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Abgtract. The great number of theoretical and experimental investigations indicate that it is
necessary to consider plastic deformeation of metals as a process which proceeds in certain time interval.
However, in such approaches, contradictive points of view emerge concerning investigation of wave
processes in materials which possess peculiar properties. In order to describe different mechanical effects,
new modes of plastic medium are being improved. The phenomenon of emergence of atooth yied inthe
gtrain diagram belongs to such properties of materials. In this article, investigation of propagation of
eagtic-tough-plastic wave is conducted in a semi-infinite rod; it is conducted on the basis of the
electromechanical modd of ideal dastic-plastic material with yield delay. The dynamic criterion of
plasticity, which is stated by the author is used here The solving of the problem is conducted according
to the statement where constant force is abruptly exerted on a bult of an unloaded rod. the main solution
is obtained in stresses, both for dastic and plastic domains of therod. It is established that characteristic
curves which separate an éastic domain from a plastic one and vice versa are frontal lines of weak
rupture. On the basis of calculations, fields of stresses? strains, rates of displacements of cross-sections of
therod in a plastic domain are determined. for a fixed ingtant of time, graphs of changes of stresses and
displacements of points on the whole segment of a disturbed rod are plotted. The obtained results have
been verified as to exactness of satisfaction to the boundary condition.

Introduction

There exist many scientific works which are dedicated to study of propagation of eastic-plastic waves in
rectilinear rods. The number of published works about wave propagation in materials which posses the property
of yied dday is considerably less. Later on, the interest in such investigations decreased. the emergence of
published articles about improvement of models which describe the phenomenon of yield delay became random
events [7]. In the author’s apinion, a false assertion about instantaneous jump-like transition from overstressed
date into plagtic State is put into works in which problems of wave processes in materials are considered. In
overwheming majority of cases, problems of butt impact in arod are stated as those in which itsterminal cross-
sections gains constant speed. A certain stress whose value is greater than the static limit of yield corresponds to
this speed. In dl the cross-sections of arod for which the time of yield ddlay is up the stress abruptly decreases
to the gatic yidd strength. Such assertion of the modd [4] causes doubt and rejection, because the stress which
emerges a an end of a rod due to the action of the striker does not vanish. It is not dastic unloading of
corresponding cross-sections of arod, but their transition into plastic state that leads to the rate of displacement
of the points of the plastic domain that proceeds.

Let us try to describe the peculiarities of wave propagation in materials with yied delay with a hdp of
eectromechanical modd of dastic-tough-plastic medium [8]. To solve the stated problem, it is expedient to
choose auniformly distributed constant force which is abruptly exerted on the plane of arod butt asa disturber.

Main assumption, statement of problem, and equation of motion in elastic domain

Let us consider the process of dastic-plastic state propagation in a semi-infinite rod of ideally plastic
material which has the property of yield delay. The solution of the stated problem is to be conducted in
Lagrangean coordinate system. Let us put the origin of . X, y, z Cartesian coordinate system at a butt of the
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rod. The axis of the rod is taken for x-axis, they, z axes are put in the plane of the butt. The following main
assumptions are to be based on.

1) In an arbitrary cross-section of a rod the stress-strain state is homogeneous, and it is determined
from the boundary conditions.

2) It istaken into account that relative that relative deformation strains are small.

3) Theinfluence of forces of inertia from transversal deformation of arod are to be neglected.

4) The density of arod does not change during the process of deformation.

Let theinvestigated rod be at rest till thetime ingtant t = 0 and have constant o area of its cross-section.
Then, at t > 0, a constant compressive force P, which is uniformly distributed over its surface, is exerted at the
beginning x = 0 of therod. It is assumed that this force causes compressivestress s ., at the butt of therod, this

stress being greater than the yield point stress s y, in static |oad. The delay time t during which a straight elastic
wave propagates along the axis of the rod corresponds to this stress. To determine the stress and deformation in
the domain of eagtic wave, the differential equation of motion of continuum and Hook’s law are used. In the
framework of theory of rods, the following system of equations is obtained:
T o _, 1%
x a2’
where s, €y are the components of tensors of stresses and deformations along the x-axis; r is the

density of therod; E is the Y oung's modulus of the material of the rod.

