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Modelo matemático de la dinámica bidimensional del flujo y concentraciones de gases
(O2 y CO2 ) en los sacos alveolares pulmonares

Luis J. Caucha∗, Obidio Rubio∗∗, and Alexis Rodriguez∗∗∗

Received, Ap. 04, 2017 Accepted, Aug. 31, 2017
Resumen

En este artı́culo simulamos la dinámica del transporte de CO2 en los sacos alveolares pulmonares. Usando el
método Euleriano-Lagrangiano Arbitrario, se pudo controlar el movimiento del dominio para una respiración
normal y forzada. El fluido de gas de ambiente inhalado y las concentraciones de CO2 fueron aproximadas por
las ecuaciones de Navier-stokes y la ecuaci0́n de convección difusión, el stress paras diferentes maniobras fueron
calculadas en tiempos iguales. La expansión para la maniobra normal y forzadas fueron representadas como el 9
y 90 % de la geometrı́a inicial. Las diferencias de la cantidad de CO2 fue 73x10−3 ml entre la respiración normal
y forzada. El stress en la pared del saco alveolar cambió siguiendo el patrón del flujo inhalado a diferencia del
stress para una maniobra forzada. Concluimos, que la cantidad de CO2 en el saco alveolar, depende del número
de capilares en saco alveolar, además no se ve afectada por las maniobras forzadas.

Palabras clave. Dinámica del gas Alveolar, Arbitrary Lagrangian-Eulerian, Navier-Stokes equation.
Abstract

We simulated the dynamics of CO2 transport in the alveolar sacs of the human lung. Using Arbitrary Lagrangian
Eulerian (ALE) framework, we control the movement domain for a normal and fast maneuver. The fluid of room
air inspired and CO2 concentrations were approximated by Navier-Stokes and convection diffusion equations; the
stress-stretch in the wall for different volumes were quantified in equal time of respiration. The expansion for a
normal and forced maneuver were represented as 9 and 90 % to the initial geometry. The difference of the CO2

was 73x10−3 ml between a normal and forced maneuver; the stress in the wall changed following the sinusoidal
pattern as a flow in the normal inspiration. In conclusion, the amount of CO2 in the alveolar sacs, depends upon
the number of capillaries in the wall and it is not affected by the expiratory fast maneuver.

Keywords. Alveolar gas dynamic, Arbitrary Lagrangian-Eulerian, Navier-Stokes equation.

1. Introduction. Caucha et al. (2010) [1] showed that the alveolar dilution of CO2 becomes more evident
with the forced expiration and reveals the effect of CO2 diffusion from Residual Volume (RV) to Expiratory Reser-
ve Volume (ERV) in the expired forced maneuver. We are interested in simulate the changes of CO2 concentration
in the alveolar sacs, when it is filling with room air in a respiration.
The dynamic of the gas in the human lung was studied using one-dimensional mathematical model [2], this model
used a geometry like a trumpet proposed by Weibel [3], with 23 bifurcations (generations) of the bronchial tree,
starting from trachea (0th ) to terminal bronchioles (23rd ); this model was followed by Engel and Paiva [4, 5] consi-
dering the ideal gas condition in the alveolar zone, such as instantaneous homogeneity for the gas concentration in
each respiration [6, 7]. After that, Swan et al. [8], and Federspiel et al. [9], analyzed the dispersion in the alveolar
ducts, using the Navier-Stokes equation and convection-diffusion equation for the gas transport, those researches
were made in the rigid domain, but the geometry of sacs move according to inspiration or expiration process.

