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Abstract

This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear
differential equation where the coefficients are perturbations of linear constant coefficient equation.
We define a change of variable and deduce that the new variable satisfies a third order nonlinear
differential equation. We assume three hypotheses. The first hypothesis is related to the constant
coefficients and set up that the characteristic polynomial associated with the fourth order linear
equation has simple and real roots. The other two hypotheses are related to the behavior of the
perturbation functions and establish asymptotic integral smallness conditions of the perturbations.
Under these general hypotheses, we obtain four main results. The first two results are related to
the application of a fixed point argument to prove that the nonlinear third order equation has a
unique solution. The next result concerns with the asymptotic behavior of the solutions of the
nonlinear third order equation. The fourth main theorem is introduced to establish the existence
of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of
the linear fourth order differential equation. In addition, we present an example to show that the
results introduced in this paper can be applied in situations where the assumptions of some classical
theorems are not satisfied.

Keywords. Poincaré-Perron problem; asymptotic behavior; Riccati type equations.

Resumen

Este art́ıculo trata sobre el comportamiento asintótico de soluciones no oscilatorias de cuarto or-
den de ecuaciones diferenciales lineales donde los coeficientes son perturbaciones de la ecuación
coeficiente constante lineal. Definimos un cambio de variable y deducimos que la nueva variable
satisface una ecuación diferencial no lineal de tercer orden. Suponemos tres hipótesis. La primera
hipótesis está relacionado con los coeficientes constantes y establece que la caracteŕıstica del poli-
nomio asociado a la ecuación lineal de cuarto orden tiene ráıces simples y reales. Las otras dos
hipótesis están relacionadas con el comportamiento de las funciones de perturbación y establecen
pequeñas condiciones de perturbación para las integrales asintóticas. Bajo estas hipótesis generales,
se obtienen cuatro resultados principales. Los dos primeros resultados están relacionados con la
aplicación de un argumento punto fijo para demostrar que el tercero no lineal ecuación de orden
tiene una solución única. El siguiente resultado esta relacionado con el comportamiento asintótico
de las soluciones no lineales de la ecuación de tercer orden. El cuarto principal teorema se intro-
duce para establecer la existencia de un sistema fundamental de soluciones y precisa las fórmulas
para el comportamiento asintótico de la cuarta ecuación diferencial de orden lineal. En adición,
presentamos un ejemplo para mostrar que los resultados introducidos en este de art́ıculo se pueden
aplicar en situaciones en las suposiciones de algunos teoremas clásicas no están satisfechos.
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1. Introduction. Linear fourth-order differential equations appear as the more basic math-
ematical models in several areas of science and engineering. These simplified equations arise from
different linearization approaches used to give an ideal description of the physical phenomenon
or to analyze (analytically solve or numerically simulate) the corresponding nonlinear governing
equations. For example in the following cases, the one-dimensional model of Euler-Bernoulli in
linear theory of elasticity [1, 29], the optimization of quadratic functionals in optimization theory
[1], the mathematical model in viscoelastic flows [8, 19], and the biharmonic equations in radial
coordinates in harmonic analysis [13, 18].

An important family of linear fourth order differential equations is given by the equations of
the following type

y(iv) + [a3 + r3(t)]y
′′′ + [a2 + r2(t)]y

′′ + [a1 + r1(t)]y
′ + [a0 + r0(t)]y = 0,(1.1)

where ai are constants and ri are real-valued functions. Note that (1.1) is a perturbation of the
following constant coefficient equation:

y(iv) + a3y
′′′ + a2y

′′ + a1y
′ + a0y = 0.(1.2)

We recall that the study of perturbed equations of the type (1.1), in the general case of n-order
equations, was motivated by Poincaré [25]. Thus (1.1) is also known as the scalar linear differential
equation of Poincaré type. Moreover, we recall that the classical analysis introduced in the seminal
work [25] is mainly focused on two questions: the existence of a fundamental system of solutions
for (1.1) and the characterization of the asymptotic behavior of its solutions. Later on, equations
of the Ponicaré type (1.1) (of different orders) have been investigated by several authors with a
long and rich history of results [4, 9, 15, 16]. Even though this is an old problem, it is still an issue
which does not lose its topicality and importance in the research community. For instance, in the
case of asymptotic behavior of third order equations, there are the following newer results [11, 12,
23, 27, 28].