The solution of the equations system (1) is known, but traditionally it is written in displacements. In
our case, for investigation of the state of rod in plastic domain, it is by far simpler to write the equation of
dynamic behavior of material is stressed. Therefore, we reduce the eguations system (1) to thet of
differential equations for the stress s ., for the elastic domain as well.

Let us differentiate the motion equation of the system (1) with respect to x, and the Hook’ s law twice
with respect to time; we obtain:

Sy = E€yy (1)

2 2 2 2
‘HSxxzr‘Hu 1 ‘HSxsz‘Hexx_ @)
%2 fit%qx it t2
Taking into account the fact that e, =%, excluding the strain €, from the equations system (2),
X
we have:
2 2
T o2l S 2=E )
1t Mx r

The equation (3) indicates that the speed of propagation of the normal stresses s, wave in the rod
is equal to c. The general solution of the equation (3) in Dalambert’s form is the following:
* X O *% X(‘j
Sxx(xit)zsxx(} - =TS el —, (4)
e Cg e Cg
where s, , Sy are arbitrary functions which are determined from initial conditions and from boundary
conditions, which arewritten like this:
t=0, x>0, sy=—7>—=0,
Ot (5)
t>0, Xx=0, sSy=-S".

d

Here s is the actual compressive stress at the butt of the rod. It is determined in this way:

sd =§, where F is the cross-section area of the rod after deformation. Besides, et us introduce a
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conditional stress on the butt of the rod for the dastic domain s f, = Fi .
0
It is known that the displacement of points of rod in elastic domain is determined by the quadrature:

l X
u(x,t):E(‘jsXX(x,t)dx. (6)
ct
Since the displacement is continuous, from the expression (4), at the wave front x =ct, we havethe

equality:
Lsub)rsal=o, >0 U

This equality is held true for arbitrary values of the argument of the function s;; i+ x5 0. thus,
c

during the mentioned time t, the function s;; is constant. Having included this constant into the arbitrary

. * .
function s, , weobtain:

* X(‘j
S (%, 1) =83 CT- =%, (8)
e Cg
To determinate this function, the boundary conditions (5) are used:
Xx=0, Sy (xt)=sk(t)=-s9. 9)
Therelations (9) hold true for arbitrary positive argument. This means that:
sxx(x,t)=—sd, t3§. (10)
Using (6) for determination of the displacement u(x,t), we obtain:
d x d ..
u(x.t)=- > g =>c&- X2, (11)
E o E e cg
Correspondingly, for the velocities V,, of the points of the rod in elastic domain we have:
‘Hu(x,t) sd
V., = =—¢C. 12
x = q = (12)

The deduced relations (11), (12) are analogical to those obtained in [9], where the dynamic equation
of motion is written in displacements. On the basis of introduced assumptions, the obtained results satisfy
the condition of compatibility of deformations.

In the plane x, t (Fig. 1), we have the following situation. Below the front of the main wave x =ct,

the domain of rest is situated. A jump of the stress s, strains ey, , velocity of particles to the values
which are determined on the basis of the solution of the equation (3) takes place at the front. During the

delay time t , from the end of therod, only elastic wave, which transmits the stress s d which is set at the
end of therod, is propagating. As all cross-sections of the rod before deformation were in equal states, the
delay times for them are equal. This means that in the coordinates x, t the material of the rod will be in
elastic state inside the strip which is determined from the inequality:
clt- t)ExEct. (13)
The upper boundary of the strip is a boundary of transition of the rod from eastic state to plastic
one. In the curve, the continuity with respect to stresses and deformations remains, and their rates have
discontinuities. Therefore, this curve can be considered as the front of a wave of weak discontinuity, which
displaces at the velocity of the wave (Fig. 1). Behind this front, the material isin plastic state. To determine
the parameters of motion of the medium in plastic domain, let us write the equation dynamic behavior of
the material which possess the property of yield delay.
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Fig. 1. Distribution of state domains of rod in the plane x, t
Deter minative equations of state and dynamic behavior of material of rod in plastic domain

In[1; 9] it isassumed that in investigation of the process of one-dimentional stress wave propagation in
rods, the motion of the particles in the direction perpendicular to the x-axis is to be neglected. However, axial
deformation is aways accompanied by change of cross-section area of arod. Therefore, instead of actual stress,
it is convenient to use so-called conventional stress. The conventional stress is defined as the ration of the force
which acts in the cross-section of therod to theinitial area of the cross-section. Later-on, the conventional stress
will be called simply stress, excepted the cases when it is necessary to determine actual stress.