In this article, we made an analysis of the gas exchange and transport in the alveolar sac for a moving do-
main when it is submmited to Stress and stretch as a consequence of forced respiratory maneuver. The principal
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assumptions considered for this analysis were that sac has smooth alveolar deformation. As the geometry of the
sac is small, we had especially cared to define the behavior in the boundary by the irregularity in the gas exchan-
ge and oscillation in the boundary. The fluid flow and CO2 concentration in the alveolar sac is governed by the
Navier-Stoke equation and transport equation on the moving domain, and transformed to the Arbitrary Lagrangian-
Eulerian coordinate [10, 11].
The article was structured by: in the section 2, we showed the equations for the fluid and gas transport, with their
initial and boundary conditions. In section 3, we present the weak system equations in Arbitrary Lagrangian-
Eulerian coordinates. In sections 4 we made the estimates in order to show the convergence of weak solution of
the system; and 5, we present the numeric simulation and conclusion in the section 6.

2. Mathematical Model. The respiration consist in two process, inhalation and exhalation. The subject in-
haled a mix of gases, could be room air or different mix as in Flores and Cruz (1999) [12], Sikand(1962) [13]
and Milic-Emili(1966) [14], but always there are the fluid flow and gas tracer (gas of interest ). For describing this
dynamic we consider an equations system for the fluid flow (inhaled and exhaled process ) and the gas transport
equation for gas tracer (gas of interest), such as carbon dioxide (CO2) in this study.

The fluids considered for this analysis have a partial pressure outside (room air) and inside of the lung is
practically constant (for example the Nitrogen), and moreover the temperature in the lung is constant. We simulated
as an incompressible fluid as

(2.1)


ρ∂tu+ ρ(u · ∇)u− divσ = 0 , en Ω(t),

div(u) = 0 , en Ω(t),
u = V dom , en Γbl ∪ Γw,

ση = 0 , en Γio,

where: Ω(t) is the domain representing the alveolar sac geometry, this domain changes as a function of time, V dom

(velocity of moving domain).
The boundary has three different parts such that: Γbl is the part for gas exchange between alveolar gas and the
blood flow; Γw is the wall there is not exchange and Γio is the boundary where the inflow and outflow take place
as a consequence of inhalation and exhalation.
For the incompressible fluid, the Cauchy tensor was

(2.2) σ = ρν∇u− pI;

This is used in the system 2.1, where ρ is the fluid density, u velocity and p pressure.
In the model, we considered outside of the alveolar sac as approximate value Caucha et al. [15] and the boundary
Γio such that do-nothing condition [16]. We considered the inflow and outflow velocity is known for Γio (by
experiment), such that the moving domain was considered as a variable.

2.1. Transport equation. For the CO2 transport, we have the convection-diffusion equation, such as:

(2.3)

 ∂tC + u · ∇C −D∆C = 0 , en Ω(t)
∂ηC − αb(Cb − C) = 0 , en Γbl

∂ηC = 0 , en Γw.

In the boundary Γio, we have the conditions for inflow and outflow

(2.4)
{
C = Cext , si v · η < 0
∂ηC = 0 , si v · η > 0

en Γio,

where, C is the gas concentration in the alveolar sac, Cext initial condition in the boundary Γio, Cb gas concentra-
tion in the pulmonary blood flow and u fluid velocity, αb constant of the gas solubility in the blood.
The Dirichlet condition, we include weakly in the variation formulation using Nitsche’s method [17] such that

(2.5) ∂ηC − γh−2H(v · η)(Cext − C) = 0, en Γio,

where γ is a parameter (dimensionless), moreover h→ 0 and H is the unit step function defined as:

(2.6) H(x) =

{
1 , x > 0
0 , x ≤ 0.