In this contribution, we address the question of the asymptotic behavior of (1.1) under new
general hypotheses for the perturbation functions. Historically, some landmarks in the analysis
of the asymptotic behavior in linear ordinary differential equations are given by the works of
Poincaré [25], Perron [22], Levinson [20], Hartman-Wintner [17] and Harris and Lutz [14, 15], see
[7] for a short review.

Nowadays, there are three big approaches to study the problem of asymptotic behavior of so-
lutions for scalar linear differential equations of Poincaré type: the analytic theory, the nonanalytic
theory and the scalar method. In a broad sense, we recall that the essence of the analytic theory
consists of the assumption of some representation of the coefficients and of the solution, for instance
power series representation (see [5] for details). In relation to the nonanalytic theory, we know that
the methods are procedures that consist of two main steps: first, a change of variable to transform
the scalar perturbed linear differential equation in a system of first order of Poincaré type and
then a diagonalization process (for further details, consult [6, 9, 10, 21]). Meanwhile, in the scalar
method [2, 3, 4, 11, 12, 23, 27, 28] the asymptotic behavior of solutions for scalar linear differential
equations of Poincaré type is obtained by a change of variable which reduces the order and trans-
forms the perturbed linear differential equation in a nonlinear equation. Then, the results for the
original problem are derived by analyzing the asymptotic behavior of this nonlinear equation.

In this paper we consider the scalar method. Moreover we note that this paper is a short version
of the paper [7], recently published by the authors which can be consulted by further details and
the extended proofs of the results.

2. General assumptions. For convenience of the presentation, we introduce some notation
and summarize the main general hypotheses about the coefficients and perturbation functions in
the following list

(H1)
{
λi, i = 1, 4 : λ1 > λ2 > λ3 > λ4

}
⊂ R is the set of characteristic roots for (1.2).

(H2) Consider p(λi, s) defined by

p(λi, s) = λ3
i r3(s) + λ2

i r2(s) + λir1(s) + r0(s).

The perturbation functions are selected such that G(p(λi, ·))(t) → 0 and L(rj)(t) → 0,



Coronel and Huancas .- Selecciones Matemáticas. 03(01): 47-54 (2016) 49

j = 0, 1, 2, 3, when t → ∞, where G and L are the functionals defined as follows

G(E)(t) =

∣∣∣∣∫ ∞

t0

g(t, s)E(s)ds

∣∣∣∣+ ∣∣∣∣∫ ∞

t0

∂g

∂t
(t, s)E(s)ds

∣∣∣∣(2.1)

+

∣∣∣∣∫ ∞

t0

∂2g

∂t2
(t, s)E(s)ds

∣∣∣∣ ,
L(E)(t) =

∫ ∞

t0

[
|g(t, s)|+

∣∣∣∣∂g∂t (t, s)
∣∣∣∣+ ∣∣∣∣∂2g

∂t2
(t, s)

∣∣∣∣] |E(s)|ds.(2.2)

(H3) Let us introduce some notations. Consider the operators F1,F2,F3 and F4 defined as follows

