

**Review** Article

## ASSUMPTIONS FOR SUCCESSFUL PLANT INVASION AND PAKISTAN'S STANCE REGARDING BIOLOGICAL POLLUTION

# Huma Qureshi<sup>1\*</sup>, Muhammad Arshad<sup>1</sup>

<sup>1</sup>Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan

**Abstract.** Invasive species have abundances in new ranges than in native environments. Understanding the mechanisms of plant invasions is challenging but crucial to invasive species management and future invaders prediction. The past several years have witnessed numerous new researches to determine plant invasion mechanisms. Here we summarize some of important hypothesis presented to explain invasion success. Moreover, this paper provides comprehensive inventory of invasive plants in Pakistan. Invaders with high impact in terrestrial ecosystems are also discussed.

**Keywords:** Biological pollution, invasion mechanisms, Novel weapons hypothesis (NWH), plant invasions.

**Corresponding Author:** Huma Qureshi, Ph.D., Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan, e-mail: <u>humaqureshi8@gmail.com</u>

Manuscript received: 2 March 2017

## 1. Introduction

The biological pollution (invasion of ecosystems by alien species) is the second key driver of biodiversity loss and global environmental change after habitat destruction [34,37]. The invasions by foreign species are likewise recognized to affect ecosystem services [9] and human well-being [33,36]. Invading alien plants, because of their ability to alter ecological processes such as hydrological cycles [5], carbon and nitrogen cycling [13,29], frequency and/or intensity of fire [4] and normal disturbance regimes in the native communities [12,47], have transformed many ecosystems by out-competing native species [27] and hence, are rightly regarded as one of the most significant threats to biodiversity on Earth [8,11,47].

Biological invasion represents one of the most important factors of global environmental change [44,46]. Though transport of plant species has occurred in the past, current movements are fast and involve more distant areas, principally as a consequence of increased global commerce and travel [20,28,30,38,44]. During exotic invasions, human activities help invasive species overcome oceanic barriers via sweepstakes route and also facilitate establishment, naturalization and rapid dispersal [40]. Therefore in invasion ecology, human mediated introductions of exotic organisms, especially in regions well outside their potential range, as determined by their natural dispersal mechanisms and bio-geographic barriers are observed. Invasive alien plants need to go through five stages of barriers to invade a new area, coded as 5Es - Entry/Escape, Establish, Expand, Explode and Entrench [49]. These phases are often influenced by abiotic factors like climate. Biological invasions affect virtually all ecosystems on the Earth, but, the extent of invasion of different areas and biomes and the quality of data emanating from them varies greatly [15,31].

Understanding the mechanisms of plant invasions has been a challenging task for ecologists for decades, but is crucial to invasive species management and future invaders prediction. The past several years have seen numerous new studies to determine plant invasion mechanisms. Updated analysis of the comparative importance of different invasion mechanisms would be helpful for either a general comprehension of the occurrence of plant invasions or predicting future invaders.

# 2. Key hypothesis for invasion success

**2.1.** Williamson's (1996) 'tens' rule of thumb of biological invasions: Most introduced plants do not become invasive. Only 10% of introduced species will become established in a host environment and that only 10% of the established invaders will become pests. The extent to which an introduced plant naturalizes and spreads depends on the suitability of the new physical, chemical and biological environment in which it sees itself. If these factors are unsuitable, the plant is unlikely to become grounded [50].

**2.2.** The intermediate disturbance hypothesis (IDH): Diversity of competing species is maximized at intermediate frequencies and/or intensities of disturbance or environmental change [39].

**2.3.** Enemy release hypothesis (ERH)/ herbivore escape, predator escape or ecological release hypothesis: Diversity of competing species is maximized at intermediate frequencies and/or intensities of disturbance or environmental change [39].

**2.4.** *Propagule Pressure (PP):* High supply and frequency of plant propagule introductions increase chance of successful invasion due to high genetic diversity, seed swapping, continual supplementation, higher probability of introduction to favorable environment [10].