The initial condition for the velocity and concentration were u(., 0) = vo, and C(., 0) = Co.
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3. Model in ALE coordinates . Considering Ω(t) as the domain that represent the Eulerian movement of the
fluid as a consequence of inflation and deflation of the alveolar sac by the respiratory cycle, and Ω̂o the reference
system that represent the rest (Functional residual capacity or residual volume of the lung).
To Control the moving domain, we add an arbitrary fixed domain Ŵ , and could take Ŵ = Ω̂o without considering
some physical meaning. As Ŵ is fixed in the time, there is exist an invertible map T̂w(t) : Ŵ → Ω(t) with
gradient F̂w := ∇T̂w and Jacobian Ĵw = det(F̂w), which Fw and Jw have the properties of deformation of
Lagrangian gradient , the Lagrangian particle x̂ ∈ Ω̂0, the Eulerian path x(x̂, t) ∈ Ω(t) and x̂w ∈ Ŵ with
T̂w(x̂w, t) = x = T̂ (x̂, t); we must consider the difference between the velocity ∂tT̂w ( velocity of movement of
the reference system) and the physic velocity V̂ [18, 19, 20].
The weak form of Equation system 2.1 and 2.3 are transformed to ALE coordinate [18], such that the variables
of interest are v̂, p̂ and Ĉ.
The weak form of the problem in ALE coordinates is giving by : Find v̂ ∈ V̂(Ω̂), p̂ ∈ L̂(Ω̂) and Ĉ ∈ H such that

(3.1)
ρ(Ĵ(∂tv̂ + F̂−1(v̂ − ∂tT̂ ) · ∇̂)v̂, ϕ̂)Ω̂ + (Ĵ σ̂F̂−T , ∇̂ϕ̂)Ω̂ = 0, ∀ϕ̂ ∈ V̂

(d̂iv(Ĵ F̂−1v̂), ξ̂)Ω̂ = 0, ∀ξ̂ ∈ L̂(
Ĵ(∂tĈ + (F̂−1(v̂ − ∂tT̂ ) · ∇̂)Ĉ), ψ̂

)
+
(
DĴF̂−T ∇̂Ĉ, ∇̂ψ̂

)
−
(
α(cb − Ĉ), ψ̂

)
Γ̂bl

+
(
γh−2H(v̂ · η)(cext − Ĉ), ψ̂

)
Γio

= 0, ∀ψ̂ ∈ X̂ ,

where the domain Ω̂ is fixed and the test spaces are defined as

(3.2) V̂Ω̂ :=
(
C∞

0 (Ω̂, ∂Ω̂\Γ̂bl∪Γ̂w
)
∥.∥

H1
0
)2
, L̂Ω̂ = C∞

0 (Ω̂)
∥.∥L2

, X̂ = C∞
0 (Ω̂)

∥.∥H1

.

where ∥.∥H1
0
, ∥.∥L2 and ∥.∥H1 are the norm in the usual Sobolev, L2 and Hilbert Space, respectively.

The Cauchy tensor in the reference domain is

(3.3) σ̂ := −P̂ I + ρν(∇̂v̂F̂−1).

4. Estimates for the weak solution of the fluid velocity and gas concentrations . For this section we
following the classical idea to prove the existence and uniqueness of weak solution for the Navier-Stokes equations
described by Temam [21] but in ALE coordinates.

4.1. Estimates for the fluid velocity û. Taking a Navier-Stokes equations in ALE coordinates (3.1), we have
the following definition.

DEFINITION 1. We say that û is a weak solution of the system (3.1), if satisfy the following formulation

ρ(Ĵ(∂tû+ (F̂−1(û− ∂tT̂ ) · ∇̂)û, ϕ̂)L̂2(Ω̂) + (Ĵρν(∇̂ûF̂−1), ∇̂ϕ̂)L̂2(Ω̂) = 0, ∀ ϕ̂ ∈ V̂

in sense of distribution in (0, T ); such that∫ T

0

ρ(Ĵ(∂tû+(F̂−1(û−∂tT̂ )·∇̂)û, ϕ̂)L̂2(Ω̂)ψ dt+

∫ T

0

(Ĵρν(∇̂ûF̂−1), ∇̂ϕ̂)L̂2(Ω̂)ψ dt = 0, ∀ψ ∈ C∞
0 (0, T ;R).

