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Abstract Equations of spinning objects are obtained in Absolute Parallelism Geometry [AP], a
special class of non-Riemannian geometry admitting specific types having non-vanishing curvature
and torsion simultaneously. This new set of equations is the counterpart of the Papapetrou equations
in the Riemannian geometry. Applying, the concept of geometerization of physics, it may give rise
to describe the spin tensor as parameterized commutation relation between path and path deviation
equations in both Riemannian and non-Riemannian geometries.
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1 Introduction

The problem of a rotating object in the presence of the gravitational field is essentially practical than
viewing objects as a mere test particles, in order to ignore their intrinsic property due to the Orthodox
General Theory of Relativity. Accordingly, several attempts were done in the last century started by
Mathisson [1], followed by Papapetrou [2] and extended by Dixon [3] to include other non-gravitational
fields e.g. electromagnetic. Also, there is an approach by Dixon-Souriau to include spinning motion,
magnetic moment with charged objects [4]. Such of these detailed equations have been presented only in
Riemannian geometry.

Now, the arising question, is based on the following:
What is the situation of the above mentioned particles in case of Non-Remannain geometries?
In order to find the above enquiry, one must take treat the situation of non-Riemanian geometries as

individual cases: one of its special classes is Riemann-Cartan geometry; which considers a tetrad space λ
i

µ

as two independent vector fields, one may be responsible for general coordinate transformation (GCT),
the holonomic coordinates, labeled by Greek indices and the Latin ones are used to express the Local
Lorentz transformation [LLT], mainly to describe the internal properties of the object [5], labeled by
Latin letters, the anholonomic coordinates. This type of work has encouraged many authors [6-8], to
relate this type of geometry with gauge theories of gravity [9], wherein there is a tetrad space for gauge
translation, and spin connection to represent gauge rotation. [10-12].

Also, another trend of viewing the Non-Riemaniann geometry, is called a Teleparallel geometry- A
geometry with a tetrad building blocks, which may represent a translational gauge with a vanishing
curvature [13] , and treat the annholonomic coordinates as vector number. Such a tendency of neutralizing
the role of annholnomic coordinates, to be a vector number, with an additional property. This may give
rise to define that there are non-vanishing torsion curvatures simultaneously, due to within different types
of absolute derivatives1.

The arising notation of AP-geometry led Wanas et al (1995) to describe three different paths may
act the role of geodesic in Riemanian geometry [17]. The striking features of these paths, have a step 1

2
from one path into other . This gives an impression, that paths in this type of geometry are naturally
quantized. Lately, Wanas(1998) obtained a parameterized absolute parallelism geometry [PAP] obtaining a
spin-torsion interaction, together with defining non-vanishing curvature and torsion tensors simultaneously
1 For more details about the underlying geometry and its application in establishing a generalized field theory
see [14-16]
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[18]. The existence of such an interaction has led Wanas et al to detect its presence in terms of revealing
the discrepancy between theory and observation of thermal neutrons [19] and presenting a temporal
model for SN1987A [20].

Accordingly, in the present work we are going to obtain the analogous of the Papapetrou equation
with precession in the context of AP-geometry. This will enable us to examine, the effect of different
absolute derivatives on the interaction with the torsion and spin tensors.

The paper is organized as follows; section 2 discusses the relationship between spin tensor and geodesic
and geodesic deviation vectors in the Riemaniann geometry, section 3 is extending the previous relationship
to become among paths and path deviation vectors with their corresponding spin tensors in AP-geometry.
Section 4 deals with the Lagranagian formalism of the Papapetrou equation in AP-geometry, and finally,
Section 5 presents the results obtained in the previous sections , regarding some recommendations in our
future work of on this approach.