**2.5.** *Invasional meltdown (IM):* Direct or indirect symbiotic or facilitative relationships among invaders cause an 'invasion domino effect'. Often takes place over a range of trophic levels, where one species makes habitat or community more amenable for the other [30].

**2.6.** Evolution of Increased Competetive Ability (EICA): Selection favors genotypes which have allocated resources, which are no longer needed for defense to adapting and enhancing the competitive ability [2,7].

**2.7.** *Ideal Weed (IW):* Invasive species share traits that facilitate invasions enabling them to outcompete indigenous species [43].

**2.8.** Disturbance (DS): Disturbance events open window of opportunity for invasive species [19].

**2.9.** *Limiting similarity (LS):* Successful invaders are functionally distinct from species in the recipient community, so encounter minimal competition and can fill an empty niche. Limiting similarity causes trait/phylogenetic over-dispersion [18]. **2.10.** *Enemy Reduction (ER):* Rather than complete release, reduction in the number of enemies [10].

**2.11.** Enemy of my enemy (EE): Enemies have a stronger effect on indigenous species resulting in apparent competition. Invader accumulates generalist pathogens, which greatly infect native species and reduce their ability to outcomplete invading plants [14].

**2.12.** *Habitat filtering (HF):* Invader successful as it is adapted to conditions of ecosystem and able to pass through the environmental filters. HF leads to trait under dispersion and phylogenetic clustering [35].

**2.13.** New associations (NAS): Invading species form new relationships with species in the invaded community, which enhance or impede invasion success [10].

**2.14.** *Biotic indirect effects (BID):* Includes a range of mechanisms that can facilitate invasion as a result of indirect community interactions, i.e. how 'a' alters the effect that 'b' has on 'c' [48].

**2.15.** Novel weapons Hypothesis (NWH): Invading species release allelopathic compounds that inhibit and repress potential competitors in new range. Endemic species are not accommodated to the novel chemical weapons, enhancing the invader's competitive ability and success [7].

**2.16.** Environmental heterogeneity (EVH): Habitats with high environmental variability contain a diverse array of niches that can host a variety of species. The encroachment will be successful if there are an insufficient number of indigenous species to occupy the available niches (i.e. indigenous species pool too small) [35].

**2.17.** *Increased resource availability (IRA):* Species require resources for settlement and establishment so an increase in resource levels provides an opportunity for invasion [10].

**2.18.** Dynamic equilibrium model (DE): Disturbance and productivity interact to affect invasion, and each factor can reverse responses driven by the other. Invaders can readily establish in low disturbance–low productivity systems (but not very unproductive ones), but only become dominant in high productivity systems with high degrees of disturbance (required to build) [23].

**2.19.** Empty niche (EN): Due to a limited indigenous species pool, the recipient, community and ecosystem are unsaturated so invaders can use the spare resources and absorb the unused niches (i.e. there is room for the invaders) [18].

**2.20.** Resource–enemy release (*R*-ER): Combines ER and IRA, but notes that invasion can be sped up and enhanced when both occur [3].

**2.21.** Missed mutualisms (MM): Upon entering into a new range invading species will lose the beneficial mutualistic relationships that they experience in home range, thereby impeding invasion [1].

### 3. Status of plant invasion in Pakistan

Pakistan has a long history of introduction of exotic plant and creature species. Most of current alien invasive in Pakistan were deliberately introduced with the main objective behind to meet the gap between demand and supply of quality, fuel wood and fodder [22]. Fortunately the magnitude of IAS in Pakistan is not as large as in some other states. The meager studies undertaken so far list 700 alien species of vascular plants [26]. Of reported aliens, 73 species are regarded with status of invaders in the country (Table 1); which include *Broussonetia papyrifera*, *Prosopis juliflora*, *Parthenium hysterophorus* and *Lantana camera* that are noted as high-impact land invaders threatening the native biodiversity (Table 2) [21].