Utilizing the condition of the function of free divergence [22], the ALE system (3.1) is equivalent to

(4.1) ρ(Ĵ(∂tû+ (F̂−1(û− ∂tT̂ ) · ∇̂)û, ϕ̂) + (Ĵρν(∇̂ûF̂−1), ∇̂ϕ̂) = 0, ∀ ϕ̂ ∈ V̂.

As H1
0(Ω̂) ↪→ L̂2(Ω̂) is dense and continuous, we considered a base of L̂2(Ω̂) formed by elements of H1

0(Ω̂)
and use the Galerkin’s method, such that, we take

ûm =

m∑
j=1

αj(t)ŵj(4.2)

as lineal combination of elements ŵj ∈ H1
0 , where αj(t) are the scalar function and depend of the time t.

For m ≥ 1, replacing û in the equation (4.1) by ûm, we have a system of ordinary differential equations, that
applying Peano’s theorem [23], exist T = Tm and an unique solution in [0, Tm]; this show a local existence of
solution of Galerkin’s approximation.
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4.1.1. Energy equation. In this section, we show the convergence of the weak solution and the terms that
control the energy dissipation for the fluid.
Considering ϕ̂m = ûm and replacing in the equation (4.1), we have

(4.3) ρ(Ĵ(∂tûm + (F̂−1(ûm − ∂tT̂ ) · ∇̂)ûm), ûm) + (Ĵρν(∇̂ûmF̂−1), ∇̂ûm) = 0.

This equation calling energy equation gives a priori estimates, showing a candidate to be a weak solution.
The next lemma shows the convergence of the weak solution

LEMMA 1. Given the energy equation (4.3) then we have the convergence for the Galerkin’s approximation

(4.4) ûm
∗
⇀ û in L̂∞(0, T ; L̂2(Ω̂)),

(4.5) ûm ⇀ û in L̂2(0, T ;H1
0 (Ω̂)).

Proof Skipping technical steps here, we have the inequality for the energy equation, such as

∂t∥ûm∥2L̂2(Ω̂)
+ (2λν∥F̂−1∥L∞ + ∥F̂−1∥L∞∥div(∂tT̂ )∥L̂∞(Ω̂)

)
∥ûm∥2L̂2(Ω̂)

≤ 0,

applying the Grönwall’s lemma, we have that

(4.6) ∥ûm∥2L̂2(Ω̂)
≤ ∥ûm(0)∥2L̂2(Ω̂)

exp
(
−
(
2λν∥F̂−1∥L∞ + ∥F̂−1∥L∞∥div(∂tT̂ )∥L̂∞(Ω̂)

)
t
)
.

From (4.6) follow the Galerkin approximation ûm exist globally in the time; that is Tm = ∞. Additionally, we
observe that the dissipation of the initial energy is a function of the viscosity and domain deformation. Furthermore,
we have that

(4.7) {um} is bounded in L̂∞(0, T ; L̂2(Ω̂)).

Integrating from 0 to T the equation (4.6), we have

(4.8)
∫ T

0

|∇̂ûm∥2L̂2(Ω̂)
ds ≤ 1

2ν∥F̂−1∥L∞
∥ûm(0)∥2L̂2(Ω̂)

and we have that

(4.9) {ûm} is bounded in L̂2(0, T ;H1
0 (Ω̂)),

Now, from (4.7), (4.9) and diagonalization argument, exist û, such that ûm
∗
⇀ û in L̂∞(0, T ; L̂2(Ω̂)

and ûm ⇀ u in L̂2(0, T ;H1
0(Ω̂)), respectively. As a consequence of nonlinearity, the weak convergences are

not sufficient to take the limit to the approximate formulation. Then, we need a strong convergence of {ûm};
for this process, we used the Fréchet-Kolmogorov theorem [24], and conclude that {ûm} is pre-compact in
L̂2(0, T ; L̂2(Ω̂)), as a consequence there is a subsequence ûmk → û in L̂2(0, T ; L̂2(Ω̂)) strongly.
We can propose the theorem of existence for the weak solution of the fluid equation in ALE coordinates.

