of changing of the stress zI [t ,t + Dz]

may be defined on the basis of solution of differential equation (29) written in the parametric form in the
view of relations (51) and (53). Similarly, for thetimerange zI [t + Dzt + Dz, + Dz] we usethe same
equations but after the changing of wp to w3 in the equation (53). For the further time z course, the
iteration of these solutions takes place, on the basis of which we may construct the plot of dependence
sy (2) (Fig. 13).

To,, Pa

w?

O] Tl 2 SELLiL LLEL L LS

Fig. 13. The plot of presentation of singular solution of the material State equation

The spacia pattern of changing of the stress s yy(x,t) may be obtained by making the change

Z®t-t - 2. After making the corresponding numerical calculations we obtain the field of deformations
Y

shownin Fig. 14.

The obtained result shows the strange behavior of the material. The strangeness consists in the fact
that at the constant stress s, the pulsations of stresses in the transverse direction and the impulses of
deformations along the x-axis take place. The whole material of the disturbed half-space in the plastic
region becomes speckled caused by its “trembling”. On this stage of investigation it is not possible to
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define the criterion of truth (validity) of realization of regular or singular solution of the plastic state
equation. However, the possibility of occurrence of the phenomenon of “trembling” of the material
supports (confirms) the point of view that plastic def ormation should be studied as the wave process.

Fig. 14. Thefield of stresses's y (X,t) for all regions of the disturbed half-space when the singuliarity

of the solution of the plastic state equations is taken into account

Conclusions

The presentation of use of electromechanical model of ideal elastic-tough-plastic material with yield
delay is carried out while investigating the propagation of plane one-dimensional waves. The difference of
propagation of plane eastic-plastic waves in material without yield delay and of propagation of elastic-
tough-plastic waves in the half-space filled by the material that possesses the property of yield delay is
shown. On the basis of regular solution of the defining equations for ideal eastic-tough-plastic material,
the field of stresses, deformations and velocities of the medium particles are obtained. The possibility of
occurrence of singular solution with singularities in the form of discontinuity point of the first kind is
substantiated. The character of behavior of the half-space material obtained on the basis of such solution
looks like “trembling”. Such result supports (confirms) the point of view that plastic deformation should be
studied as the wave process.
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