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Abstract. Passive, broadband targeted energy transfer refers to the one-way directed transfer of 
energy from a primary subsystem to a nonlinear attachment; this phenomenon is realized in damped, 
coupled, essentially nonlinear impact or particle dynamic vibration absorber (DVA). An impact damper 
is a passive control device which takes the form of a freely moving mass, constrained by stops attached to 
the structure under control, i.e. the primary structure. The damping results from the exchange of 
momentum during impacts between the mass and the stops as the structure vibrates. A particle-based 
damping system can overcome some limitations of ordinary DVA by using particles as the damping 
medium and inter- particle interaction as the damping mechanism. Large damping at such family 
constructions of DVA’s does not bring to destruction an elastic DVA element over in critical cases, when 
working frequency approaches own frequency of DVA, or when the transitional process of acceleration 
of rotating machines is slow enough and DVA’s has time to collect large amplitudes of vibrations.  

The primary structure is modelled as a spring-mass system. In this paper, an efficient numerical 
approach based on the theoretical-experimental method is proposed to maximize the minimal damping of 
modes in a prescribed frequency range for general viscous tuned-mass systems. Methods of decomposition 
and numerical synthesis are considered on the basis of the adaptive schemes. The influence of dynamic 
vibration absorbers and basic design elastic and damping properties is under discussion. A technique is 
developed to give the optimal DVA’s for the elimination of excessive vibration in sinusoidal forced rotating 
system. It is found that the buffered impact damper not only significantly reduces the accelerations, contact 
force and the associated noise generated by a collision but also enhances the level of vibration control. 

The interaction of DVA’s and basic design elastic and damping properties is under discussion. 
One task of this work is to analyze parameters identification of the dynamic vibration absorber and 
the basic structure. The discrete-continue models of machines dynamics of such rotating machines as 
water pump with the attachment of particle DVA’s and elongated element with multi mass impact 
DVA’s are offered. A technique is developed to give the optimal DVA’s for the elimination of 
excessive vibration in harmonic stochastic and impact loaded systems. 

 

Introduction 
 

The impact damping method has two limitations. First, damping does not occur at low frequencies 
where the acceleration of the container is lower than that of gravity because the particles lack sufficient 
energy to begin colliding with each other and instead they move as one lumped mass. Second, the damping 
capabilities are dependent on the quantity and mass of free particles available for collisions. The tendency 
of particles to self-assemble into a packed configuration under vibration can reduce the availability of free 
particles and therefore decrease damping effectiveness.  

A tuned mass damper (TMD), or dynamic vibration absorber (DVA), is found to be an efficient, 
reliable and low-cost suppression device for vibrations caused by harmonic or narrow-band excitations. In 
DVA design the stiffness and the damping ratio can be determined by balancing the two fixed points in the 
frequency response [1], in the case of harmonic excitation, or by minimizing the mean-square response 
under the random excitation, or by balancing the poles of system. Most leading text books on mechanical 
vibrations discuss the basic equations of DVA’s to some extend, e.g. [1–3]. Among the pioneering 
publications providing an in-depth theoretical treatment are those by Ormondroyd and Den Hartog [4] and 
Den Hartog [5]. For linear DVA’s a closed theory is available, but due to the large number of system 
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parameters and varying technical applications with different requirements no unique solution exists. 
Generally, a significant influence of damping on the vibration reduction performance is observed.  

The problem of attaching  DVA to a discrete multi-degree-of-freedom or continuous structure has 
been outlined in many papers and monographs by Bishop and Welbourn [6], Warburton [7], Hunt [8], 
Snowdon [9],  Korenev and Rabinovic [10] and Aida et al. [11] to name but a few. Nonlinear DVA have 
been  investigated by Kolovsky [12], Kauderer [13], Pipes [14], Roberson [15]. The article [16] of Ibrahim 
presents a comprehensive assessment of nonlinear DVA’s  in the absence of active control means.  

In [17] an improved scheme is proposed for identifying the time of contact and calculation of the 
state variables after impact. This scheme avoids false detection of collisions and embodies collisions or 
contacts with infinitesimally small differences in velocities. Detailed experiments with a horizontal impact 
damper explain in [17] the general performance and the resonance vibration of the integrated system, 
which occurs at a frequency, which is different from the original resonance frequency. 

