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Abstract:  
A thermal buckling analysis of functionally graded rectangular plates is 
presented. Mechanical and thermal properties of the functionally graded 
material, except Poisson’s ratio, are assumed to vary continuously through 
the thickness of the plate according to a power-law distribution of the metal 
and ceramic volume fractions. Formulations of equilibrium and stability 
equations are based on high order shear deformation theory including 
shape function. An analytical method for determination of critical buckling 
temperature is developed. Numerical results were obtained in МАTLAB 
software using combinations of symbolic and numeric values. The effects of 
power-law index and temperature gradient on mechanical responses of the 
plates are discussed and appropriate conclusions are given. 
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1. INTRODUCTION 
 

Failure and delamination between two layers is 
the biggest problem of the conventional composite 
laminates. Delamination of layers due to high local 
inter-laminar stresses causes a reduction of 
stiffness and a loss of structural integrity of a 
construction. In order to eliminate these problems, 
improved materials such as functionally graded 
materials (FGM) are used for innovative 
engineering constructions. FGM, as well as 
nanocomposite [1], are modern materials in the 
family of engineering composite materials, in 
which there is a continuous and discontinuous 
variation of chemical composition through a 
defined geometric distance. After many years’ 
research and development, FGM represent a class 
of materials that can form a property which is 
impossible to achieve with any other 
homogeneous material or composite laminates. 
The main aim of FGM is to use the properties of 
available materials in the best possible way by 

combining their potentials. Most frequently used 
FGM is metal/ceramics, where ceramics have a 
good temperature resistance, fine antioxidant 
properties, low thermal conductivity, while metal 
is superior in terms of mechanical strength, 
toughness and high thermal conductivity. Due to 
continuous change between properties of the 
constituents, delamination between layers should 
be avoided (Fig.1). By varying a percentage of 
volume fraction content of metal/ceramic 
constituents, FGM can be formed so that it 
achieves a desired gradient property in specific 
directions. 

 
                   a)                                          b) 

 metal               ceramic 
Fig.1. Traditional composite laminate (a) compared to 

FGM (b) 
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A continuously graded microstructure with 
metal/ceramic constituents is represented in Fig.2 
schematically for illustration. 

 
                a)                                               b)                  c) 

Fig.2. Schematic of continuously graded microstructure 
with metal-ceramic constituents (a) Smoothly graded 

microstructure (b) Enlarged view and (c) Ceramic–Metal 
FGM [2]. 

Many authors have studied stability of a 
rectangular plates which is elastically buckled using 
different theories during their research [3]. In case 
it wants to be determined the thermomechanical 
properties of new materials, such as FGM, it is 
necessary to study the behaviour of the material at 
high temperature. Thermoelastic behaviour of a FG 
rectangular ceramic-metal plate using a four-node 
rectangular finite element based on the first order 
shear deformation theory (FSDT), including von 
Karman’s non-linear effect is studied [4]. Using and 
expanding the adopted FSDT formulation, the 
static analysis of FG rectangular plates is done 
based on the third order shear deformation theory 
(TSDT) [5]. Stability and equilibrium equations for 
rectangular FG plates under thermal load, by using 
classical plate theory (CPT) is derived in [6]. 
Thermoelastic buckling behaviour of thick 
rectangular plates on the basis of Reddy’s higher 
order shear deformation theory (HSDT) is studied 
by using the energy method [7,8].  

This paper presents the methodology of the 
application of the HSDT theory based on the shape 
functions. The results have been verified through 
comparison with the results in literature obtained 
with other theories. In order to determine a 
procedure for the analysis and the prediction of 
behaviour of FGM plates, theories developed in 
this paper have been implemented into the 
software written in the program package МATLAB 
(MATrix LABoratory).  

2. MATHEMATICAL MODEL OF FGM 

 
FGM rectangular plate of a b h   dimensions 

where the x-y plane coincides with the midsurface 
of the plate while z-axis has a direction of thickness 
h were studied in this paper (Fig.3). 

 

Fig.3. Geometry of a functionally graded plate 

Young’s modulus of elasticity, thermal 
expansion coefficient and changes in temperature 
are defined according to the power law 
distribution [9]: 
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This law defines the change of the mechanical 
properties as the function of the volume fraction 
of the FGM constituents in the thickness direction 
of the plate. As h represents total thickness of the 

plate, E(z), (z), T(z) represents a material property 

in an arbitrary cross-section “z”. Ec, c, Tc 
represents a material property at the top of the 

plate z=h/2 - ceramics, and Em, m, Tm represents a 
material property at the bottom of the plate z=-h/2 
- metal. In the equation (1), index p is the exponent 
of the equation which defines the volume fraction 
of the constituents in FGM (Fig.4.). Practically, by 
varying the index p, homogenous plates of 
precisely determined and specific gradient 
structure could be obtained:  

• when p = 0 the plate is homogenous, made 
of ceramics, 

• when 0 < p < ∞ the plate has a gradient 
structure, 

• theoretically, when p = ∞ the plate becomes 
homogenous again, made of metal, although 
the plate can be considered homogenous 
even when p > 10. 
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Fig.4. Variation of the volume fraction through the 

thickness of a plate 

 

3. EQUILIBRIUM AND STABILITY EQUATIONS 
 

Disadvantages of the classical lamination 

theory, and first order shear deformation theory 

which require correctional factors, are eliminated 

by introducing high order shear deformation 

theory based on shape functions.  