Let us consder a domain of the rod which have been transferred into plagtic state. For the domain, the
equations system (11) holds true; and | et us assume that the deformations consist of dagtic and pladtic parts, i.e

€j = elj + eﬁ) (14)

The material of the rod will be in plastic state for that domain of the variables x;t till the following
condition holds true
2
sist >= 38 2, (15)

where Siojl are the components of the deviator of actual stresses.

On the basis of ideas of the work [8], the tensor éf} of velocity of plastic deformation is related to
the tensor of stresses by the following dynamic condition of plasticity of material in yielding state

. 2

? u

— S S u

2 o] 0_ 2 0}/ /
%ij'gnéi?+¢%ij ”élljo 3 kQ Qeée -1

e ge e U (16)
e ¢
1 1
S” =Sij'§dijskkf Q?:&ﬁ—gdijée ,

where S, Sf} are the components of the deviator of stresses in the plastic domain and at the boundary of

transition from elastic to plastic domain, respectively; sj; is the component of the tensor of stresses;

éﬁ ,Q? are the components of the tensor and the deviator, respectively, of velocities of dastic
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deformations; i is the coefficient of the toughness; k and n are the constants of the material; dj; is
Kronecker’s symbol.

According to the associative law of yield, the components élﬁ’ are determined by the equations [1]:

& = g an

where f isthe scalar multiplier; f isthe plastic potential, which in the given case is determined by the
fumction (16).

Taking into account plastic incompressibility of the material, having substituted (16) into (17), we
obtain:

2 )
6f =2y g, - Sl (19
e 3 "g
Having solved the equation (18), we have:
BP = 2f S
ij — 1
1+:mf (19)

After excluding élﬁ’ from (16) and (19), we obtain:

é u
é a
é 3 a
3 € 53,‘ Sij a
2f =—8& - 10. 2
2mé U (20)
gss .,.kgSQeQGQ% 77 3
§° &g f
Substituting (20) into (19), we write:
é
¢
é
S Sgtkc—@
o358 3 -
§ = omd- Us; . (21)
é
¢
&

In the case of one-axial tension-compression, when s,, * 0, for the components of s;; , we have:

Sxx=§Sxx1 syy=szz=—%sxx.80,for Sij Sij and 3’}3’},wehave:
2 2 s _2 d)z
SijSij =350 Sij Sij =§(3 : (22)

Analogically we write for the components of & : &5, = %(1+ n)eSy . &, =65 =- %(1+ n)és,,

wherev is Poisson coefficient.
. CFGH
Now, we determine &; &;:
2

& =2 (1en)? les,) (29)
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Having substituted (22) and (23) into (21), we obtain:

é
&R =lesxX ss- k(1+n) &GV/S—-lu &) = &b =- —é)'?x. (24)
S

Taking into account the relation (14) and Hook’s Iaw, for rates of deformations and stresses in one-
axial tension-compression we write;

v $
el =&, - &5 . éxx=‘"—;, é'f(xz?xx. (25)
where v, isthevelocity of the particlesin plastic domain of the rod along the x-axis.

In the considered problem, all the parameters of motion depend on the x-coordinate and the time t;
therefore, taking into account (25), the determinative equations (24) of the state of the rod in plastic
domain are reduced to the following form:

sxx=F(§xx)%-ﬂéxx+rr&xx+ss. (26)

K@n)?n s
> 1.
Cgh Vs
To derive the equation which describes dynamic behavior of the material of the rod in plastic

domain, we differentiate the relation (26) with respect to t, and the equation (1) of motion with respect to x;
hence we obtain:

Here, the following substitutionis made F =

N

&t

3 3
718w _ g ‘nsiaTS o m‘ﬂs +m‘ﬂu ’ T"u i‘nsxx_ 27)
Tt n M2EM g E ft2 Tt2qx T2 r 1x°
Having excluded the displacement u from the system of equations (27), we obtain:
2 ? E1 U 2
m{ SXX+§2 &S 4 On MUY s 1S xx

T kv Ele w 29
e a
It is sought for differential equation which determine the parameters of the part of the rod
which has turned into plastic state after the yield delay by the time z. Analysis indicates that the
equation (28) belongs to elliptic type equations; therefore, a local extension of the domain of
variables x, t into initial data is always possible. Let us remind once more that the stress in the
equation (28) belong to conventional stresses. To find the solution of the equation (28), we
introduce the following independent variables:
X X
7z =t-t c z, =t t+c. (29)

