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Abstract:  
This paper presents some of technical aspects of the twin-spot laser welding 
of multiphase steels for automotive industry. The dual beam was obtained 
using a special optical system that divides a laser beam. The investigation 
was carried out in two main areas of welds, which are fusion and heat 
affected zones. The results show that in case of analyzed steels the use of 
twin-spot laser welding leads to changes in martensite morphology 
compared to single spot laser welding in both zones. The defragmented 
morphology suggests that tempering-like processes occur during the 
welding. This phenomenon causes the decrease in weld hardness compared 
to single spot laser welding. 
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1. INTRODUCTION   
 

The automotive industry places very high 
requirements on safety and mass reduction of the 
car body construction. The mass reduction is 
related to decrease of petrol consumption that 
leads to lower amount of pollution created by cars. 
To fulfil these requirements it is necessary to use 
multiphase steels of high strength. These steels 
allow manufacturing of the thin-wall elements that 
decrease the total mass of car body and at the 
same time fulfil safety requirements [1-3]. The 
most important feature of the multiphase steels is 
their microstructure that brings a high work 
strengthening potential. In the case of a car body 
manufacturing, the joining of elements requires 
welding methods. One of the commonly used 
joining methods is laser welding. During the laser 
welding the initial microstructure is destroyed 
(melting of material and crystallization into new 
phases) [4-6]. This destruction leads to increase in 
hardness of weld compared to a base material. The 
difference of hardness may lead to fracture of 
construction elements near the weld. To decrease 
the difference of hardness between the base 
material and a weld a twin-spot laser welding 
method may be used [7-9]. The twin-spot laser 

welding allows decrease of the weld hardness by 
increasing the cooling time (two laser beams) [10]. 
There are two methods for obtaining two laser 
spots. In the first method two different laser heads 
are combined, whereas the second method uses 
the special optical system [7]. The twin-spot laser 
welding is the method used in the case of welding 
of aluminum and titanium alloys, coated steels and 
advanced high strength steels, because of its 
positive effect on mechanical properties of the 
weld [11-13]. 

 
2. EXPERIMENTAL 
 

The twin-spot laser welding is characterized by 
complex thermal cycles that may be changed in a 
wide range. The most important parameters that 
influence the thermal cycle are: distance between 
laser beams, power distribution between beams, 
linear energy and the position of the weld pools. 
All the parameters that influence the thermal cycle 
are presented in Fig. 1. Using all these parameters 
it is possible to obtain various properties of welded 
steels. This work presents some results of the twin-
spot laser welding of advanced high strength steels. 
The chemical composition of analyzed steels is 
presented in Tab. 1. The welding tests were carried 
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out using a robotic system for laser processing in 
Welding Institute in Gliwice (Poland). The 
laboratory satisfies the requirements of most 
advanced rigs and is equipped with the TruDisk 
12002 – a Yb:YAG solid-state laser (Trumpf) with 

the maximum power of 12 kW. The two beams 
were obtained by a special optical system (the D70 
head) that includes special optical lens which 
enable dividing the laser beam. The welding 
parameters for each steel are presented in Tab. 2. 

 

 

a) Schematic presentation of how the distance between weld pools influences the thermal cycle 

 

 

b) Schematic presentation of how the power distribution of beams influences the thermal cycle 

 

 

c) Schematic presentation of some possible weld pools positions 

 
Fig. 1 Schematic presentation of parameters that influence the thermal cycles of twin-spot laser welding 

 

 

Table 1. Chemical composition of analyzed steels 

Steel Elements C Mn Si Al Ti Nb Cr Mo Ce 

DP 

[wt.%] 

0.13 1.50 0.20 0.04 - 0.015 - - 0.22 

CP 0.08 1.72 0.56 0.29 0.125 0.005 0.34 0.016 0.46 

TRIP 0.24 1.55 0.87 0.40 0.023 0.028 - - 0.54 
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Table 2. Welding parameters of each steel sheet 

Steel 
Beam 
power 
[kW] 

Power 
distribution [%] 

Linear energy 
[kJ/mm] 

DP 6 50:50 0.048 

CP 6 50:50 0.048 

TRIP 6 50:50 0.048 

 
 