Here assumed form of the displacement field is: 
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where f(z) is shape function (Table 1). 

Table 1.  Shear deformation shape functions 

Num. of 

shape 

function 

(SF)  

Name of authors Shape function f(z)  

SF 1 Reissner [10] 
2

2

5 4
1

4 3

z
z
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SF 2 Mantari [11] 
2

2

2.85 0.028
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In order to define components of unit loads, it 

is necessary to apply the relations between 

displacements and strains in accordance with von 

Karman’s non-linear theory of elasticity. Using a 

generalized Hooke’s law as well as stiffnes matrix 

and taking into consideration the effect of the 

change in temperature (1) and thermal expansion 

which cause a strain T , the components of unit 

loads are obtained. 

In order to get an stability equation, it is 

necessary to define the strain energy in the 

following form: 
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Using the principles of minimum potential 
energy equilibrium equation is derived: 
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Stability equation for a thick FG plate is derived 
on the basis of the equilibrium equation. The 
stability equation of the plate under thermal load 
can be defined using the displacement 
components

0 0 0 0 0, , , andx yu v w    . Displacement 

components of the next stable configuration are 
the following: 
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Therefore, the stability equations of the 
functionally graded rectangular plate are the 
following: 
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  (6) 

In order to obtain analytical solutions of 
equation (6), assumed solution forms and 
boundary conditions are adopted in accordance to 
Navier’s methods applied in [12]. 

 
4. NUMERICAL RESULTS 

 
The aim of this section is to check the accuracy 

and the effectiveness of the given theory in 
determining critical buckling temperature of FG 
plates for linear (s=1) change temperature across 
thickness. This present the results obtained for the 
FG plates made of metal and ceramic constituents. 
Obtained results were compared with the results 
available in the literature. Material properties that 
are used for numerical examples: 
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Table 2.  Material characteristics of FGM constituents 

Мaterial Material characteristics 

Elasticity  

modulus 

[ ]E GPa   

Poisson’s  

ratio 

   

Thermal 
expansion 
coefficient  

1[ ]C    

Aluminum ( Al ) 70mE    0.3   
623 10m
 

 

Alumina (
2 3Al O ) 

380cE 

  
0.3   

67.4 10c
 

 

 
Table 3. shows comparative results of the 

critical buckling temperatures of square and 
rectangular plate for two different ratios of length 
and width of the plate (a/b = 1 and a/b = 2) and for 
different values of the index p. Verification of the 
results has been conducted by comparing them to 
the results obtained in [7] when a/b = 1, and then 
the results when a/b = 2 are provided for different 
values of the index p, i.e. different volume fraction 
of the constituents in FGM. Using HSDT theory 
with the shape function, the obtained results are 
compared to the results obtained using two 
different shape functions (SF1 and SF2).  

As can be seen it Table 3 there was a good 
match of results for given shape functions with the 
results from the papers [7]. Analyzing results, we 
can conclude that critical buckling temperatures 
decrease with increase power law index p. 
Changing the power law index from 1 to 5 
(increase of metal volume fraction) leads to 
decrease of critical buckling temperatures 
approximately 17% depending from ratio a/b. 

Table 3.  Comparison of critical buckling temperatures   

( crT ) of square and rectangular FGM plates under a 

linear increase of temperature across their thickness 

(a/h = 20, 
m 5 CT   ) 

p Source 
crT  

a/b = 1 a/b = 2 

1 [7] 
SF 1 
SF 2 

358.695 
358.711 
358.740 

------ 
894.942 
895.120 

 5 [7] 
SF 1 
SF 2 

298.693 
298.705 
298.635 

------ 
740.461 
740.053 

 10 [7] 
SF 1 
SF 2 

315.677 
315.683 
315.671 

------ 
779.786 
779.721 

 

While analyzing the diagrams, it should be 
considered that when p = 0 the plate is 

homogenous made of ceramics, when p = 10 the 
plate is homogenous made of metal, and when 0 < 
p < 10 the plate is made of FGM.  

Fig.5. shows the decrease of the difference 
between the obtained results with the increase of 
the value p, so when p>5, the constant ratio 
a/h=20 and a variable ratio (a/b), the curves 
merge. Shape functions do not have a significant 
effect on this behavior because the curves 
obtained by the use of SF1 and SF2 completely 
overlap. 

 
Fig.5.  Effect of the aspect ratio a/b and the power law 

index p on the critical buckling temperature crТ   under 

a linear change of temperature 
 

5. CONCLUSION 
 
Based on the given results, it can be concluded 

that the shape functions given in the Table 1 are 
acceptable for thermomechanical analysis of the 
functionally graded plates. The accuracy of the 
presented formulation and obtained numerical 
results is verified by comparing the results 
available in the literature. The diagram of the 
critical buckling temperature shows the difference 
in behaviour between a homogenous plate 
(ceramic or metal) and FGM plate. Analyzing 
results, it is concluded that critical buckling 
temperatures decrease with increase of power law 
index p, i.e. with increase of metal volume fraction.  
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