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Abstract:  
Article provides experimental results in the field of ultra-high cycle 
fatigue behaviour of C55 high grade carbon steel obtained at high-
frequency loading (f ≈ 20 kHz, T = 20 ± 10 °C, R = -1). The results 
confirm a continuous decrease of fatigue lifetime beyond the 
conventional fatigue limit. Fatigue fracture surfaces were characterized 
by surface fatigue crack initiation in both high and ultra-high cycle 
region, what means that that influence of microstructure defects was 
not significant enough to cause the sub-surface crack initiation. 
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1. INTRODUCTION  
 

Fatigue of structural materials is the dominant 
limiting state; more than 90 % of failures are 
caused by fatigue [1-4]. Fatigue failures can be 
observable in the low - cycle, high - cycle and also 
ultra - high cycle region. With the aim to extend 
the fatigue lifetime of machine components, the 
ultra - high cycle fatigue, at high - frequency 
loading (with the working frequencies about 20 
kHz), is studied very intensively during last ten 
years [3,5-14]. In this work are stated experimental 
results from the field of ultra - high cycle fatigue of 
C55 high grade carbon steel obtained at high - 
frequency loading. 

 
2. MATERIAL AND EXPERIMENTS 

 
The C55 high grade carbon steel was used as an 

experimental material. This structural steel was 
heat treated by the procedure consisting of 
austenitization at 820 °C for 50 min, oil quenching 
and tempering for 90 min at 450 °C (cooled in calm 
air). Before the fatigue tests were carried out, 
other experimental works - quantitative chemical 
analysis, metallography analysis, tensile test and 
after fatigue tests fractography with using SEM, 

Tescan Vega microscope were conducted. The 
chemical composition and mechanical properties 
are given in Tab. 1. The microstructure of steel 
after the heat treatment is shown in Fig. 1 and it 
consists of tempered martensite. 

Table 1. C55 high grade carbon steel, chemical 
composition (in weight %) and mechanical properties. 

C Mn Si Cu Ni 
0.52 0.70 0.34 0.15 0.06 
Cr P S UTS (MPa) A (%) 

0.16 0.008 0.005 952 15.7 

 
The fatigue tests were realized by using methods 
presented in [3, 5, 13], at high – frequency 
sinusoidal cyclic tension-compression loading 
(testing frequency f ≈ 20 kHz, temperature T = 20 ± 
10 °C, cooled by distilled water with anticorrosive 
inhibitors, coefficient of cycle asymmetry R = -1) 
and with use of the high frequency testing 
equipment KAUP-ŽU Žilina, SK. Smooth round bar 
specimens (10 pieces) with gage length diameter 
of 4 mm, polished by metallography procedures in 
the central gage length part, were used during the 
fatigue tests. The ultra-high cycle fatigue lifetime 
was investigated in the region from N ≈ 106 cycles 
to N ≈ 109 cycles of loading. 
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Fig. 1. Microstructure of high - grade carbon steel, SEM, 
(etched by Nital). 

 
3. RESULTS AND DISCUSSION 
 

Results of high – frequency cyclic loading, the 
dependence of stress amplitude vs. number of 
cycles, are shown for the high grade carbon steel in 
Fig. 2. Fatigue lifetime is characterized by a 
continuous  decrease  of   fatigue  life  with  
increasing  number  of  cycles  over  the  whole  
region  of fatigue loading. 

 

Fig. 2. S - N diagram, high grade carbon steel, high – 
frequency fatigue loading. 

The loading stress range between high and 
ultra-high cycle fatigue loading Δσa ≈ 150 MPa  
(106 < N < 109 cycles of loading) is comparable to 
results of authors of [8-14] which presented values 
from Δσa ≈ 20 MPa to Δσa ≈ 200 MPa (higher values 

were experimentally obtained for high strength 
steels or surface strain hardening steels). The 
surface fatigue crack initiation, Fig. 3 and Fig. 4, 
was observed even despite the fact that surface 
does not have a decisive role in starting of fatigue 
degradation mechanisms in the ultra – high cycle 
region (in the ultra-high cycle region the 
subsurface crack initiation is mainly observed, 
structural heterogeneity plays a very important 
role, “fish eyes” are created and as initiation places 
serve inclusions, microdefects, shrinkages, very 
small grains, long grain boundaries and so on [15-
18]). 

 

Fig. 3. Surface fatigue crack initiation σa = 450 MPa, 
 N = 2.3 x 107 cycles. 

 

Fig. 4. Surface fatigue crack initiation detail  
σa = 450 MPa, N = 2.3 x 107 cycles. 
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After the surface initiation, the crack grows 

under the stable conditions through a large part of 

the cross-section, what is shown in Fig. 5. When 

the cross-section becomes very weak, the crack 

passes from stable growth to unstable growth as 

can be observed in Fig. 6. For the remaining 

portion of the cross-section is characterized by the 

ductile fracture with dimple morphology (upper 

right-hand corner in Fig. 6) [17, 18]. 

 

Fig. 5. Detail of stable crack growth, σa = 450 MPa, N = 

2.3 x 107 cycles. 

 

Fig. 6. Boundary between stable and unstable crack 

growth, σa = 450 MPa, N = 2.3 x 107 cycles. 

 
 

4. CONCLUSIONS 
 

With regards to obtained data the following 
conclusions can be drawn: 

 
- the S-N curve has a fluently decreasing 

character in the whole studied region of loading 
cycles, 

- the surface fatigue crack initiation in the ultra-
high cycle region was observed only, 

- the results about the fatigue limit, referred to 
number of cycles from N = 106 cycles to N = 107 
cycles, are overestimated and do not fulfil the 
modern requirements for reliability and safety, 

- the value of “fatigue limit” at N > 107 cycles (for 
steels and cast irons) can be determined only as 
conventional value related to specified number 
of cycles. 
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