F1(E)(t) =

∫ ∞

t

e−(λ2−λ1)(t−s)|E(s)|ds,

F2(E)(t) =

∫ t

t0

e−(λ1−λ2)(t−s)|E(s)|ds+
∫ ∞

t

e−(λ3−λ2)(t−s)|E(s)|ds,

F3(E)(t) =

∫ t

t0

e−(λ2−λ3)(t−s)|E(s)|ds+
∫ ∞

t

e−(λ4−λ3)(t−s)|E(s)|ds,

F4(E)(t) =

∫ t

t0

e−(λ3−λ4)(t−s)|E(s)|ds;

and σi, Ai defined by

σi = 3|λi|2 + 5|λi|+ 3

+
(
19 + 7|λi|+ |12λi + 3a3|+ |6λ2

i + 3λia3 + a2|
)
η, η ∈]0, 1/2[,

Ai =
1

|Υi|
∑

(j,k,ℓ)∈Ii

|λk − λℓ|
(
1 + |λj − λi|+ |λj − λi|2

)
,

with

Υi =
∏
k>j

(λk − λj), k, j ∈ {1, 2, 3, 4} − {i},

Ii =
{
(j, k, ℓ) ∈ {1, 2, 3, 4}3 : (j, k, ℓ) ̸= (i, i, i), (k, ℓ) ̸= (j, j)

}
.

Then, it is considered that the following inequality

Fi(rj)(t) ≤ ρi := mı́n{Fi(1)(t), (Aiσi)
−1}

holds. Thus, defining the sets

Fi([t0,∞[) =

{
E : [t0,∞[→ R : Fi(E)(t) ≤ ρi

}
,

we assume that the perturbation functions r0, r1, r2, r3 ∈ Fi([t0,∞[).

3. Revisited scalar method. Statement of the results. In this section we present the
scalar method as a process of three steps. At each step we present the statement of the main
results.

3.1. Change of variable and reduction of the order. We introduce a little bit different
change of variable to those proposed by Bellman. Here, in this paper, the new variable z is of the
following type

z(t) =
y′(t)

y(t)
− µ or equivalently y(t) = exp

(∫ t

t0

(z(s) + µ)ds
)
,(3.1)

where y is a solution of (1.1) and µ is an arbitrary root of the characteristic polynomial associated
to (1.2). Then, by differentiation of y(t) and by replacing the results in (1.1), we deduce that z is
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a solution of the following third order nonlinear equation

z′′′ + [4µ+ a3]z
′′ + [6µ2 + 3a3µ+ a2]z

′ + [4µ3 + 3µ2a3 + 2µa2 + a1]z(3.2)

= −
{
r3(t)z

′′ + [3µr3(t) + r2(t)]z
′ + [3µ2r3(t) + 2µr2(t) + r1(t)]z

+µ3r3(t) + µ2r2(t) + µr(t) + r0(t) + 4zz′′ + [12µ+ 3a3 + 3r3(t)]zz
′

+6z2z′ + 3[z′]2 + [6µ2 + 3µa3 + a2 + 3µr3(t) + r2(t)]z
2

+[4µ+ r3(t)]z
3 + z4

}
.

Thus, the analysis of original linear perturbed equation of fourth order (1.1) is translated to the
analysis of a nonlinear third order equation (3.2).

We note that the characteristic polynomial associated to (1.2) and the third constant coefficient
equation defined by the left hand side of (3.2) are related in the sense Proposition 3.1. Thus, noticing
that the change of variable (3.1) can be applied by each characteristic root λi and assuming that
the equation (3.2) with µ = λi has a solution, we can prove that (1.1) has a fundamental system
of solutions, see Lemma 3.2.

Proposition 3.1. If λi and λj are two distinct characteristic roots of the polynomial associ-
ated to (1.2), then λj − λi is a root of the characteristic polynomial associated with the following
differential equation

z′′′ + [4λi + a3]z
′′ + [6λ2

i + 3a3λi + a2]z
′ + [4λ3

i + 3λ2
i a3 + 2λia2 + a1]z = 0.

Lemma 3.2. Consider that (3.2) has a solution for each µ ∈ {λ1, . . . , λ4}. If the hypothesis
(H1) is satisfied, then the fundamental system of solutions of (1.1) is given by

yi(t) = exp
(∫ t

t0

[λi + zi(s)]ds
)
, i ∈ {1, 2, 3, 4},(3.3)

where zi is the solution of (3.2) with µ = λi.