2 Motion in Riemanian Geometry

2.1 Geodesic and Geodesic Deviations : The Bazanski Approach

Equations of geodesic and geodesic deviation equations Riemannian geometry are required to examine
many problems of motion for different test particles in gravitational fields. This encouraged many authors
to derive them by various methods among which one of the most applicable methods is the Bazanski
approach [21] in which from one single Lagrangian one can obtain simultaneously equation of geodesic
and geodesic deviations in the following way:

L = gµνU
µDΨ

ν

Ds
, (2.1)

where , gµν is the metric tensor, Uµ, is a unit tangent vector of the path whose parameter is s, and Ψν is
the deviation vector associated to the path (s), D

Ds is the covariant derivative with respect to parameter s.
Applying the Euler Lagrange equation , by taking the variation with respect to the deviation tensor2:

d

ds

∂L

∂Ψ̇µ
− ∂L

∂Ψµ
= 0 (2.2)

to obtain the geodesic equation
DUµ

Ds
= 0, (2.3)

and taking the variation with respect the the unit vector Uµ,

d

ds

∂L

∂Uµ
− ∂L

∂xµ
= 0, (2.4)

to obtain the geodesic deviation equation,

D2Ψµ

Ds2 = RµνρσU
νUρΨσ, (2.5)

where Rµνρσ is Riemann-Christoffel tensor.

2.2 On The Relation Between Spin Tensor and The Deviation Vector: The Riemanian
Case

Equations of spinning motion ,the case of Pα = mUα can be related to geodesic if one follows the following
transformation [23]

Ūµ = Uµ + β
DΨµ

Ds
(2.6)

2 See [22], to get a detailed description for deriving the geodesic and geodesic deviation equations using The
Bazanski Method

Advances in Astrophysics, Vol. 3, No. 3, August 2018 137

Copyright © 2018 Isaac Scientific Publishing AdAp



where Ūα is a unit tangent vector with respect to the parameter ,such that Ūα = dxµ

ds̄ , s̄.
By taking the covariant derivative on both sides one obtains:

DŪα

Ds̄
= D

Ds
(Uµ + β

DΨµ

Ds
)ds
ds̄
. (2.7)

From geodesic and geodesic deviation equations one gets

DUα

Ds
= 0 (2.8)

and
D2Ψα

Ds2 = RαµνσU
µUνΨσ (2.9)

Substituting equations (2.8) and (2.9) in (2.7) to get

DŪα

Ds̄
= (βRαµνσUµUνΨσ)ds

ds̄
. (2.10)

Regarding β ≡ s∗
m , where β is the angular momentum ratio , s∗ is the magnitude of the spin tensor Sµν ,

and m is mass of the object.
Let us assume the relationship between the spin tensor and geodesic deviation vector in the following

way
Sµν = s∗(UαΨβ − UβΨα). (2.11)

Thus, we get
DŪα

Ds̄
= 1

2m (RαµνσUµUνΨσ)ds
ds̄

(2.12)

i.e
DŪα

Ds̄
= 1

2mRαµνσS
νσŪµ (2.13)

which is the Papapetrou equation for short.

2.3 Lagrangian Formalism of Spinning Equations

Another way to derive the Papapetrou equation for short is, by applying the action principle on the
following equation [24]:

L = gµνŪ
µDΨ̄

ν

Ds̄
+ 1

2mRµνρσS
ρσUνΨµ, (2.14)

taking the variation with respect to the deviation tensor Ψ̄α we obtain equation (2.13).
Also, by taking the variation with respect to Ūα after some manipulations, we get its corresponding

spinning deviation equation

DΨ̄2

D2s̄
= RαβγδŪ

βŪγ Ψ̄ δ + 1
2m (RαβγσSγσUβ);δΨ̄

δ (2.15)

Thus, we can figure out the Euler Lagrange Equations on the Bazanski-like Lagragian give an identical
equation to (2.13) and its corresponding deviation equations.

2.4 Spinning and Spinning Deviation Equations Without Precession

The Papapetrou equation of a spinning object with precession [2]is obtained by a modified Bazanski
Lagrangian [25] :

L = gαβ(mUα + Uβ
DSαβ

Ds
)DΨ

β

Ds
+ 1

2RαβγδS
γδUβΨα
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to obtain equation of a spinning object by taking the variation with respect to the deviation vector Ψα

D

Ds
(mUα + Uβ

DSαβ

Ds
) = 1

2R
α
.µνρS

ρνUµ (2.16)

and its deviation equation can be obtained by taking the variation with respect to Uα to become:

D2Ψα

Ds2 = Rα.µνρU
µ(mUν + Uβ

DSνβ

Ds
)Ψρ + gασgνλ(mUλ + Uβ

DSλβ

Ds
);σ
DΨν

Ds

+ 1
2(Rα.µνρSνρ

DΨµ

Ds
+RαµνλS

νλ
.;ρU

µΨρ +Rαµνλ;ρS
νλUµΨρ). (2.17)

2.5 Spinning and Spinning Deviation Equations with Precession

It is well known that equation of spinning charged objects in the presence of gravitational field have been
studied extensively [26]. This led us to suggest its corresponding Lagrangian formalism , using a modified
Bazanski Lagrangian [27], for a spinning and precessing object and their corresponding deviation equation
in Riemanian geometry in the following way

L = gαβP
αDΨ

β

Ds
+ Sαβ

DΨαβ

Ds
+ FαΨ

α +MαβΨ
αβ , (2.18)

where
Pα = mUα + Uβ

DSαβ

DS
. (2.19)

Taking the variation with respect to Ψµ and Ψµν simultaneously we obtain

DPµ

DS
= Fµ, (2.20)

and
DSµν

DS
= Mµν , (2.21)

where Pµ is the momentum vector,
Fµ = 1

2R
µ
νρδS

ρδUν ,

and Rαβρσ is the Riemann curvature, D
Ds is the covariant derivative with respect to a parameter S,Sαβ is

the spin tensor,
Mµν = PµUν − P νUµ (2.22)

Uµ is the unit tangent vector to the geodesic.
Use the following identity on both equations (20) and (21)

Aµ;νρ −Aµ;ρν = RµβνρA
β , (2.23)

where Aµ is an arbitrary vector, and multiply both sides with arbitrary vectors UρΨν as well as using the
following condition [26]

Uα;ρΨ
ρ = Ψα;ρU

ρ, (2.24)
where Ψα is its deviation vector associated to the unit vector tangent Uα.

Also in a similar way:
Sαβ;ρ Ψ

ρ = Φαβ;ρ U
ρ, (2.25)

one obtains the corresponding deviation equations [28]

D2Ψµ

DS2 = RµνρσP
νUρΨσ + Fµ;ρΨ

ρ, (2.26)

and
D2Ψµν

DS2 = Sρ[µRν]
ρσεU

σΨ ε +Mµν
;ρ Ψ

ρ, (2.27)
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3 Motion in AP-Geometry

A brief introduction of AP-Space

The structure of this space is defined completely by a set of n-contravariant vector fields λ
i

µ where
i = 1, 2, 3, ..., n) denotes the vector number, and µ(= 1, 2, 3, ..., n) denotes λ

i
µ of the vectors λ

i

µ, in the

determinant ||λ
i

µ||, is defined such that3

λ
i

µ
λ
j
µ = δij ,

λ
i

µ
λ
i
ν = δµν .

Using these vectors, the following second order symmetric tensors are defined:

gµν
def= λ

i

µ
λ
i

ν ,

gµν
def= λ

i
µ λ
i
ν .

one can define Christoffel symbols and covariant derivatives using this symbol, in the usual manner. The
following third order tensor, the contortion tensor, can be defined as,

γα.µν
def= λ

i

α
λ
i
µ;ν ,

which is non-symmetric in its last two indices µ, ν. It can be shown that γα.µν is skew-symmetric in its
first two indices.
The AP-Condition

λ
i

ν

|
µ

+
= 0

where |
µ
+ is the absolute +ve derivative, such that it defines Γαµν a non symmetric affine connection, in

which

Γαµν = λ
i

α
λ
i
µ,ν .

The torsion of the space time is defined by

Λαβγ = Γα.βγ − Γα.γβ .

(i)Paths and Path Deviation Equations Subject to Γα
βγ

Paths and Path deviations equations are the counterpart of geodesic and geodesic deviation in AP-
geometry. Accordingly, we have different trajectories based on the type of the absolute derivative, with
respect to Γαβγ [17].

From this perspective, it has been found out that the Bazanski Lagrangian may be a good candidate
to express these trajectories.

L = gµνV
µ ∇Φν

∇S+ (3.28)

where
∇Φ
∇S+ = dΦα

dS+ + ΓαµνΦ
µV ν .