We present the general solution of (28) in this form:
S (s X) =5 10c(21) + 5 2 (22). (30)
where Sqy , S 2y arearbitrary functions.
Now we find partial derivatives with respect to the new variables:

7S _ ﬂSlXX(Zl) +ﬂS 2)0((22) ‘st o ﬂzslxx(zl) +ﬂ25 2xx(22)

it 12 12, qt2 122 12

(31)

ﬂsxx :_Eﬂslxx(zl)_i_iﬂSZxx(ZZ) ﬂzsxx =iﬂzslxx(zl)+ 1 11232xx(22)
L) 2 .

x ¢ Y2 ¢ 92 ™ & 12 < 1z
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Having substituted the determined derivatives into the initial equation (28), and taking into account

that E =r ¢?, we have:
2

2 gﬂslxx(zl)+ﬂs 2><><(22)8E lgﬂzslxxz(zl)_,_ﬂzs 2xx2(22)8_ g"slxx(zl)_,_ﬂs 2xx(22)8=o_ (32)
n g 9z 1z & & 14 2 g é Ta 1z @

At the front of transition from elastic state into plastic one, when x:c(t- t), the equality
S w(t,X) =S = const must be satisfied, therefore, from (30) we write:

spx(0)+s o2t - t)] =85, tot. (33)
However, here it is necessary that the equality s 5., (z,)=const be satisfied. Having included this
constant into the arbitrary function s,,(2) and having made the substitution of the designation

X :
z1=z=t-t-—, weobtain:
C

X0
Sxx(tfx)zsxx(zl)zsm(z)zsxxg b= (34)

e Cg
The presentation of the solution of the equation (28) in the form (30) enables us to reduce the partial
differential equation (28) to an ordinary differential equation in the variables s, , z. Thus, from (32) we

obtain:

gFaEdsXXQ;'/WdZSXX_aEdsXXQZ_O (35)
n dz 5 dz? g iz g '
Tofind its solution, we write the initial conditions:
ds
sx(0)=s§, X% (0) = $ 4 (0). (36)

dz
I nvestigation of process of disturbance propagation in plastic domain of rod

Asin the front of the interface of elastic and plastic domains the stress s‘f, is known, the necessity,

for the certain reasons, to determine $,,(0) arises. For this purpose, we write in actual stresses the
equation (26) of plastic state at the boundary of the domains where z=0:

S%<=F(§§jo< ”-gé%(+rr&)o(+ss. (37)

To determine é%( from the equation (37), we express &,, in terms of the stress s%( and of the

rates of $ %( . In the course of deformation of the rod’s domain which turns from elastic into plastic state,
its cross-section area changes from the initial Fq in non-stressed stateto F in the state which corresponds

to the stress s %(. Taking into account incompressibility of plastic deformation, we write the volumetric

deformation of therod in the following form:
d
_ € e _Sxx : — Sxx
€y T €y 5 =Eyy +26y, —?(1- 2n) ie ey +2ey —?(1- 2n). (38)

Whence, assuming for convenience the stress and strain to be absolute values, we change the
corresponding signs for the opposite ones; then we write:
d
S
20y =€y - ?"X(l- 2n). (39)
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Besides, according to the introduced assumptions, homogeneous stress state takes place all over the
cross-section area of therod. Therefore, for thetransversal strain ey, , the following equality is true:
€

_F _Sy
2eyy——-1 or 2eyy——d-1. (40)
0 S ¥
Equating the right sides of the equations (39) and (40), we write:
d s€
e = X (1- 2n)+ Y- 1. (41)
E s S

Taking into account the fact that for small strains[2] &,y ﬂ;’t‘x differentiating the equality (41)

with respond to t, we obtain:

§ % SV ed
&sz?(l- 2n)-W§XX. (42)
S xx
After the substitution of(42) into (37), we obtai n:
s€ U
§ ?O(V me‘ >y 3 +Sg. (43)
Fafe

From this equation, setting the actual stress s ?o( , Which acts in the cross-section of therod at z=0,

we obtain § %((O). To conduct the corresponding numerical calculations, the relation between actual and

conventional stresses in the domain (13) is established. It is the domain of the rod which isin elastic state.