3.2. Well posedness and asymptotic behavior of (3.2). In this second step, we obtain
three results. The first result is related to the conditions for the existence and uniqueness of
a more general equation of that given in (3.2), see Theorem 3.3. Then, we introduce a second
result concerning to the well posedness of (3.2), see Theorem 3.4. Finally, we present the result of
asymptotic behavior for (3.2), see Theorem 3.5. Indeed, to be precise these three results are the
following theorems:

Theorem 3.3. Given t0 ∈ R, let us introduce the notation C2
0 ([t0,∞[) for the following space

of functions

C2
0 ([t0,∞[) =

{
z ∈ C2([t0,∞[,R) : z(t), z′(t), z′′(t) → 0 when t → ∞

}
,

and consider the equation

z′′′ + b2z
′′ + b1z

′ + b0z = Ω(t) + F (t, z, z′, z′′),(3.4)

where bi are real constants, Ω and F are given functions such that the following restrictions
(R1) There are the functions F̂1, F̂2,Γ : R4 → R; Λ1,Λ2 : R → R3 and C ∈ R7, such that

F = F̂1 + F̂2 + Γ,

F̂1(t, x1, x2, x3) = Λ1(t) · (x1, x2, x3),

F̂2(t, x1, x2, x3) = Λ2(t) · (x1x2, x
2
1, x

3
1),

Γ(t, x1, x2, x3) = C · (x2
2, x1x2, x1x3, x

2
1, x

2
1x2, x

3
1, x

4
1),

where “·” denotes the canonical inner product in Rn.
(R2) The set of characteristic roots of (3.4) when Ω = F = 0 is given by {γ1 > γ2 > γ3} ⊂ R.
(R3) It is assumed that G(Ω)(t) → 0, L(∥Λ1∥1)(t) → 0 and L

(
∥Λ2∥1

)
(t) is bounded, when

t → ∞. Here ∥ · ∥1 denotes the norm of the sum in Rn, G and L are the operators defined
on (2.1) and (2.2), respectively.
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hold. Then, exists a unique z ∈ C2
0 ([t0,∞[) solution of (3.4).

Theorem 3.4. Let us consider that the hypotheses (H1) and (H2) are satisfied. Then, the
equation (3.2) with µ = λi has a unique solution zi such that zi ∈ C2

0 ([t0,∞[).
Theorem 3.5. Consider that the hypotheses (H1),(H2) and (H3) are satisfied. Then zi the

solution of (3.2) with µ = λi, has the following asymptotic behavior

zi(t), z
′
i(t), z

′′
i (t) =



O
(∫ ∞

t

e−β(t−s)|p(λ1, s)|ds
)
, i = 1, β ∈ [λ2 − λ1, 0[,

O
(∫ ∞

t0

e−β(t−s)|p(λ2, s)|ds
)
, i = 2, β ∈ [λ3 − λ2, 0[,

O
(∫ ∞

t0

e−β(t−s)|p(λ3, s)|ds
)
, i = 3, β ∈ [λ4 − λ3, 0[,

O
(∫ t

t0

e−β(t−s)|p(λ4, s)|ds
)
, i = 4, β ∈]0, λ3 − λ4],

(3.5)

where p(λi, s) = λ3
i r3(s) + λ2

i r2(s) + λir1(s) + r0(s).

3.3. Existence of a fundamental system of solutions for (1.1) and its asymptotic
behavior. Here we translate the results for the behavior of z (see Theorem 3.4) to the variable y
via the relation (3.1).