An impact damping system can overcome some limitations by impact as the damping medium and 
impact mass interaction as the damping mechanism. The paper contemplates the provision of DVA or any 
number of such absorbers. Such originally designed absorbers reduce vibration selectively in maximum 
vibration mode without introducing vibration in other modes. For example, the final result is achieved by 
DVA at far less expense compared to the cost needed to replace the machine foundation with a new, 
sufficiently massive one. In [18–20] the particle DVA’s are presented. 

In order to determine the optimal parameters of an absorber the need for complete modeling is 
obvious. Present research has developed a modern prediction and control methodology, based on a 
complex continuum theory and the application of special frequency characteristics of structures. The 
numerical schemes (NS) row for the complex vibroexcitated construction and methods of decomposition 
and the NS synthesis are considered in our paper on the basis of new methods of modal synthesis [21–24]. 
The DVA designed in accordance with our proposals also has the advantage that it can be constructed such 
that it has a wide-range vibration absorption property. Such originally designed absorbers reduce vibration 
selectively in maximum mode of vibration without introducing vibration in other modes.  

Similar in a mathematical plan tasks are examined in [25]. Here basic task: maximally effectively to 
pass energy to the container with details which are processed. 

 

Dynamic equations 
 

Let us consider condensed model of DVA - main system. In Fig. 1 the impact mass type DVA is 
presented: an additional impact mass in container with elastic barrier elements. 

 

 
Fig. 1. Pendulum type DVA with the additional elements 

 

The system of equations in the condensed rangy is obtained: 
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Here an arbitrary number N of DVA’s is considered. Parameters 1m , 1k  of the prime system may be 
found by means of FEM or experimentally. The nonlinear functions are: 

( ) iiiixiivii AxFAxAxKF <=>−−= 0, ; ( ) ( )tatF ω= sin , (2) 
where A are clearans and viK  is boundary elements rigidity. 

 

Numerical results, optimization 
 

DVA’s are appropriately optimized by genetic algorithms near the beam first eigen-frequency Rf . 
The evaluation function is: 

( )( ) RR fffuMaxCiL β<<α= f,1 . (3) 
The process and results of optimization for the DVA (Fig. 1) is presented in Fig. 2 for different 

DVA’s masses. 
 

____________________N = 2121___________________ 
  Dx  .263E-01   Dx2   .265E-01  DG  .544E-02   Ax  .150E+02   CiL  .404E-01 
  fx  .996E+00   fx2  .879E+00   Ekx  .959E-05   Mx  .750E+00 
______________________________N = 5585__________________________ 
  Dx  .173E-01   Dx2   .746E-02  DG  .855E-01   Ax  .150E+02   CiL  .273E-01 
  fx  .892E+00   fx2  .100E+01   Ekx  .193E-03   Mx  .100E+01 
______________________________N = 1602_________________________ 
  Dx  .275E-01   Dx2   .167E-01  DG  .664E-01   Ax  .150E+02   CiL  .168E-01 
  fx  .100E+01   fx2  .885E+00   Ekx  .601E-04   Mx  .200E+01 
______________________________N = 5844__________________________ 
  Dx  .151E-01   Dx2   .208E-01  DG  .577E-01   Ax  .150E+02   CiL  .132E-01 
  fx  .911E+00   fx2  .100E+01   Ekx  .494E-02   Mx  .250E+01 
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a) b) 

Fig. 2. The process (a) and results (b) of optimization for the two DVA’s 
 

Here 4 parameters of optimization are used: fx, fx2 are DVA’s eigenfrequencies; Dx, Dx2 are 

proportional viscous damping (added to all equations terms dt
duDk iXiXi ). In the all numerical examples 

the prime system mass is 1m  = 10 kg, the prime system eigenfrequency Rf  = 1 Hz = 6.28 Rad/s,  the 
proportional damping – D1 = 0.03. For system with two dangerous frequency intervals the grate number of 
DVA’s may be used (Fig. 3). For 4=AN  the better result may be seen. 