d

- Sxx . .
Therefore, by means of substitution of e, = ?XX into the equation (41) we obtain:

& 2nsd 0
e _.d XX =
sy—sxxéh E oo

(44)
a

All our calculations will be conducted for these constants of materia which were used in the work [8]. The
actual stress at theinterface of elagtic and plastic domains of the rod, which is equal to theinitial stress applied to

the bult, we assume to be equal to s, =s9 =355x108Pa. Let us choose the following: E =21x10™ Pa,
s¢=215408Pa, m=1,2408Paxs, k=15x08Paxs’12, r = 7800k—%, n=24, n=0,25.
m
After the substitution of the value of s ?o( and of corresponding constants of the material into the
equation (44), we obtain s ‘f, =3,553310% Pa, and for (43) we have:

) ¢ 14U
d . 14><107$ 90(‘3%2 +12082,38x.0°° + $ 3953407
d
é (Sxx) a

By means of solving this equation for the chosen stress s &, = 3554108 Pa, we determine 8 4, (0) at the

Us S - 21540° =0. (45)

boundary of elastic and plastic domains. The carried out calculations give us $ S, (0) = - 2,0877 x10° % . The

necessary for solving the equation (35) initial condition (36) of the rate conventional stress at z = 0 can be
determined from the formula (44) after differentiation of the latter. We obtain:

® d o
@m(o)zé?o((o)cu4”;XXZ=-2,091><108%. (46)
(4]
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After substitution of corresponding values of all the constants of the material, the equation (35)
assumes the form:

117 x10° SXX|§ A% x @S0 _ (47)
dz |;  dZ? dz g

Its solution is presented in the form of graph of s Xx(z) which is shown in Fig. 2. to get the general

idea of change of stressin a rod with the front of a wave of transition into plastic state (the wave moves at

a speed of c:\/E:SIOOm)WemakethefoIIowing substitution: z® t- t - X
r S o

Gy, P

355 oot
is0 olo® |
345 oot |

340 oo

0.0 02 04 Y 0s o 12
Fig. 2. Graphic presentation of solution of dynamic behavior of rod in plagtic domain

Investigations indicate [10] that thetime of yield delay in the case of abruptly applied constant stress
is approximately equal to the time during which the stress is achieved in constant rate load; i.e. the time
during which the material isin“overloaded” state will be determined in the following way:

sd-sg

8 xx
On the other hand, proceeding from the conditions of plasticity (16) of one-axional tension, the
yielding of material begins when the following equality is satisfied [8]:

t = (48)

2 ;
sd-s :k—(1+n)4n§aé—’°‘+ : (49)
S e E g

Excluding the rate of stress change from the equations (48) and (49), we obtain:

o K2n)
Es;%f(sOI - ss)%'_l

Having substituted the values of the corresponding constants and of the stress s 4 into (50), we have
t =1,453%10 4.
Having carried out the corresponding substitution in the solution of the equation (47) namely,

(50)

S (2)® 5T - t- =2, we obtain the field of stresses of the rod in the plastic domain which is shown
e Cg

in Fig. 3. The calculations are made for the following domain of the variables x, t:
t [t, 124+t], xI [0, 3300, c(t- 0,62- t)ExEc(t-t). (51)
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To determine the other parameters of the state of the rod in the plastic domain, we write the
determinative equation (26) in the following form:

S 1 F 2 S
éxx:?XX"'Eéxx'r_n(éxx)A'Fs- (52)
3000

2000 ,«,~“’“‘H-. X, m

350x10° |.

3.45x108 |

3.40x10% |

05 S

0.0
Fig. 3. Field of stressesin plastic domain

After the substitution of all the chosen constants of the material into (52), we obtain:
&, =8,33X10" %5 , +4,762x0 124 - 0117(8 XX|)%2 - 1,7917. (53)

Thefield of rates of strains é)o(g?- t - 292 is determined with a help of the equation (53), into which
e Co

the obtained on the basis of (47) solution of s XX(z) and the determined rate of the stresses § ,, areto be

substituted. After calculations and the corresponding change, we obtain the general chart of strain rates, it
is shown in Fig. 4. The calculation confirms the expected results that at the front of transition from elastic

to plastic domain the jump of strain rate from 0 to the value of &, (0) = 0,589452 1 takes place.
s