Thus,taking the variation with respect to ξµ and implementing the AP-condition to find that

gµ

+
σ
ν+|σ

≡ 0 (3.29)

3 for more detail see [13-16]
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one finds out the following path equation
∇V µ

∇S+ = 0. (3.30)

Also, its associated deviations can be derived if one applies the following relation

Aµ

|
ν

+
ρ

+
−Aµ

|
ρ

+
ν

+
= Mµ

σνρA
σ + ΛσνρA

µ

|
σ

+
, (3.31)

provided with the following condition:
Uα
|

ρ

+
Φρ = Φα

|
ρ

+
Uρ, (3.32)

with taking into consideration, the vanishing curvature tensor

Mµ
σνρ ≡ 0, (3.33)

to be substituted in (3.30) to obtain the corresponding deviation equation

∇2Φα

∇S2+ = ΛρµνV
µΦνV α

|
ρ

+
. (3.34)

(ii)Paths and Path Deviation Equations subject to Γα
(βγ)

Due to the absolute derivative with respect to Γα(βγ), one can derive its associated path and path deviation
equations using the following Lagrangian [17]:

L = gµνW
µ ∇̂ην

∇̂S0
, (3.35)

where
∇̂ηα

∇̂S0
= dηα

dS0 + Γα(µν)η
µW ν .

Thus, taking the variation with respect to ηµ;provided that

gµ

0
ν

0|σ
= Λ(µν)σ, (3.36)

to obtain its corresponding path equation:

∇Wµ

∇S0 = 1
2Λ

µ
(νρ).W

νW ρ. (3.37)

Using the following relation

Aµ
|
ν

0
ρ

0
−Aµ

|
ρ

0
ν

0
= LµσνρA

σ + ΛσνρA
µ

|
σ

0
, (3.38)

and the condition below
Wµ

ρ

(0)
ηρ = ηµρ

(0)
W ρ, (3.39)

to be substituted in (3.37), provided that its associated curvature,

Lµσνρ 6= 0, (3.40)

is non vanishing, to obtain the corresponding deviation equation

∇̂2ζα

∇̂S2(0)
= 1

2(Λ. . αµν WµW ν)
|
ρ

0
ζρ + LαβρσW

βW ρζσ + ΛρµνW
µηνζα

|
ρ

0
(3.41)
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(iii)Paths and Path Deviation Equations Subject to ˜Γα
βγ

Following the same approach as explained the previous items(i) and (ii), one may derive the paths and
path deviations equations subject to Γ̃αβγ , by introducing the following Lagrangian [17]:

L = gµνJ
µ ∇̃ζν

∇̃S−
(3.42)

such that
∇̃ζν

∇̃S−
= dζν

dS−
+ Γ̃ νµσζ

µJσ.

Accordingly, taking the variation with respect to ηµ to derive its corresponding path equation, and
provided that [16]

gµ

−
ν

−|σ
= 2Λ(µν)σ (3.43)

we get
∇̃Jµ

∇̃S−
= Λ . µ

(αβ)J
αJβ . (3.44)

Also, in order to derive its corresponding path deviation equation, one must take into account the following
relation:

Aµ

|
ν

−
ρ

−
−Aµ

|
ρ

−
ν

−
= Nµ

σνρA
σ + ΛσνρA

µ

|
σ

−
, (3.45)

together with, the condition
Jµ

|
ρ

(−)
ζρ = ζµ

|
ρ

(−)
Jρ, (3.46)

to be substituted in (3.44), provided that its associated curvature,

Nµ
σνρ 6= 0, (3.47)

is non vanishing curvature.
Thus we derive the corresponding path deviation equation

∇̃2ηα

∇̃S2−
= Nα

βρσJ
βJρησ + ΛρµνJ

µηνηα
|

ρ

−
(3.48)

3.1 On the Relation Between Spin Tensor and The Deviation Vector: The AP-geometry

In this part, we are going to extend the relationship obtained in (2.2) to derive the corresponding spin
equations and their corresponding spin deviation equations.