THEOREM 2. Given the system (3.1) that describe the conservation and mass for the fluid, then, exist a weak
solution, in sense of (1), in the spaces

û ∈ L̂∞(0, T ; L̂2(Ω̂)) ∩ L̂2(0, T ;H1
0(Ω̂)) ∩ L̂2(0, T ; L̂2(Ω̂)).

Proof Now, we pass to limit to the weak form (4.3), for that, taking ŵ = ŵj where ŵj ∈ Span{ŵ1, ŵ2, · · · , ŵm}
and multiplying the equation by ϕ ∈ C∞

0 (0, T ) and integrating from 0 to T . And utilizing the Stokes’s theorem
[23], we have that

(4.10) − 1

2

∫ T

0

(ûm, ŵj)
dϕ

dt
dt+ ν

∫ T

0

(∇̂ûmF̂−1, ∇̂ŵj)ϕdt+ intT0
(
(F̂−1(ûm − ∂tT̂ ) · ∇̂)ûm, ŵj

)
ϕdt = 0

then, using the lemmas (1), and strong convergence, we have that {ûm} converge in time to û defined in the
theorem (2).

4.1.2. Uniqueness for the velocity. Given û1, û2 weak solutions of the equation (4.1), then we define ŵ =
û1 − û2 ∈ V̂(Ω̂). Then, ŵ is a weak solution and using the equation (4.6), we have that û1 = û2 for t→ ∞.
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4.2. Estimates for the weak solution of the gas concentrations. For the system (3.1), we made an analysis
in the same way that analysis of fluid velocity, considering the result given by theorem 2.

DEFINITION 2. We say that Ĉ is a weak solution for the system (3.1) if it satisfy the next weak formulation

(Ĵ(∂tĈ + (F̂−1(v̂ − ∂tT ) · ∇̂)C), ψ̂) + (DĴF̂−T ∇̂Ĉ, ∇̂ψ̂)− (α(cb − Ĉ), ψ̂)Γbl
+

(ρh−2H(v · η)(Cext − Ĉ), ψ̂) = 0, ∀ ψ̂ ∈ X̂ ,

in the sense of distribution in (0, T ), such that∫ T

0

(Ĵ(∂tĈ + (F̂−1(v̂ − ∂tT ) · ∇̂)C), ψ̂)ϕdt+

∫ T

0

(DĴF̂−T ∇̂Ĉ, ∇̂ψ̂)ϕdt−∫ T

0

(α(cb − Ĉ), ψ̂)Γbl
ϕdt+

∫ T

0

(ρh−2H(v · η)(Cext − Ĉ), ψ̂)ϕdt = 0, ∀ϕ ∈ C∞
0 (0, T ;R).

From the equation in the ALE coordinates, we have
(4.11)
(Ĵ(∂tĈ+(F̂−1(v̂−∂tT )·∇̂)C), ψ̂)+(DĴF̂−T ∇̂Ĉ, ∇̂ψ̂)−(α(cb−Ĉ), ψ̂)Γbl

+(ρh−2H(v · η)(Cext−Ĉ), ψ̂) = 0;

given the Faedo-Galerkin’s approximation

Ĉm =
m∑
j=1

αj(t)ŵj , Ĉm ∈ Xm(4.12)

for the equation (4.11) with spaces Vm = span{ŵ1, ŵ2, · · · , ŵm}, ŵi ∈ H1(Ω̂) and Xm ⊂ L̂2, and αj(t) scalar
functions depending on the time.
Evaluating (4.12) in the elements of the base ŵk, we have a system of ordinary differential equation in t; then with
Peano’s theorem [23], exist T = Tm and an unique solution [0, T ].