| Taxonomic name                              | Common name                            | Family        |  |  |
|---------------------------------------------|----------------------------------------|---------------|--|--|
| *INVA                                       | SIVE FERNS                             |               |  |  |
| Salvinia molesta Mitch.                     | Water fern                             | Salviniaceae  |  |  |
| *INVASIVE GRASSES                           |                                        |               |  |  |
| Arundo donax L.                             | Nar, Nara, Nal.                        | Poaceea       |  |  |
| Avena fatua L.                              | Jangli Jai                             | Poaceae       |  |  |
| Bromus unioloides Kunth                     | Prairie grass, rescue grass            | Poaceea       |  |  |
| Cynodon dactylon (L.) Pers.                 | Dub, Khabbal                           | Poaceea       |  |  |
| Dactylis glomerata L.                       | Orchard grass                          | Poaceea       |  |  |
| Imperata cylindrica (L.) Raeuschel.         | Sword grass, Blady grass,<br>Siru, Ulu | Poaceae       |  |  |
| Lolium temulentum L.                        | rye grass, Dhanak                      | Poaceae       |  |  |
| Phalaris minor Retz.                        | Dumbi sitti                            | Poaceae       |  |  |
| Phragmites australis (Cay.) Trin. ex Steud. | Ditch Reed, Nal, Dila                  | Poaceae       |  |  |
| Phragmitis karka (Retz.) Trin. ex Steud     | Drumbi, Nar, Nalu                      | Poaceae       |  |  |
| Sorghum halepense (L.) Pers.                | Baru, Baran                            | Poaceae       |  |  |
| Vulpia myuros (L.) C.C.Gmel.                | Rat-tail fescue                        | Poaceae       |  |  |
| *INVASIVE HERBS                             |                                        |               |  |  |
| Agave americana L.                          | Agave                                  | Agavaceae     |  |  |
| Alternanthera pungens Kunth                 | Khaki booti                            | Amaranthaceae |  |  |
| Amaranthus hybridus L. subsp. hybridus      | Chalwera                               | Amaranthaceae |  |  |
| Achillea millefolium L.                     | Yarrow                                 | Asteraceae    |  |  |
| Amaranthus spinosus L.                      | Spiny Amaranth                         | Amaranthaceae |  |  |
| Amaranthus viridis L.                       | Chulai                                 | Amaranthaceae |  |  |
| Asphodelus tenuifolius Cavan. L.            | Piazi, Pimaluk                         | Liliaceae     |  |  |
| Cannabis sativa L.                          | Hemp, Mirijuana, Bhang                 | Cannabaceae   |  |  |

Table 1. Contribution of different life forms in Invasive flora of Pakistan<sup>1</sup>

<sup>1</sup> Inventory proposed based on literature available in invasion biology [16,17,21,24,25,32,37,41,42,45].