Spinning equation subject to Γα
βγ

Equations of spinning motion ,the case of Pα+ = mV α can be related to geodesic if one follows the following
transformation

V̄ µ = V µ + β
DΦµ

Ds+ (3.49)

where V̄ α is a unit tangent vector with respect to the parameter ,such that V̄ α = dxµ

ds̄+ , s̄. By taking the
covariant derivative on both sides one obtains:

∇V̄ α

∇s̄+ = ∇
∇s+ (V µ + β

∇Φµ

∇s+ )ds
ds̄
. (3.50)

Substituting equations (3.30) and (3.34) in (3.50) we get

∇V̄ α

∇s̄+ = (βΛρνσV
µ|

ρ

+
V νΦσ)ds

ds̄
(3.51)
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Let us assume the following. Taking β = s
m

S̄µν = s(V αΦβ − V βΦα) (3.52)

Thus, we get
∇V̄ α

∇s̄+ = 1
2m (ΛρνσV

µ|
ρ

+
S̄νσ)ds

ds̄
(3.53)

i.e
∇V̄ α

∇s̄+ = 1
2mΛρνσV̄

µ|
ρ

+
S̄νσ, (3.54)

which is the version the Papapetrou equation for absolute derivative subject to Γµν , for short.

Spinning equation subject to Γα
(βγ)

Equations of spinning motion, the case of Pα(0) = mWα can be related to geodesic if one follows the
following transformation

W̄µ = Wµ + β
∇̄ηµ

∇̄s̄(0)
(3.55)

where W̄α is a unit tangent vector with respect to the parameter ,such that W̄α = dxµ

ds̄(0) , s̄. By taking
the covariant derivative on both sides one obtains:

∇̄W̄α

∇̄s̄(0)
= ∇
∇s+ (Wµ + β

∇ηµ

∇s(0) )ds
ds̄
. (3.56)

Substituting equations (3.37) and (3.41) in (3.56) to get

∇W̄α

∇s̄(0) = (1
2Λ

. .α
µν WµW ν + β[LαβγδW βW γηδ + ΛρνσW

µ|
ρ

(0)
W νησ])ds

ds̄
. (3.57)

Now, let us assume that β = s
m , and

S̄µν = s(V αηβ −W βηα). (3.58)

Thus, we get
∇̄W̄α

∇s̄(0) = (1
2Λ

. .α
µν WµW ν + 1

2m [LαµνσWµ + ΛρνσW
µ|

ρ

(0)
])S̄νσ(ds

(0)

ds̄(0) ), (3.59)

i.e.
∇W̄α

∇s̄(0) = 1
2Λ

. .α
µν WµW̄ ν + 1

2m (LαµνσW̄µ + ΛρνσW̄
µ|

ρ

(0)
)S̄νσ. (3.60)

If we regard
ds(0)

ds̄(0) = 1,

then, equation (3.57) becomes

∇W̄α

∇s̄(0) = 1
2Λ

. .α
µν W̄µW̄ ν + 1

2m (LαµνσW̄µ + ΛρνσW̄
µ|

ρ

(0)
)S̄νσ, (3.61)

which is the version the Papapetrou equation subject to Γα(βγ), for short.
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Spinning equation subject to Γ̃α
βγ

Equations of spinning motion ,the case of Pα− = mJα can be related to geodesic if one follows the following
transformation

J̄µ = Jµ + β
∇̃ζµ

∇̃s̄−
(3.62)

where J̄α is a unit tangent vector with respect to the parameter ,such that J̄α = dxµ

ds̄− , s̄. By taking the
covariant derivative on both sides one obtains:

∇̄J̄α

∇̄s̃(−)
= ∇̃
∇s−

(Jµ + β
∇ζµ

∇̃s−
) ds
ds̄−

. (3.63)

Substituting equations (3.44) and (3.48) in (3.63) to get

∇̃J̄α

∇̃s̃−
= (Λ . .α

µν JµJν + β[Nα
βγδJ

βJγζδ + ΛρνσJ
µ|

ρ

−
Jνζσ])ds

−

ds̄−
. (3.64)

Let us assume the following Taking β = s
m ,and

S̃µν = s(Jαζβ − Jβζα). (3.65)