4.2.1. Energy equation for the gas concentration. Using the approximation Ĉm, we have

(4.13)
Ĵ(∂tĈm, Ĉm) + (DĴF̂−T ∇̂Ĉm, ∇̂Ĉm) + Ĵ(F̂−1(v̂ − ∂tT̂ ) · ∇̂)Ĉm, Ĉm)−
⟨αb(cb − Ĉm), Ĉm⟩H−1/2(Γbl) + ⟨γh−2H(Cext − Ĉm), Ĉm⟩H−1/2(Γio) = 0;

with this equation, we be able to make the estimates; those give us a weak solution defined in (2).
The lemma gives us the spaces of convergence for the weak solution for the gas concentration

LEMMA 3. From the equation (4.13), we have the next convergences for the Faedo-Galerkin’s approximation

Ĉm
∗
⇀ Ĉ in L̂∞(0, T ; L̂2(Ω̂)),

Ĉm ⇀ Ĉ in L̂2(0, T ;H1(Ω̂)).

Proof We skip the technical details and show the principal results.
Defining the terms a : =

(
|D|Ĵ∥F̂−T ∥L̂∞ − (αb + |γh−2H|)

)
and b : =

(
C(αb, cb) + |γh−2Hcext|

)
, θ =

(
− λ a

Ĵ
+ ∥F̂−1∥L̂∞∥div(∂tT̂ )∥L̂∞

)
and ℏ = b2

Ĵa
, we have

∂t∥Ĉm∥2 + θ∥Ĉm∥2L̂2 ≤ ℏ;

using the Grönwall’s inequality [21], we have

∥Ĉm∥2L̂2 ≤
(
∥Ĉm(0) +

ℏ
θ
∥
)
exp(−θt).

We see that Ĉm is uniform limited in L̂∞(0, T ; L̂2(Ω̂)), as it is not depend of m and t, then we say that

(4.14) Ĉm
∗
⇀ Ĉ in L̂∞(0, T ; L̂2(Ω̂)).

Now, integrating the inequality from 0 to T , we have∫ T

0

∥∇̂Ĉm∥2L̂2 dt ≤
2

|λa|

[
Ĵ∥Ĉm(0)∥2L̂2 +

b2

2a
T

]
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FIGURA 5.1. Geometry of alveolar Sac

then, Ĉm is limited in L̂2(0, T ;H1(Ω̂)) , for each T , then

(4.15) Ĉm ⇀ Ĉ in L̂2(0, T ;H1(Ω̂)).

Using the Fréchet-Kolmogorov theorem [24], we have that Ĉm is pre-compact in L̂2(0, T ; L̂2(Ω̂)).
Now, we have the theorem for the existence of the concentrations.

THEOREM 4. Given the system (3.1) in which we have the gas transport equation, then exist and a weak
solution defined by (2) in the spaces:

Ĉ ∈ L̂∞(0, T ; L̂2(Ω̂)) ∩ L̂2(0, T ;H1(Ω̂)) ∩ L̂2(0, T ; L̂2(Ω̂)).

5. Simulation. Considering the differences from the apex and base of the lung (see Millic-Emili [14]), we
are interesting in simulated the dynamic in the base of the lung, because is the place that has more ventilation and
perfusion in a normal breath [1].

5.1. Parameters for simulations. We studied alveolar sacs in the base region for two different genera-
tions in the Weibel’s generations [3] of the lung. We considered the density constant for all generation ρ =
1,21x10−6gr/mm3 [25],

Generation kinematic viscosity Reynolds number
19 3.0813 0.08
23 85.88 7x10−3

Those values were taken from Sznitman [26].
Using Finite Element Method, we have the results for a normal and fast maneuvers. The parameters for finite
element methods were : Number of iterations 50 for each global refine, 5 global refine and step of time δt = 0,1;
also the extreme deformation was γ = 0,9 and, the tolerance for linear system and nonlinear system was 1.e− 8;
those approximations were made using Gascoing3D [27].
The initial CO2 concentration in the alveolar sac was considered constant 0.04302 [1]. We have considered the
alveolar sac deformation as a sinusoidal function.