It is necessary to note that at the interface between elastic and plastic domains the continuity with
respect to strain, velocity of parts of the rod and their displacement remain. Therefore, from the equation
(11), intheline x =c(t - t) (Fig. 1), we determine absolute value of the compressive strain:

Tu(x,t) _sd
ey (0)=- ——+%=—=0,00169. o4
wl0)=- === (54)
Correspondingly, for velocities of pointsin elastic domain, from the equation (12) we have:
d
S m
Vox =—C=8,62—. 55
0x E S ( )

Displacements U of points of therod at the interface of the domains we determine from the formulae
(6) and (10) in the following way:

d d
_ S” ct-t), _s : 3
UO - ?Qt dX—?Ct —1,2534><10 m. (56)
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The distribution of the velocities v, of points of therod in plastic domain is determined by means of

the use of the solution of (53) and the second rdation of (25). Taking into account the established law of
signs, introducing the variable z, we write:

X
-t
V(% t)=Vox +cq  céy(2)dz. (57)
3000
2000
1000 '/4- m
o
0.5905 1.
b éxx : 1/ s
L
0.5900 |_
05895 |,
t
t
05890 L
t,S T ——

——l

0.5

Fig. 4. Field of strain ratesin plastic domain
After integration of (57), we obtain the field of ve ocities of points of therod in plastic domain (Fig. 5).

Fig. 5. Distribution of velocities of particles of rod in plagic domain

The general picture of distribution of points of the rod in plastic domain we obtain from the
following relation:

X
u(x,t)=uo+é't'Edez. (58)

The results of calculation for the domain of the variables x, t (51) are shown in Fig. 6.
The field of deformations of the rod is obtained through differentiation of the relation (58) with
respect to x. Note that the deformation of particles of the rod can be presented in the following form:
_1ldu

ey (z)= g (59)
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Fig. 6. Distribution of displacements of points of rod behind the front
of delimitation between elastic and plastic domains

After corresponding operations and cal culations, we find the distribution of strains of particles of the
rod in plastic domain (Fig. 7).

Fig. 7. Field of strain of rod in plagtic domain
In the domain of plastic disturbance, the parameters of state, which are determined on the basis of
the solution of the equation (47), are given in Fig. 2 — Fig. 7. However, the obtained results are true only in
the case when the condition (15) of plasticity is satisfied, i.e. the inequality s‘j'o( >s g isobserved. Let us

determine the domain of the variables x, t, for which the solution of the equation (47) satisfies the
condition (15). It is convenient to conduct this analysis with the use of the variable z.
Let us make a transition from the conventional stress s ,,, which acts at the butt of therod, which is

obtained from the solution of the equation (47), to the actual stress s 90( . For this purpose, we substitute the
conventional stress into the relation (39). Together with the equation (40) and the transformed equation
(39), wewrite:
S s$
- >y
28y = €y - ?Xx(l 2n),  2e =— -1 (60)
XX

(%)
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Having excluded 2ey, from (60), we have:

e
d Sy _
XX (61)

S xx
1+ey - SE (1- 2n)

After the substitution of the solutions for s, (z) from (47) and e, (z) from (59) into (61), we
obtain the law of change of actual stress at the butt of therod (Fig. 8).

d
35 11108 NUxx » Pa
30 1108}

25 (1108}

20 (1108}

z,s

00 02 04 06 08 10 12
Fig. 8. Law of change of actual stressesin butt cross-section of rod

To determine the value of the variable z = z€ at which the transition of the material of the rod from
plastic into elastic state takes place, we make the substitution s, =s ¢ in the formula (61). Calculations
indicate that this takes place when z€ =1,1037 s. Sinceall cross-sections of the rod change their state from
plastic to elagtic at the same value of z€, theinterface of these domains in th plane of the coordinates , t is
determined by the following equation:

x:c(t- t- ze). (62)

The straight line (62) in Fig. 1 is represented by the dated line. In all points over the line (62), the
material is in elastic state with constant values of parameters. Note that, unlike in the established point of

view [3-6], the line (62) is not a wave front of elastic unloading, it is a boundary of transition from plastic
into elastic state. The domain of plastic deformations is determined from the following inequality:

c(t-t- ze)£x£c(t-t). (63)
On the basis of the obtained results, graphs of change of stress and strain of points of the rod are
plotted for the time instant t; =z® +t + Dt =1,304s (Fig. 1). Here, it is assumed that Dt =0,2's. Let us
designate the coordinate of the cross-section of the rod which is at the boundary of transition from elastic
to plastic domain by ;. Then:
X =c(ze+Dt)=6649 m. (64)
Having substituted the time instant t; into the equation (62), we obtain the coordinate x, of the
cross-section at the boundary of transition of the part of the rod from plastic into elastic state:
X, =cbt =1020 m. (65)
For this cross-section, on the basis of the solution of the equation (47), we obtain:
St %) =33583408 Pa,  ulty,x,)=184335m,

Vel xp)=3332 M/, eylty, xo) = 0,6533.