Thus, we get
∇̃J̄α

∇̃s̄−
= (Λ . .α

µν JµJν + 1
2m [Nα

µνσJ
µ + ΛρνσJ

µ|
ρ

−
])S̃νσ(ds

(−)

ds̄(−) ), (3.66)

i.e.
∇̃J̄α

∇̃s̄−
= Λ . .α

µν JµJ̃ν + 1
2m (Nα

µνσJ̄
µ + ΛρνσJ̄

µ|
ρ

−
)S̃νσ. (3.67)

If we regard
ds(−)

ds̃(−) = 1,

then, equation (73) becomes

∇̃J̄α

∇̃s̄−
= Λ . .α

(µν) J̄
µJ̄ν + 1

2m (Nα
µνσJ̄

µ + ΛρνσJ̄
µ|

ρ

−
)S̃νσ. (3.68)

which is the version the Papapetrou equation subject to ˜Γαβγ , for short.

4 Spinning and Spinning Deviation Equations in AP-geometry: Lagrangian
Formalism

From the previous results, we can check the reliability of the corresponding Bazanski equation to become
in the following way.

4.1 Spinning and Spinning Deviation Equations Subject Γα
βγ

i the case of P+ = mV

L = gµνV
µ ∇̄Φµ

∇̄S+
+ S̄µν

∇̄Φµν

∇̄S+
+ 1

2m [ΛρνσV
µ|

ρ

+
]S̄νσΦµ. (4.69)

Taking the variation with respect to Φα and Φαβ we obtain

∇V α

∇S+ = 1
2mΛρδν S̄

δνV ασ
+

+ gαρΛρνσV
µ|

ρ

+
S̄νσ, (4.70)
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and

∇̃Sαβ

∇̃S
= 0 (4.71)

Using the commutation relation (3.31) , conditions (3.32) and

S̄µν

|
ρ

+
Φρ = Φµν

|
ρ

+
V ρ, (4.72)

to be substituted in (4.70) and (4.71) in order to derive its corresponding set of deviation equations

∇2Φα

∇̃S2(+)
= ΛρµνV

µV νΦαρ
+
, (4.73)

and
∇2Φαβ

∇̂S2+
= ΛρµνV

µΦν S̄αβ

|
ρ

+
. (4.74)

(ii) the case P+ 6= mV

Let us suggest the following Lagrangian:

L = gµνP
µ
+
∇Φµ

∇S+ + S̄µν
∇Φµν

∇S+ + 1
2mgµνΛ

ρ
δρS̄

δρV µρ
+
Φν + gαµgβν [Pα+V β − P

β
+V

α]Φµν , (4.75)

where
Pµ+ = mV µ + Vν∇̃S̄µν

∇S(+) .

Taking the variation with respect to ζα and ζαβ we obtain

∇Pα+
∇S+ = 1

2mΛρδν S̄
δνV αρ

+
+ gµρgνδ[P ρ+V δ − P δ+V ρ]Φµν , (4.76)

and
∇S̄αβ

∇̄S+
= [Pα+V β − P

β
+V

α]. (4.77)

Using the commutation relation (3.31) , the conditions (3.32) and (3.32) to be substituted in (4.70)and
(4.71)and (4.72) in order to derive its corresponding set of deviation equations

∇̃2Φα

∇̃S2+
= ( 1

2mΛρδσŜ
δσV ασ

+
)
|

δ

+
Φδ, (4.78)

and
∇2ζαβ

∇̃S2+
= ΛρµνV

µΦν S̃αβρ

+
+ [Pα+V β − P

β
+V

α]
|

δ

+
Φδ. (4.79)

From the above results of spinning equations and their corresponding deviation ones, we reach to regard
them as the equivalent set of equations of spinning objects in the presence of Tele-parallel gravity [13].