Let’s consider now the DVA with 3 different impact masses in one container (Fig. 4). The system of 
equations is now: 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
1 1

1 1 1 0 1 1 1 1 1 12 1

1... ,

X
A A X A X X

X

XN
XN A XN N XN

XN

d u mm k u u k u u u u k F u uRdt
m u u k F u u F tR

+ − + − − − + − −

− − − + − =
 

( ) ( ) ( ) ( ) ,0,, 31132112111111
1

2
1

2

1 =++−−−+ XXXXXXAXX
XX

X uuFuuFuuFkuuR
m

dt

ud
m  

( ) ( ) ( ) ( ) 0,, 32232112212
2

2
2

2 =+−−−−+ XXXXXNXAXNX
XX

X uuFuuFuuFkuuR
m

dt

ud
m , 

( ) ( ) ( ) 0,, 322331132
2

3
2

3 =−−−+ XXXXAXNX
XX

X uuFuuFuuR
m

dt

ud
m . 

(4) 



Bohdan Diveyev 

 

38 

2 4 6 8 10 12 14
0.00

0.01

0.02

0.03  A,m

NA=2
NA=4

MX=MX2=0

 f, Rad/s 

 
Fig. 3. The results of optimization for system with two frequency intervals by number of DVA’s 4.2=AN  
 

 
Fig. 4. DVA with 3 different impact masses 

 

Here two DVA’s are considered. Parameters 1m , 1k  of the prime system may be found by means of 
FEM or experimentally. The nonlinear functions are: 

( ) iiiixiivii AxFAxAxKF <=>−−= 0, ;           ( ) ( )tatF ω= sin . (5) 
Coordinates 321 ,, xxx  of the impact masses and the differences between this coordinates 31, xx  and 

32 , xx  are presented in Fig. 5. 
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Fig. 5. Coordinates 321 ,, xxx  of the impact masses (a);  

the differences between this coordinates 31, xx  and 32 , xx  (b) 

Here A – clearans and viK – boundary elements rigidity. The nonlinear functions ( )3113 , XX uuF , 
( )3223 , XX uuF  of DVA’s masses interaction may be defined analogously: 

( ) 3131133131311313 0, RRxxFRRxxxxFF +>−=+<−−= , 
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( ) 3232233232321323 0, RRxxFRRxxxxFF +>−=+<−−= . 
In Fig. 6 the results of DVA’s application is shown. 
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Fig. 6. Results of DVA’s application 

 

The 3 mass impact DVA seems to be better than independent 3 DVA’s with the same masses. 
Here the optimization in the real time is done. Let us consider the optimization of this DVA’s by 

criterion: 
( )( ) PtttxMaxCiL >= ,1 . (6) 

The process of geometrical DVA’s parameters evolution for different stage of impulse loading and 
different base system damping is shown in Fig. 7. 
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Fig. 7. Process of geometrical DVA’s parameters evolution for different stage  
of impulse loading: (a) – D1 = 0.03; (b) – D1 = 0.003 

 

In Fig. 8 results of one-mass DVA and 3 mass DVA optimization. The one-mass DVA is worse than 
3-mass. The upper results are achieved with the Boltzman contact forces approximation (Fig. 9) 
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Fig. 8. Results of one-mass DVA (dash line) and 3 mass 

DVA optimization 
Fig. 9. Boltzman contact forces approximation 

 
 

Here A1=1, A2=2, X0=4. ∆−= 02Xx . ∆ - distance between centers of  rolling masses, X0 – width of 
contact zone. 

Let us consider an another impact DVA with all impact masses I one container (Fig. 10). 
 

 
Fig. 10. DVA with 3 different impact masses 

 

The system of equations is now: 
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Here 3 DVA’s are considered. Parameters 1m , 1k  of the prime system may be found by means of 
FEM or experimentally. The nonlinear functions are: 

( ) iiiixiivii AxFAxAxKF <=>−−= 0, ;       ( ) ( )tatF ω= sin . (8) 
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Here A – clearans and viK – boundary elements rigidity. The nonlinear functions ( )3113 , XX uuF , 
( )3223 , XX uuF of DVA’s masses interaction may be defined analogously. 