| Taxonomic name                          | Common name                                | Family                      |  |  |
|-----------------------------------------|--------------------------------------------|-----------------------------|--|--|
| Carthamus oxyacantha M. Bieb.           | Pohli                                      | Asteraceae                  |  |  |
| Cassia occidentalisL.                   | Kasondi                                    | Caesalpinaceae              |  |  |
| Conyza bonariensis (L.) Cronq.          | Horseweed                                  | Astraceea                   |  |  |
| Datura stramonium L.                    | Thorn apple, Dhatura                       | Solanaceea                  |  |  |
| Echium plantagineum L.                  | Purple Vipers Bugloss, Blue<br>Weed        | Boraginaceea                |  |  |
| Eichhornia crassipes (Mart.) Solms.     | water hyacinth, gul-e-bakauli              | Pontederiaceae              |  |  |
| Emex spinosus (L.) Campd.               | Prickly dock; Kafir kanda                  | Polygonaceea                |  |  |
| Galium aparine L.                       | Catchweed, bedstraw                        | Rubiaceae                   |  |  |
| Heracleum polyadenum Rech. f. & Riedl.  |                                            | Apiaceae                    |  |  |
| Ipomoea eriocarpa R. Br.                | Ilra, Bhanwar                              | Convolvulaceae              |  |  |
| Leucanthemum vulgare Lam.               | Ox-eye daisy                               | Asteraceae                  |  |  |
| Lotus corniculatus L.                   |                                            | Papilionaceae               |  |  |
| Malva parviflora L.                     | Sonchal                                    | Malvaceea                   |  |  |
| Medicago lupulina L.                    | Black medic                                | Papilionaceae               |  |  |
| Medicago sativa L.                      | Alfalfa, Lusan                             | Papilionaceae               |  |  |
| Parthenium hysterophorus L.             | White top, Congress grass,<br>Carrot grass | Asteraceae                  |  |  |
| Pistia stratiotes L.                    | Water lettuce; Jal kumbi                   | Araceae                     |  |  |
| Plantago lanceolata L.                  | Danichk, Brohi Barz                        | Plantaganaceae              |  |  |
| Rumex conglomeratus Murray              | Clustered dock                             | Polygonaceae                |  |  |
| Rumex crispus L.                        | Curly dock                                 | Polygonaceae                |  |  |
| Sida cordata Blumea                     | Sida                                       | Malvaceea                   |  |  |
| Silybum marianum(L.) Gaertn.            | Kandiari                                   | Astraceea                   |  |  |
| Tagetes minuta L.                       | Gul-e-Sadbarg; Mexican<br>marigold         | Asteraceae                  |  |  |
| Trianthema portulacastrum L.            | It-sit, Wisakh                             | Aizoaceae                   |  |  |
| Trifolium dubium Sibth.                 | Suckling clover                            | Papilionaceae               |  |  |
| Trifolium pratense L.                   | Red clover                                 | Papilionaceae               |  |  |
| Verbascum thapsus L.                    | Jangli Tamak, Sfaid bhang                  | Scrophulariaceae            |  |  |
| Verbena tenuisecta Briq.                | Moss verbena                               | Verbinaceea                 |  |  |
| Veronica persica Poir.                  | Common field speedwell                     | Scrophulariaceae            |  |  |
| Xanthium strumarium L.                  | Common cocklebur                           | Asteraceae                  |  |  |
| *INVASIVE SHRUBS                        |                                            |                             |  |  |
| Cassia obtusifolia L.                   | Chakunda                                   | Caesalpinaceae              |  |  |
| Duranta repens L.                       | Golden dewdrop, pigeon<br>berry, skyflower | Verbinaceea                 |  |  |
| Ipomoea carnea Jacq.                    | railway creeper                            | Convolvulaceae              |  |  |
| *                                       |                                            |                             |  |  |
| Lantana camara L.                       | Panch phuli                                | Verbenaceae                 |  |  |
| Lantana camara L.<br>Nerium oleander L. | Panch phuli<br>Kunair, Ganira              | Verbenaceae<br>Apocyanaceae |  |  |

| Taxonomic name                                | Common name                    | Family        |  |  |  |
|-----------------------------------------------|--------------------------------|---------------|--|--|--|
| *INVAS                                        | *INVASIVE TREES                |               |  |  |  |
| Ailanthus altissima (Mill.) Swingle           | Tree of heaven                 | Simarubaceae  |  |  |  |
| Bougainvillea glabra Chosy                    | Paper flower                   | Nyctaginaceae |  |  |  |
| Broussonetia papyrifera (L.) L'Herit. ex Vent | Paper mulberry, Gul toot       | Moraceae      |  |  |  |
| Citharexylum spinosum L.                      | Ratanuath                      | Verbinaceea   |  |  |  |
| Eucalyptus camaldulensis Dehnh.               | sufeda, lachi                  | Myrtaceae     |  |  |  |
| Eucalyptus citriodora Hook.                   | Lemon eucalyptus               | Myrtaceae     |  |  |  |
| Eucalyptus sideroxylonA. Cunn. ex Woolls      | Red Ironbark                   | Myrtaceae     |  |  |  |
| Eucalyptus tereticornis Smith                 | Forest red gum                 | Myrtaceae     |  |  |  |
| Leucaena leucocephala (tant.) De wit.         | Ipil ipil, Kubabhal            | Mimosaceae    |  |  |  |
| Ligustrum lucidum Ait.                        | Glossy privet                  | Oleaceea      |  |  |  |
| Morus alba L.                                 | White mulberry, Sfaid tut      | Moraceae      |  |  |  |
| Pistacia chinensis Bunge                      | Chinese pistacia, green almond | Anacardiaceae |  |  |  |
| Prosopis juliflora (Sw.) DC.                  | Kabuli kikar, valayati jand    | Mimosaceae    |  |  |  |
| Robinia pseudo-acacia L.                      | Black locust                   | Papilionaceae |  |  |  |
| Sapium sebiferum (L.) Roxb                    | Pahari Shisham                 | Euphorbiaceae |  |  |  |
| Thuja orientalis L.                           | Mor Pankh                      | Cupressaceae  |  |  |  |