4.2 Spinning and Spinning Deviation Equations Subject Γα
(βγ)

ii The case of P(0) = mW

L = gµνW
µ ∇̂ηµ

∇̂S(0)
+ Ŝµν

∇̂ηµν

∇̂S(0)
+ 1

2mLµνρδη
µW νSρδ + ΛρνσW

µ|.
ρ

(0)
Ŝνσηµ. (4.80)

Taking the variation with respect to ηα and ηαβ , we obtain

∇̂Wα

∇̂So
= 1

2Λ
. . α

(µν) W
µW ν + 1

2mLανρσW
νSρσ + gαµΛρνσW

µ|
ρ

(0)
Ŝνσ, (4.81)
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and
∇̂Ŝαβ

∇̂S
= 1

2Λ
. . [α

(µν) Sβ]µW ν . (4.82)

Using the commutation relation (3.38) and conditions (3.39) and

Ŝµν

|
ρ

(0)
ηρ = ηµν

|
ρ

(0)
W ρ, (4.83)

to be substituted in (80) and (81) in order to derive its corresponding set of deviation equations

∇̂2ηα

∇̂S2(0)
= LαµνρW

µW νηρ + ΛρµνW
µξνηαρ

(0)
+ 1

2(Λ . . α
µν WµW ν + 1

2mLανρσW
νSρσ)

|
σ

0
ησ, (4.84)

and
∇̂2ηαβ

∇̂S2(0)
= Sµ[βρLα]

µνρW
νηρ + ΛρµνW

µηνSαβ
|
ρ

0
. (4.85)

(ii) the case P(0) 6= mW

Let us suggest the following Lagrangian:

L = gµνP
µ
(0)
∇̂ηµ

∇̂S(0)
+Ŝµν

∇̂ηµν

∇̂S(0)
+ 1

2mLµνρδη
µW ν Ŝρδ+ 1

2mgµνΛ
ρ
δρŜ

δρWµ
ρ

(0)
ην+gµρgνδ[P ρ(0)W

δ−P δ0W ρ]ηµν ,

(4.86)
where Pµ(0) = mWµ +

WνDS
µν

(0)
DS(0) .

Taking the variation with respect to ηα and ηαβ we obtain

∇̂Pα(0)

∇Ŝ(0)
= 1

2Λ
..α
µνP

µ
(0)W

ν + 1
2mLανρσW

ν Ŝρσ + 1
2mΛρδν Ŝ

δνWα

|
ρ
o

(4.87)

, and
∇̂Ŝαβ

∇̂S(0)
= 1

2Λ
. .[α
µν Sµβ]W ν . (4.88)

Using the commutation relation (3.38) , conditions (3.39) and (4.82) to be substituted in (4.82) and (4.83)
in order to derive its corresponding set of deviation equations

∇̂2ηα

∇̂S2(0)
= LαµνρP

µ
(0)W

νηρ + ΛρµνP
µ
(0)η

νηαρ
(0)

+ 1
2(Λ..αµνP

µ
(0)W

ν + 1
2mLανρσW

ν Ŝρσ + 1
2mΛρδσŜ

δσWα
σ

(0)
) |δ
(0)
ηδ,

(4.89)
and

∇̃2ζαβ

∇̃S2−
= S̃µ[βρNα]

µνρJ
νJρ + ΛρµνW

µην Ŝαβρ
o

+ (Λ . .[α
µν Sµβ]J

ν|
δ

−
ζδ + [Pα(0)W

β − P β(0)W
α] |δ

(0)
ηδ. (4.90)

4.3 Spinning and Spinning Deviation Equations Subject to Γ̃α
βγ

(i) the case of P− = mJ

L = gµνJ
µ ∇̃ζµ

∇̃S−
+ S̃µν

∇̃ζµν

∇̃S−
+ 1

2mNµνρδζ
µJνSρδ + ΛρνσJ

µ|
ρ

−
Ŝνσζµ, (4.91)

by taking the variation with respect to ζα and ζαβ we obtain

∇̃Jα

∇̃S−
= Λ..αµνJ

µJν + 1
2mNα

νρσJ
νSρσ + 1

2mΛρδνS
δνJασ
−

+ gαρΛρνσJ
µ|

ρ

−
S̃νσ (4.92)
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and
∇̃Sαβ

∇̃S−
= Λ

. [α
(µν)S

β]µJν . (4.93)

Using the commutation relation (44), conditions (48) and

S̃µν

|
ρ

−
ζρ = ζµν

|
ρ

−
Jρ (4.94)

to be substituted in (4.91)and (4.92) in order to derive its corresponding set of deviation equations