( ) 3131133131311313 0, RRxxFRRxxxxFF +>−=+<−−= , 
( ) 3232233232321323 0, RRxxFRRxxxxFF +>−=+<−−= . 

In Fig. 11 coordinates 321 ,, xxx  of the impact masses are shown. 
In Fig. 12 the results of DVA’s application are shown. 
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Fig. 11. Coordinates 321 ,, xxx  of the impact masses Fig. 12. Results of 3-mass DVA’s application 

 

The 3 mass impact DVA seems to be better than independent 3 DVA’s with the same masses. 
Let us consider new 3-mass DVA with the impact masses on the plates of different radius of 

curvature (Fig. 13). 
 

Fig. 13. DVA with 3 different impact masses  
on the plates of different radius 

 
 

Here the curvatures of DVA’s  plates  are different. That prevents them to move synchronous. Consider 3 
cases of optimization: 1) the simultaneous optimization by impact and harmonic loading; 2) optimization by 
harmonic loading; 3) optimization by impact loading. Results of optimization are presented in Fig. 14. 
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a) b) 

Fig. 14. Results of 3-mass DVA’s on the plates of different radius application: 
 (a) – the main mass in time vibration; (b) –  process of DVA’s evaluation function evolution 
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Process of geometrical DVA’s parameters evolution by complex optimization is presented in Fig. 15. 
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Fig. 15. Process of geometrical DVA’s parameters evolution by complex optimization: 
(a) – radiuses  of curvature;  (b) –  damping 

 

Simultaneous optimization 
 

Let’s consider now simultaneous optimization by impulse and harmonic loading (the sum of 
evaluation functions (3) and (6)). In Fig. 16, 17 results of optimization for various initial time are presented. 

The process of optimization is: 
______________________________N =    1___________________________________ 

Dx  .333E-01   DG  .179E+00  Mx3  .996E+00   fx  .164E+01  fEkx  .675E+00  CiL  .136E+00 … 
______________________________N = 5947___________________________________ 

Dx  .407E-01     DG  .899E+00  Mx3  .998E+00  fx  .100E+01 fEkx  .800E+00    CiL  .578E-01  
The process of optimization is: 

______________________________N =    1___________________________________ 
Dx  .333E-01  DG  .179E+00  Mx3  .996E+00  fx  .164E+01  fEkx  .675E+00    CiL  .393E+00 … 

______________________________N = 5082___________________________________ 
Dx  .569E-01  DG  .892E+00  Mx3  .999E+00   fx  .775E+00  fEkx  .369E+00   CiL  .716E-01 
Parameters of basic part are the same, the clearans is Ax = 0.15m. 
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Fig. 16. Results of optimization for initial time 5s Fig. 17. Results of optimization for initial time 3s 
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Equations for the pump with the particle DVA’s 
 

In Fig. 18 the scheme of pump structure P with 2 particle absorbers attachment is presented. 
 

        
a) b) 

Fig. 18. Pump – DVA scheme (a); DVA filled container(b ); container model (c) 
 

Here (1) is pump base; (1,2,3,4,5) – DVA’s; (6,7) – pump and pump base; (8) is pump foundation. 
In this paper the condensed numerical model is proposed. The problem is solved on the basis of 

modified method of modal synthesis. The basis of these methods is in deriving solving set of equations in a 
normal form at minimum application of matrix operations [21–24]. The system of equations in the 
condensed rangy is obtained: 
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Here: m , Am , A2m  are masses of base and DVA’s; 1k , A1k  A2k  – appropriate rigidities; KD , AD . 

A2D  – viscoelastic damping coefficients; 0w , Aw , A2w  – appropriate displacement, F – harmonic 
excitation. For the particle dynamic modeling the condensed impact mass damper was applied (Fig. 1). 

The equations for the impact mass are: 

( )( ) ( ) Rhww
dt

dw
dt

dw
xCwwxk

dt
dw

C
dt

wd
m i

i
GiG

i
i

i
i −>−=







 −+−++ 0
0

02

2
0 ; 

Rhww
dt

dw
C

dt

wd
m i

i
i

i
i −≤−=+ 02

2
,0 . 