Theorem 3.6. Let us assume that the hypothesis (H1) and (H2) are satisfied. Denote by
W [y1, . . . , y4] the Wronskian of {y1, . . . , y4}, by πi the number defined as follows

πi =
∏
k∈Ni

(λk − λi), Ni = {1, 2, 3, 4} − {i}, i = 1, . . . , 4,

by p(λi, s) the function defined in Theorem 3.5 and by F the function defined in Theorem 3.3 with
Λ1,Λ2 and C adequately defined. Then, the equation (1.1) has a fundamental system of solutions
given by (3.3). Moreover the following properties about the asymptotic behavior

y′i(t)

yi(t)
= λi,

y′′i (t)

yi(t)
= λ2

i ,
y′′′i (t)

yi(t)
= λ3

i ,
y
(iv)
i (t)

yi(t)
= λ4

i ,

W [y1, . . . , y4] =
∏

1≤k<ℓ≤4

(
λℓ − λk

)
y1y2y3y4

(
1 + o(1)

)
,

are satisfied when t → ∞. Furthermore, if (H3) is satisfied, then

yi(t) = eλi(t−t0) exp
(
π−1
i

∫ t

t0

[
p(λi, s) + F (s, zi(s), z

′
i(s), z

′′
i (s))

]
ds
)
,

y′i(t) =
(
λi + o(1)

)
eλi(t−t0) exp

(
π−1
i

∫ t

t0

[
p(λi, s) + F (s, zi(s), z

′
i(s), z

′′
i (s))

]
ds
)
,

y′′i (t) =
(
λ2
i + o(1)

)
eλi(t−t0) exp

(
π−1
i

∫ t

t0

[
p(λi, s) + F (s, zi(s), z

′
i(s), z

′′
i (s))

]
ds
)
,

y′′′i (t) =
(
λ3
i + o(1)

)
eλi(t−t0) exp

(
π−1
i

∫ t

t0

[
p(λi, s) + F (s, zi(s), z

′
i(s), z

′′
i (s))

]
ds
)
,

y
(iv)
i (t) =

(
λ4
i + o(1)

)
eλi(t−t0) exp

(
π−1
i

∫ t

t0

[
p(λi, s) + F (s, zi(s), z

′
i(s), z

′′
i (s))

]
ds
)
,

holds, when t → ∞ with zi, z
′
i and z′′i given asymptotically by (3.5).

4. Sketch of the proof of the results. In this section we present the guidelines of the
proofs of Theorems 3.3, 3.4, 3.5, and 3.6, for a complete proof of this results consult the paper [7],
recently published by the authors.

4.1. Proof of Theorem 3.3. By the method of variation of parameters, the hypothesis (R2),
implies that the equation (3.4) is equivalent to the following integral equation

z(t) =

∫ ∞

t0

g(t, s)
[
Ω(s) + F

(
s, z(s), z′(s), z′′(s)

)]
ds,(4.1)
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where g is the Green function adequately defined. Moreover, we recall that C2
0 ([t0,∞[) is a Banach

space with the norm ∥z∥0 = supt≥t0 [|z(t)|+ |z′(t)|+ |z′′(t)|]. Now, we define the operator T from
C2

0 ([t0,∞[) to C2
0 ([t0,∞[) as follows

Tz(t) =

∫ ∞

t0

g(t, s)
[
Ω(s) + F

(
s, z(s), z′(s), z′′(s)

)]
ds.(4.2)

Then, we note that (4.1) can be rewritten as the operator equation

Tz = z over Dη :=
{
z ∈ C2

0 ([t0,∞[) : ∥z∥0 ≤ η
}
,(4.3)

where η ∈ R+ will be selected in order to apply the Banach fixed point theorem. Indeed, the rest
of the proof is reduced to prove that T satisfies the hypotheses of Banach fixed point theorem.
Thus, we deduce that there are a unique z ∈ Dη ⊂ C2

0 ([t0,∞[) solution of (4.3).

4.2. Proof of Theorem 3.4. The proof of the Theorem 3.4 is followed by the application of
Theorem 3.3 to equation (3.2). Indeed, we can verify the hypothesis (R1)-(R3). First, the hypothesis
(R1) is satisfied since (3.3) can be rewritten as (3.4). Second by the application of Proposition 3.1,
we deduce that the hypothesis (R2) is satisfied. Meanwhile, we note that (H2) implies (R3). Thus,
we deduce that conclusion of the Theorem 3.4 is valid.