∇̃2ζα

∇̃S2(−)
= Nα

µνρJ
µJνζρ + ΛρµνJ

µJνηαρ
−

+ (Λ . . α
µν JµW ν + 1

2mNα
νρσJ

ν S̃ρσ)
|

σ

−
ζσ, (4.95)

and
∇̃2ζαβ

∇̂S2(−)
= Sµ[βρΛα]

νρJ
νζρ + ΛρµνJ

µζν S̃αβ

|
ρ

−
. (4.96)

(ii) the case P− 6= mJ

Let us suggest the following Lagrangian:

L = gµνP
µ
−
∇̃ζµ

∇̃S−
+S̃µν

∇̃ζµν

∇̃S−
+ 1

2mNµνρδζ
µJν S̃ρδ+ 1

2mgµνΛ
ρ
δρS̃

δρJµρ
−
ζν+gµρgνδ[P ρ−Jδ−P δ−Jρ]ζµν , (4.97)

where
Pµ(0) = mWµ + Jν∇̃S̃µν

DS(0)

by taking the variation with respect to ζα and ζαβ we obtain

∇̃Pα−
S̃−

= 1
2Λ

. . α
µν Pµ−J

ν + 1
2mNα

νρσJ
ν S̃ρσ + 1

2mΛρδν S̃
δνJαρ
−
, (4.98)

and
∇̃S̃αβ

∇̂S−
= Λ . .[α

µν Sµβ]Jν . (4.99)

Using commutation relation (3.44) and the conditions (3.48) and (4.93) to be substituted in (4.97) and
(4.98) in order to derive its corresponding set of deviation equations

∇̃2ζα

∇̃S2−
= Nα

µνρP
µ
−J

νζρ + ΛρµνP
µ
−ζ

νζαρ
o

+ (Λ . . α
µν Pµ−J

ν + 1
2mLανρσJ

ν S̃ρσ + 1
2mΛρδσŜ

δσJασ
−

)
|

δ

−
ζδ, (4.100)

and

∇̃2ζαβ

∇̃S2−
= S̃µ[βρNα]

µνρJ
νJρ + ΛρµνJ

µζν S̃αβρ

−
+ (Λ . .[α

µν S̃µβ]J
ν|

δ

−
ζδ + [Pα−Jβ − P

β
−J

α] δ

−
ζδ. (4.101)

5 Discussion and Concluding Remarks

The present work is related to extending the concept of geometerization of physics to explain spinning
objects in a gravitational field. It has been developed the modified Bazanski Lagrangian in general
relativity for spinning objects to be expressed in AP-geometry. Due to the wealth of geometric quantities,
one must regard that the existence of spin tensors associated for each path is defined by a specific type of
absolute derivative. Also, we have emphasized the relationship between geodesic and geodesic deviation
with spinning tensors, to be viable for any type of geometries, by testing its reliability in both Riemannian
and AP-geometry. Moreover, the spin tensor has been defined geometrically as a commutation relation
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between formula between geodesic and geodesic deviation in Riemannian geometry and their counterparts
in AP-geometry.

Accordingly, we have obtained three different spinning equations different from its counterpart in
Riemannian geometry. One of them, can be used to describe the spinning equations and their deviation
in Tele-parallel gravity, i.e. these sets of spinning equations are representing the Papapetrou equation of
Hayshi-Shirifugi New General Relativity [13], while the other two paths may describe, hypnotically, a set
of spinning particles subject to a class of non vanishing curvature and torsion simultaneously. This may
require an efficient field theory feasible to give a physical interpretation of Ŝµν and S̃µν , which is still an
open question.

Nevertheless, equations (4.70) and (4.71) can be applied to examine the motion of neutron stars in
teleparallel gravity, as taken into account their associated field equations as given in [29].

Yet, this study has also clarified the viability interaction between torsion tensor and spin deviation
equations, as mentioned previously in case of Gauge theories of gravity [26].

Nevertheless, these sets of spinning equations can also be applied in PAP-geometry, to give new results.
Owing to revisit, the bi-metric theories of gravity using the tetrad formalism, one may find out some
promising results able to reveal the mystery of several anomalies such as dark matter and dark energy in
our nature, which will be studied in our future work.
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