(8) 

Here: im – particle mass, iC – damping visсoelastic coefficient, modeling particle traction in 
container, GK – rigid coefficient and GC  – visсoelastic coefficient for particle elastic impact modeling, 

iw  – impact mass displacement. 
 

Experimental setup. Dynamic model parameters identification 
 

There were applied two experimental schemes. First – DVA kinematic excitation (Fig. 19, a), second – 
base impact (Fig. 19, b). Here 1 – sensor, 2 – beam element, 3 – base, 4 – impact hammer. In Fig. 20 
experimental setting for determination of dynamic properties of the DVA engine-pump system is presented. 

Although some parameters of DVA and pump can be determined by experiments, but some, such as 
basic system mass 1m  remains unknown in equation 7. For a more precise definition of the model 

parameters was conducted several additional experiments (for the definition of parameters 1m , 1k - mass 

and stiffness of the primary system). At the same time DVA parameters Am , Ak . require refinement  
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Although they can be calculated more accurately than the basic parameters of the system, yet it takes a lot 
of effort both in determining of the elastic properties of DVA and DVA clamping plate . Although you can 
conduct a detailed theoretical analysis [26; 27], but based on a series of simple experiments can be quite 
accurately determine these parameters as integrated value included in the system of equations (4). As the 
device is designed to test we are using our DVA. Perform for this series of experiments: kinematic 
perturbation DVA for its different masses  To determine all the parameters 1k , 1m , Am , Ak we should 
apply a genetic method to minimize the objective function | |∑ −

i
ieiTc )(Mf)(Mf=F , where 

)(Mf iT = )k,m,k,M(f AAiT 1   theoretically obtained values of natural frequencies (first eigen-
frequencies), )(Mf ie – experimental values. Detailed identification schemes are presented below.  

Five stages are considered: adaptation of theory to various conditions of fixing and deformation; 
research of sensitiveness in relation to the DVA’s and base design parameters; numerical experiments on 
identification of undefined parameters, practical parameters identification by exploring different schemes 
of experimental setup and, finally, posterior analysis of identification quality. 

 

  
a) b) 

Fig. 19. Experimental schemes: (a) –  DVA kinematic exitation; (b) –  base impact 
 

 
Fig. 20. Experimental setting for determination  

of dynamic properties of the DVA engine-pump system 
 

Optimization for non-resonance DVA 
 

Optimization for non-resonance DVA has some not widely known specific. Let’s consider DVA for 
the rigid basic system Mf  > Af  (basic mass eigen-frequency is greater than DVA’s  eigen-frequency). 
Frequency response functions (FRF’s) for the base structure are presented in Fig. 21 for various Mf . 

Parameters are: m1 = 20 kg, mA  = 2.3 kg, k1 = 2000-8000 kN/m , k2 = 2000-8000 kN/m, 1D = AD  = 
= 0.00001. Only one DVA is considered. The parameters A1k , AD  of DVA are optimized in frequency 
band HzfHz 5149 <<  (see below).  
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Now let us consider DVA for the soft basic system Mf  < Af . FRF’s are presented in Fig. 22 for 
various Mf . The large DVA’s shift may be seen from the DVA’s action zones. 
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Fig. 21. FRF for basic system (dot line); FRF for DVA (solid line): (а) - Hz140=fM ; (b) - Hz70=fM  
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Fig. 22. FRF for basic system (dot line); FRF for DVA’s (solid lines) 

 

Particle DVA optimization 
 

The complexity and high dimensionality of some models lead to the use of a heuristic search 
method. In this matter, Genetic Algorithms (GA) has proven to be a suitable optimization tool for a wide 
selection of problems. The optimization function is: 

( )| | ( )













∫ dffPfu
f

f<<=Fcil
f

f 1
2

1
211 ωmax , (9) 

where u1 – vibration level of base, f1, f2 – boundaries of observed frequency domain, P– weight function, 
1ω . – first eigen-frequency.  Parameters of optimization are Am , A2m , A1k , A2k , AD , A2D . Sum of 

DVA’s masses is constant kg=m+m A2A 3.8 . In Fig. 23 results of optimization are presented. 
On the basis of theoretical and experimental studies optimum parameters of DVA’s was found. In 