5.1.1. Numerical results. The figure 5.1, shows the alveolar sac with five sources of CO2 gas.
The figure ( 5.2) shows the two different flow in the alveolar sac when the wall ∂Ω is moving, for a normal

and forced maneuver. This movement makes that the pressure changed and as a consequence permit that the gas
flow enter.

The distribution for inflow in the alveolar sac for the fast maneuver is showed in figure ( 5.3), in the left side
shows the flow in the middle of time for inspiration and the figure of right side shows the maximal inflations for
the alveolar sac.
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FIGURA 5.2. Gas flow simulation for a normal and forced maneuver

FIGURA 5.3. Inflow in the alveolar Sac 2D

Those curves in the figure ( 5.4) were taken in line straight down the middle in the alveolar sac, showing the
fluid velocity in the alveolar sac.
The figure ( 5.5) show the gas transportation from the blood to the alveolar sac, in the right side we can see the

0.4 0.6 0.8 1 1.2

0.6

0.8

1

1.2

1.4

1.6

1.8

length(mm)

F
l
u
i
d

v
e
l
o
c
i
t
y
(
m
l
/
s
)

0.4 0.6 0.8 1 1.2

0.1

0.15

0.2

length(mm)

F
l
u
i
d
v
e
l
o
c
i
t
y
(
m
l
/
s
)

FIGURA 5.4. Inflow in the alveolar sac

dilution of carbon dioxide as a consequence of the gas inhaled.
Making the curve in line straight down the middle in the alveolar sac for the CO2 concentration, we can see

the carbon dioxide stratification. That curve changes depending of the maneuver like in the figure on right side
(see figure ( 5.6)). Those values increase as a consequence of the gas exchange with blood CO2 concentration from
0.065 ;

The oscillation for the stress in the wall ∂Ω of the alveolar sac is showed in figure ( ??fig:6)). When the
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FIGURA 5.5. CO2 concentration in the alveolar sac
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FIGURA 5.6. Stratification of the CO2

alveolar sac is submitted to fast and strong maneuver, we could see the differences from a normal maneuver very
smooth.
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FIGURA 5.7. Stress for normal breath

Those figures for the CO2 showed that the gas is diluted or concentrated according the maneuver that the
subject done (normal or fast respiratory maneuver) and the carbon dioxide was not affected with the stress in the
wall of the alveolar sac for a normal maneuver. The stress changed following the pattern of respiration like a
sinusoidal curve, but in a forced maneuver the stress did not follow the same pattern.
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6. Conclusion. The model of the dynamics of gases in Arbitrary Lagrangian-Eulerian coordinates help to
control a moving domain; this analysis showed that the dissipation of energy for the fluid and gas transport depend
of fluid properties and the velocity of domain deformation of the alveolar sac. Furthermore, the dissipation for the
concentration of carbon dioxide, it does not depend on fluid velocity as a consequence of incompressible fluid and
the amount of CO2 in the alveolar sacs, depends upon the number of capillaries in the wall and it is not affected by
the expired force maneuver, but the stratification of gas concentration is affected by the gas flow is coming to the
alveolar sac.
The analysis shows the relation between the value of domain deformation and viscosity of fluid.

2λν∥F̂−1∥L̂∞ + ∥F̂−1∥L̂∞∥div(∂tT̂ )∥L̂∞ > 0

The analysis showed that the functional spaces for the existence of weak solution for the fluid and CO2 concentra-
tion are

û ∈ L̂∞(0, T ; L̂2(Ω̂)) ∩ L̂2(0, T ;H1
0(Ω̂)) ∩ L̂2(0, T ; L̂2(Ω̂)).

Ĉ ∈ L̂∞(0, T ; L̂2(Ω̂)) ∩ L̂2(0, T ;H1(Ω̂)) ∩ L̂2(0, T ; L̂2(Ω̂))

Future work: Analysis of dynamics of gases considering fluid-structure interaction, and analysis of dynamics
in the lung pathology.
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