**Table 2.** High impact invaders in terrestrial ecosystems of Pakistan

| Invader                             | Possible reason of invasiveness                                                                                                                                    | Major Impacts                                                                                                        |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Broussonetia<br>papyrifera<br>Vent. | The rapid growth rate, effective<br>dispersal by birds and strategy of<br>vegetative regeneration                                                                  | Flower pollens are serious human allergen,<br>indigenous flora replacement                                           |
| Prosopis<br>juliflora<br>(Sw.) DC.  | Exceptional tolerance of drought, high<br>salinity and water logging as well as<br>prolific seed production                                                        | Indigenous vegetation habitat elimination, cattle poisoning                                                          |
| Lantana<br>camara L.                | Fast growth rate, Seeds dispersal by birds                                                                                                                         | Change in vegetation picture of certain areas,<br>repel the associated fauna by its strong odor,<br>cattle poisoning |
| Parthenium<br>hysterophorus L.      | Fast growth rate, high reproductive<br>potential, adaptive nature (photo<br>insensitivity and drought resistant),<br>allelopathy and absence of natural<br>enemies | Aggressive competitor with biodiversity and health impacts                                                           |

### 4. What Pakistan is doing to manage invasions?

Keeping in view the impact of invasive weeds on environment, article 8(h) of the Convention on Biological Diversity (CBD) signed by 161 countries at the Earth Summit in 1992; urges the parties to "prevent the introduction of, control, or eradicate those alien species which threaten ecosystem, habitat or species" and Pakistan being a member of CBD, is judiciously playing its role.

**Conflict of Interest:** None of the authors have any competing interests in the manuscript.

#### References

- 1. Alpert P., (2006) The advantages and disadvantages of being introduced, *Biological Invasions*, 8, 1523–1534.
- 2. Blossey B., Notzgold R., (1995) Evolution of increased competitive ability in invasive non-indigenous plants: a hypothesis, *Journal of Ecology*, 83, 887–889.
- 3. Blumenthal D.M., (2006) Interactions between resource availability and enemy release in plant invasion, *Ecology Letters*, 9, 887–895.
- 4. Brooks M.L., D'Antonio C.M., Richardson D.M., Grace J.B., Keeley J.E., DiTomaso J.M., Hobbs R.J., Pellant M., Pyke D., (2004) Effects of invasive alien plants on fire regimes, *BioScience*, 54, 677–688.
- 5. Calder I., Dye P., (2001) Hydrological impacts of invasive alien plants. Land Use and Water Resources Research, 1, 1-8.
- 6. Callaway R.M., Ridenour W.M., (2004) Novel weapons: invasive success and the evolution of increased competitive ability, *Frontiers in Ecology and the Environment*, 2, 436–443.
- 7. Callaway R.M., Aschehoug E.T., (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion, *Science*, 290, 521–523.
- 8. Chapin F.S., Zavaleta E.S., Eviner V.T., Naylor R.L., Vitousek P.M., Reynolds H.L., Hooper D.U., Lavorel S., Sala O.E., Hobbie S.E., Mack M.C., Diaz S., (2000) Consequences of changing biodiversity, *Nature*, 405, 234–242.
- 9. Charles H., Dukes J.S., (2007) 13 Impacts of invasive species on ecosystem Services, *Ecological Studies*, 193, 217-237.
- 10. Colautti R., Grigorovich I., MacIsaac H., (2006) Propagule pressure: a null model for biological invasions, *Biological Invasions*, 8, 1023–1037.
- 11. Cronk Q.C.B., Fuller J.L., (1995) Plant invaders, Chapman & Hall, London.
- 12. D'Antonio C., Meyerson L.A., (2002) Exotic Plant Species as Problems and Solutions in Ecological Restoration: A Synthesis, *Restoration Ecology*, 10, 703–713.
- 13. Ehrenfeld J.G., (2010) Ecosystem consequences of biological invasions, *Annual Review of Ecology Evolution and Systematics*, 41, 59–80.
- 14. Eppinga M.B., Rietkerk M., Dekker S.C., Ruiter P.C.D., Van der Putten W.H., (2006) Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions, *Oikos*, 114, 168–176.
- 15. Foxcroft L.C., Richardson D.M., Rejmánek M., Pyšek P., (2010) Alien plant invasions in tropical and subtropical savannas: patterns, processes and prospects, *Biological invasions*, 12, 3913-3933.
- 16. Global invasive species database (GISD). URL: http://www.iucngisd.org/gisd/.