Fig. 24 the acceleration of main structure at the operating frequency are presented. The measured deviation 
from the operating frequency were within 0.1-0.15 %. The following algorithm was applied: DVA mass 
was moved on a beam with some fixed pitch (1 cm). Based on the kinematic perturbation scheme (Fig. 17, a), 
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DVA natural frequency was measured. Then, based on measurements carried out with the included pump, 
optimization was carried out. DVA mass – 1.881 kg. As you can see in Fig. 24, at a frequency close to the 
theoretical optimum, the amplitude of oscillation of the main structure is reduced by an order. 
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Fig. 23. Result of optimization: (a) – DVA’s damping coefficients evolution; (b) – Fcil evolution; (c) – optimal FRF of 
base (for different frequency band), solid line – system without DVA 
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Fig. 24. Main structure acceleration at different DVA frequencies : (a) – z46H=f A ; (b) – z47H=f A  
 

Identification scheme verification 
 

Although some parameters of DVA and pump can be determined by experiments, but some, such as 
basic system mass 1m  remains unknown in equation (1.1). For a more precise definition of the model 
parameters several additional experiments were conducted (for the definition of parameters 1m , 1k - mass 
and stiffness of the primary system). At the same time DVA parameters Am , Ak . require refinement.  
Although they can be calculated more accurately than the basic parameters of the system, yet it takes a lot 
of effort both in determining of the elastic properties of DVA and DVA clamping plate. Although you can 
conduct a detailed theoretical analysis [23–31], a series of simple experiments can quite accurately 
determine these parameters as integrated value included in the system of equations (1). Originally let us 
show the correctness of these schemes. Fig. 25 shows the frequency deviation map centered on values, 
depending on the changes of parameters 1m , 1k : 

( )
( ) .1,...2/

1,...2/

101i

101i
N=i,Nik=k
N,=i,Nim=m

−
−

 (10) 

As the device is designed to test, we are using our DVA. Performing for this series of experiments: 
kinematical perturbation DVA for its different masses (see diagram of the numerical experiment in Fig. 25). 

Values of first eigen-frequencies were obtained for different masses Am located at the edge of the  
DVA plate. We see that the basic system parameters are determined uniquely by combined map (a) and (b) 
to (c). To determine all the parameters 1k , 1m , Am , Ak  we should apply a genetic method to minimize 
the objective function | |∑ −

i
ieiTc )(Mf)(Mf=F , where - )(Mf iT = )k,m,k,M(f AAiT 1   theoretically 

obtained values of natural frequencies (first eigenfrequencies), )(Mf ie - experimental values. The next 
values of first eigenfrequencies were obtained for the masses, located on verge of DVA’s plate (Table 1). 
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Fig. 25. The amount of  frequencies deviation  maps (3) of DVA centered values depending  
on the change of parameters 1k , 1m : (a) – for DVA weight 1m = 1.5 kg; ( b) – 1m  = 3 kg ;  

(c) – combined map (sum of maps (a) and (b)) 
 

Table 1 
Eigen-frequencies for different DVA’s masses 

М, kg 0 0,669 1,100 1,521 1,881 3,115 
F, Hzц 69 48 36 32,3 29,2 24,4 

 

We get the following values for the main components - pump in place joining DVA : fKm = 65.5 Hz , 

1m  = 34.4 kg. If the effect of the mass is difficult to track because of the complexity of the design of the 
pump, the oscillation frequency can be seen for the shock disturbance. We see that it is in the vicinity of 
65 Hz (as defined in theory). That is, the natural frequency of the main structure above the operating 
frequency of 50 Hz. It gives information on what neighborhood eigen-frequencies DVA to seek optimum 
vibroabsorption at the operating frequency.  

In Fig. 26 the experimental and theoretical vibration decay is presented for particle filled container. 
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Fig. 26. Experimental (a) and theoretical (b) vibration decay 
 

By means of such scheme the damping in filled container may be appreciated 0001.0≈AD . 
 