 

 

a) adual phase steel 

 
 

 

b) complex phase steel 

 
 

 

c) TRIP steel 

 

 

 

 

d) SEM photo of CP steel 
 

Fig. 2 Microstructure of fusion zone for investigated 
steels; RA - retained austenite, MA - martensitic-

austenitic islands 
 

After the laser welding the microstructure 

investigation was carried out. The samples were 

prepared by grinding on abrasive papers (80, 320, 

1000 and 2500) and polishing (diamond and 

corundum slurry). The microstructure of specimens 

was revealed by etching in 3% Nital and then in 

aqueous solution of sodium pyrosulphate for 

retained austenite observation. The microstructure 

investigations were performed using MeF4 light 

microscope (Leica).  

3. RESULTS AND DISCUSSION 
 

The microstructure investigations were carried 

out in both fusion and heat affected zones. The 

microstructures of the fusion zone for DP, CP and 

TRIP steels are presented in Fig. 2. 

The microstructure of the fusion zone for dual 

phase steel is composed of lath martensite. In the 

case of complex phase steels the microstructure is 

composed of the low-carbon lath martensite and 

small fraction of retained austenite in shape of 

thin-films between martensite laths. The 

morphology of this lath martensite is 

defragmented (Fig. 2d) what indicates that 

tempering-like processes could take place during 

the welding. The microstructure of the fusion zone 

of the TRIP steel was composed of the lath 

martensite with some fraction of blocky martensite 

and retained austenite. In this case the 

defragmentation of martensite can be seen as 

well. The retained austenite was presented as films 

[14]. Additionally, the fusion zone of the TRIP steel 
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includes harmful non-metallic inclusions because 

of the highest amount of alloying elements with 

the high affinity to oxygen. Recently, Grajcar et al. 

[14] investigated the non-metallic inclusions in this 

steel. They found out that there are large and 

small non-metallic inclusions of globular shape. 

Depending on their size, the particles contain Al, Si 

and Mn (large size) or just Al (small size). The total 

amount of the alloying elements for each steel is 

presented in Tab. 3. Figure 3 presents the micro 

structure of the heat affected zone for each steel. 

The microstructure of the heat affected zone of 

dual phase steel is composed of the fine-grained 

martensitic-bainitic mixture with small fraction of 

retained austenite. Similar situation occurs in the 

case of complex phase steel. The morphology of 

the martensite shows that tempering-like 

processes could occur in the case of HAZ, as well 

(Fig. 3d). The microstructure of the TRIP steel is 

composed of the fine-grained martensitic-bainitic 

mixture. Unlike in the fusion zone, the morphology 

is mainly lath-like. The retained austenite is 

embedded in the microstructure of the heat 

affected zone in shape of thin films between 

martensitic and bainitic laths [14]. The HAZ of all 

steels is free of non-metallic inclusions. 

 
Table 3. Sum of alloying elements with the high affinity 
to oxygen for each steel 

Steel Elements Mn Si Al 
Total 

content 

DP 

[wt.%] 

1.50 0.20 0.04 1.74 

CP 1.72 0.56 0.29 2.57 

TRIP 1.55 0.87 0.40 2.82 

 
 
 

 

a) dual phase steel 

 

b) complex phase steel 
 

 

c) TRIP steel 
 

 

d) SEM photo of CP steel 

 
Fig. 3 Microstructure of the HAZ for investigated steels; 

RA - retained austenite, MA - martensitic-austenitic 
islands, B - bainite 

 
4. CONCLUSION 
 

The use of the twin-spot laser welding increases 
the cooling time of welded material, what affects 
positively the microstructure and mechanical 
properties of the welded joints. The FZ and HAZ 
martensitic microstructures of the dual phase, 
complex phase and TRIP steels show the effects of 
tempering-like processes caused by the second 
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beam. This phenomenon decreases the hardness 
of welds and, finally, it prevents cracking during 
exploitation. The martensite of the HAZ is more 
fine-grained and blocky-like compared to the 
tempered martensite occurring in the fusion zone. 
The FZ of TRIP steel includes complex and pure 
non-metallic inclusions due to the highest amount 
of elements with the high affinity to oxygen. 
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