- 17. Hashim S., Marwat K.B., (2002) Invasive weeds a threat to the biodiversity: A case study from Abbottabad district [North-West] Pakistan, *Pakistan Journal of Weed Science Research*, 8, 1-12.
- 18. Hierro J.L., Maron J.L., Callaway R.M., (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range, *Journal of Ecology*, 93, 5–15.
- 19. Hood W.G., Naiman R.J., (2000) Vulnerability of riparian zones to invasion by exotic vascular plants, *Plant Ecology*, 148, 105–114.
- Huenneke L.F., (1997) Outlook for plant invasions: Interactions with other agents of global change. In: Luken JO, Thieret JW, eds. Assessment and management of plant invasions, New York, NY, USA, Springer-Verlag, 95–103.
- 21. Hussain A., (2003) Pakistan. In: Pallewatta N, Reaser JK, Gutierrez AT (eds). Invasive Alien Species in South-Southeast Asia: National Reports and Directory of Resources. Pp: 70-79. Global Invasive Species Programme, Cape Town, South Africa.
- 22. Hussain A., Zarif R.M., (2003) Invasive alien tree species A threat to biodiversity, *Pakistan Journal of Forestry*, 53, 127-141.
- 23. Huston M.A., (2004) Management strategies for plant invasions: manipulating productivity, disturbance, and competition, *Diversity and Distributions*, 10, 167–178.
- 24. Khan A.M., Qureshi R.A., Gillani S.A., Ullah F., (2011) Antimicrobial activity of selected medicinal plantsof Margalla Hills, Islamabad, Pakistan, *Journal of Medicinal Plants Research*, 5, 4665-4670.
- Khan M.A., Qureshi R.A., Gillani S.A., Ghufran M.A., Batool A., Sultana K.N., (2010) Invasive species of federal capital area Islamabad, Pakistan, *Pakistan Journal* of Botany, 42, 1529-1534.
- 26. Khatoon S., Ali S.I., (1999) Alien invasive species in Pakistan, University of Karachi, Pers. Comm., Pakistan.
- 27. Lankau R., (2010) Soil microbial communities alter allelopathic competition between *Alliaria petiolata* and a native species, *Biological Invasions*, 12, 2059–2068.
- 28. Le Maitre D.C., Mgidi T.N., Schonegevel L., Nel J.L., Rouget M., Richardson D.M., Midgley C., (2004) Plant invasions in South Africa, Lesotho and Swaziland: assessing the potential impacts of major and emerging plant invaders, In: An assessment of invasion potential of invasive alien plant species in South Africa. CSIR Environmentek Report No. ENVS-C2004-108, 76–96.
- 29. Liao C., Peng R., Luo Y., Zhou X., Wu X., Fang C., Chen J., Li B., (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis, *New Phytologist*, 177, 706–714.
- 30. Mack M.C., (2003) Phylogenetic constraint, absent life forms, and preadapted alien plants: a prescription for biological invasions, *International Journal of Plant Sciences*, 164, 185–196.
- Mack R.N., Simberloff D., Lonsdale W.M., Evans H., Clout M., Bazzaz F.A., (2000) Biotic invasions: causes, epidemiology, global consequences, and control, Ecological Applications, 10, 689–710.
- 32. Malik R.N., Husain S.Z., (2006) Classification and ordination of vegetation communities of the Lohibehr reserve forest and its surrounding areas, Rawalpindi, Pakistan, *Pakistan Journal of Botany*, 38, 543-558.
- 33. Maron J.L., Vilà M., (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses, *Oikos*, 95, 361–373.