Optimization 
 

Now we can optimize DVA’s system. DVA Optimization with particle filling container. The 
complexity and high dimensionality of some models lead to the use of a heuristic search method. In this 
matter, Genetic Algorithms (GA) has proven to be a suitable optimization tool for a wide selection of 
problems. The optimization function is (3). Parameters of optimization are Am , A2m , A1k  , A2k , AD . 

A2D . Sum of DVA’s masses is constant kg=m+m A2A 3.8  
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In Fig. 25 results of DVA’ s with particle filled container optimization are presented. 
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Fig. 27. The process (a) and results (b) of DVA’ s with particle filled container optimization 
 

System modelling by program packages based on FEM 
 

The most popular computational methods used in structural dynamics are: the finite element method (FEM) 
While investigating higher frequency ranges for acoustic applications and using finite elements, structures are 
decomposed into smaller and smaller elements. The mesh size is chosen so that its largest dimension does not 
exceed the wavelength of the vibration. Going in this direction, when dealing with complex and large structures, 
the number of elements often becomes prohibitive. The calculation of eigenvalues in the range of medium 
frequency becomes cumbersome and time consuming. For many cases the amplitude excitation maximum is low. 
This may be used in main structure modelling, taken into account only it thirst eigenvalue. 

As example, let us consider the boom frame of the boom sprayer.  The frequency characteristics of 
boom are defined by program APM WinMachin. In Fig. 28 the boom deformable part model and its 
eigenfrequencies are presented. 

 

 
Fig. 28. Boom deformable part model and its eigenfrequencies 

 

First eigenfrequency is 1.8 Hz. Let us define the rigidity in the point marked by pointer (Fig. 18). By 
this date we can define the parameters of boom frame and put its into it equation: 

FwkwDkwm =++ &&& . (11) 
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Here rigidity is: 
m/4556295.0

1000 NFk ≈≈∆= . (12) 
The mass is now: 

kgkm 2.34
54.11

4556
22 ≈≈

ω
= . (13) 

 

DVA optimization for boom 
 

Optimal DVA parameters are defined for the function (14): 
( )( ) RR fffuMaxCiL β<<α= f,1 . (14) 

It is maximum boom deflection in the frequency range. The optimization of boom in the frequency range is 
shown below (Fig. 29). The optimization may be done for various frequency range simultaneously (Fig. 29, b). 
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Fig. 29. Optimization of boom in the frequency range: (a) – one frequency range; (b) – two frequency range 
 

Substantial part is acted by the division of the masses between DVA (Fig. 20, b). It is possible to 
find (Fig. 18, b) that only for two DVA’s substantial effect takes place in two ranges. Four DVA improve a 
situation in a higher frequency range. Here total mass of all DVA’s is identical and 4 kg is evened. 
Character of action of different DVA (different half-length of containers) is resulted, on Fig. 30. Loop of 
hysteresis is shown in Fig. 31 for mass of DVA (the dotted line is a container without limitations). 
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Fig. 30. Character of action of different DVA 

(different half-length of containers) 
Fig. 31. Loop of hysteresis for mass of DVA 

 

Conclusions 
 

In order to determine the optimal parameters of DVA the complete modeling of dynamics of devices 
should be made. Paper deals with the new methods for the explicit determination of the frequency 
characteristics of dynamic vibration absorbers by narrow frequency and impulse excitation. Few parameters 
numerical schemes of vibration analysis are under discussion. The influence of elastic and damping properties 
of the basic construction and dynamic vibration absorbers are considered. Optimization for non-resonance DVA 
is done with its specific. The discrete-continue models of machines dynamics of or such machines as water 
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pump with the attachment of dynamic vibration absorbers are offered. The algorithms for vibration decreasing 
are received. The new vibroabsorbing elements are proposed with more than one impact mass in container. The 
first eigenfrequencies are calculated and obtained experimentally for different masses attached to elastic 
elements of the dynamic vibration absorbers. The one-digit values are established not only for the dynamic 
vibration absorber parameters, but also for mechanical parameter of base structure – pump in connection points 
of the dynamic vibration absorbers. For the elongated base structures modeling in the low frequency range the 
FEA was used.  Finally, present research develops the genetic algorithms for optimal design searching by 
discrete-continuum DVA’s system – base system modeling. 
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