4.3. Proof of Theorem 3.5. We prove the formula (3.5) by analyzing an iterative sequence
and using the properties of the operator T defined in (4.2). For instance, in the first case we note
that the operator T can be rewritten equivalently as follows

Tz(t) =
1

Υ1

∫ ∞

t

g1(t, s)
[
p(λ1, s) + F

(
s, z(s), z′(s), z′′(s)

)]
ds, for t ≥ t0,

since g1(t, s) = 0 for s ∈ [t0, t]. Thus, the proof of (3.5) with i = 1 is reduced to prove that

∃ Φn ∈ R+ : |ωn(t)|+ |ω′
n(t)|+ |ω′′

n(t)| ≤ Φn

∫ ∞

t

e−β(t−τ)|p(λ1, τ)|dτ, ∀t ≥ t0,(4.4)

∃ Φ ∈ R+ : Φn → Φ, when n → ∞.(4.5)

Hence, to complete the proof of (3.5) with i = 1, we proceed to prove (4.4) by mathematical
induction on n and deduce that (4.5) is a consequence of the construction of the sequence {Φn}.

5. Example. In this section we consider an example where some classical results cannot be
applied. However, we can apply the Theorem 3.6. Indeed, consider the differential equation

y(iv) − 5y′′ + [sin(tq) + 4]y = 0, with q ∈]2,∞[,(5.1)

which is of type (1.1) with (a0, a1, a2, a3) = (4, 0,−5, 0) and (r0, r1, r2, r3)(t) = (sin(tq), 0, 0, 0).
Then, the classical generalizations of Poincaré type theorems [26], the Levinson Theorem [9, The-
orem 1.3.1], the Hartman-Wintner [9, Theorem 1.5.1] or the Eastham Theorem [9, Theorem 1.6.1]
can not be applied to obtain the asymptotic behavior of (5.1). However, the hypotheses of Theo-
rem 3.6 are satisfied see [7]. Then, the asymptotic formulas are given by

y1(t) = e2t exp
( 1

12

∫ t

t0

{
sin(sq)− f1(s)

}
ds
)
,

y2(t) = et exp
(
− 1

6

∫ t

t0

{
sin(sq)− f2(s)

}
ds
)
,

y3(t) = e−t exp
(1
6

∫ t

t0

{
sin(sq)− f3(s)

}
ds
)
,

y4(t) = e−2t exp
(
− 1

12

∫ t

t0

{
sin(sq)− f4(s)

}
ds
)
,

where

f1(t) = 3(z′1(s))
2 + 24z′′1 (s) + 4z1(s)z

′′
1 (s) + 6[z1(s)]

2z′1(s) + 8[z1(s)]
3 + [z1(s)]

4

f2(t) = 3(z′2(s))
2 + 12z22(s) + 4z2(s)z

′′
2 (s) + 12[z2(s)]

2z′2(s) + 4[z2(s)]
3 + [z2(s)]

4

f3(t) = 3(z′3(s))
2 − 6z23(s) + 4z3(s)z

′′
3 (s) + 6[z3(s)]

2z′3(s)− 4[z3(s)]
3 + [z3(s)]

4

f4(t) = 3(z′4(s))
2 − 12z24(s) + 4z4(s)z

′′
4 (s) + 6[z4(s)]

2z′4(s)− 8[z4(s)]
3 + [z4(s)]

4
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and zi(t) satisfies the following asymptotic behavior

zi(t), z
′
i(t), z

′′
i (t) =



O
(∫ ∞

t

e−β(t−s)| sin(sp)|ds
)
, i = 1, β ∈ [−1, 0[,

O
(∫ ∞

t0

e−β(t−s)| sin(sp)|ds
)
, i = 2, β ∈ [−2, 0[,

O
(∫ ∞

t0

e−β(t−s)| sin(sp)|ds
)
, i = 3, β ∈ [−1, 0[,

O
(∫ t

t0

e−β(t−s)| sin(sp)|ds
)
, i = 4, β ∈]0, 1].
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