- 34. Meffin R., Miller A.L., Hulme P.E., Duncan R.P., (2010) Experimental introduction of the alien weed *Hieracium lepidulum* reveals no significant impact on montane plant communities in New Zealand, *Diversity and Distributions*, 16, 804–815.
- 35. Melbourne B.A., Cornell H.V., Davies K.F., Dugaw C.J., Elmendorf S., Freestone A.L., Hall R.J., Harrison S., Hastings A., Holland M., Holyoak M., Lambrinos J., Moore K., Yokomizo H., (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover?, *Ecology Letters*, 10, 77–94.
- 36. Pejchar L., Mooney H.A., (2009) Invasive species, ecosystem services and human well-being, *Trends in Ecology and Evolution*, 24(9), 497-504.
- 37. Qureshi H., Arshad M., Bibi Y., (2014) Invasive flora of Pakistan: A critical analysis, *International Journal of Biosciences*, 4, 407-424.
- 38. Reichard S.H., White P., (2001) Horticulture as a pathway of invasive plant introductions in the United States, *Bioscience*, 51, 103–113.
- 39. Roxburgh S.H., Shea K., Wilson J.B., (2004) The intermediate disturbance hypothesis: Patch dynamics and mechanisms of species coexistence, *Ecology*, 85, 359–371.
- 40. Seabloom E.W., Harpole W.S., Reichman O.J., Tilman D., (2003) Invasion, competitive dominance, and resource use by exotic and native California grassland species, *Proc. Nat. Acad. Sci.*, 100, 13384–13389.
- 41. Shabbir A., Bajwa R., (2006) Distribution of Parthenium weed (*Parthenium hysterophorus* L.), an alien invasive weed species threatening the biodiversity of Islamabad, *Weed Biology and Management*, 6, 89–95.
- 42. Shinwari M.I., Shinwari M.I., Fujii Y., (2013) Allelopathic evaluation of shared invasive plants and weeds of Pakistan and Japan for environmental risk assessment, *Pakistan Journal of Botany*, 45, 467-474.
- 43. Sutherland, S., (2004) What makes a weed a weed: life history traits of native and exotic plants in the USA, *Oecologia*, 141, 24–39.
- 44. Theoharides K.A., Dukes J.S., (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion, *New Phytologist.*, 176, 256–273.
- 45. Ullah Z., Ahmad M., Khan M.A., Zafar M., Qureshi R., (2010) The alien flora of Islamabad: A threat to indigenous biodiversity. Proceeding: 2nd International Symposium on 'Biodiversity is our Life'. Centre for Biodiversity and Conservation (CBC), Shah Latif University, Khairpur (Mirs), Sindh, 125-136.
- 46. Vitousek P.M., Mooney H.A., Lubchenco J., Melilo J.M., (1997) Human domination of Earth's ecosystems, *Science*, 277, 494–499.
- 47. Werner C., Zumkier U., Beyschlag W., Maguas C., (2010) High competitiveness of a resource demanding invasive acacia under low resource supply, *Plant Ecol.*, 206, 83–96.
- 48. White E.M., Wilson J.C., Clarke A.R., (2006) Biotic indirect effects: a neglected concept in invasion biology, *Diversity and Distributions*, 12, 443–455.
- 49. Williams P.D., (2003) Nonlinear Interactions of Fast and Slow Modes in Rotating, Stratified Fluid Flows. D. Phil. Thesis, Department of Physics, University of Oxford.
- 50. Williamson M., (1996) Biological invasions, Chapman and Hall, London, 244 p.