In the domain of the rod where X £ X,, a zone of constant values of parameters emerges; these
parameters are equal to the following values:

S xx(LX) =S xx(t11X2) , VX(t,X) :Vx(t11X2) ) exx(tfx) = exx(tlix2)-

(66)
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For simple reasons, the shifts of points of the rod at the time instant t;, in the segment x1 [0, o],
can be presented in the form u = u(tl, x) = u(tl,x2)+ (x2 - x)exx(tl, x2), which in terms of numbers leads
to the following equation:

u =184335- (x- 1020)>0,6533. (67)

On the basis of the carried out analysis and calculations for all the domains, graphs of stresses and
displacements of particles of the rod are ploted for thetime instant t =t,; they gre shown in Fig. 9 and Fig. 10,
respectively.
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Fig. 9. Distribution of stressesin rod for timeinstant t =1t

Infig. 9, for x=xq, the dastic domain of the rod behind the front of the main wave of the length
Dx=c>t =0,7415m isddimited by heavy dotted line (Fig. 1).
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Fig. 10. Distribution of displacementsin rod for timeinstant t =t;

Estimation of obtained results concer ning exactness of boundary condition satisfaction

All investigations of dynamic behavior of a rod of material which possesses the phenomenon of
yield delay are based on the solution of the equation (47). However, from this equation, conventional stress
is determined. The transition from the obtained conditional stress to actual oneis given by the relation (61).
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Let us make a comparison between the actual stress s ?o( at the bult of the rod and the true stress s?&,
which arises from the boundary condition.

Having made the substitution s ?o( ® s ?& in the equation (41), we write it in the following form:
- - \2 .
(l_EZn)(S%() - [L+e)sh +sS. (68)
Here, e, isthe strain at the bult of the rod, which is obtained from the solution of (59). From the

equation (68), we determine s ?& , we have:

sl =_E E:§L+e - \/(1+e )2 - ﬂ(1- 2n)H (69)
X of- 2n)€ T X E g’
After substituting the values of the constants of the material and parameters into (68), we obtain:
sl = Grey - (L+e)? - 33844072 gz,lxloll. (70)
With a help of the criterion ¢ = z% , let us estimate the extent to which the actual stress at the bult
XX

of the rod coincides with the true stress which is determined from (70). On the basis of the carried out
calculations, graph of the dependence of y on the variable z is ploted; it is shown in Fig. 11.
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Fig. 11. Graph of estimation of coincidence of stresswith true stress

As can be seen from Fig. 11, the boundary conditions at the butt of the rod are satisfied with high
accuracy; thisiswithin the established in the problem statements assumptions.

In the investigation of dynamic behavior of the eastic-plastic rod, we deliberatdy reject the
traditional [11] dimensionless form of variable parameters recording in the stated determinative equations.
Substitution of corresponding values of materials constants enables us to visually show peculiar
distinctions of results, which are obtained within the framework of plastic medium.

Conclusions

The carried out investigation of propagation of eastic-tough-plastic waves in a rod whose material
possesses the property of yield delay disproves the false assertion of instantaneous jump-like transition
from overstressed eastic state to plastic state. It is established that the characteristic curves which delimit
elastic domain from plastic one and separate plastic domain from elastic one are lines of the front of the
wave of weak discontinuity. For the plastic domain of the variables X, t, fields of stresses, strains, rates of
strains, velocities of particles, and displacements are obtained. A graphic picture of distribution of stresses
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and displacements is drawn for a fixed instant of time. Investigations of dynamic behavior of the rod on the
basis of the e ectromechanical model have indicated certain peculiarities in propagation of disturbance. It is
established that the differential equations of the state of the rod in plastic domain are of eliptic type. the
obtained results satisfy the boundary conditions with high accuracy.
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