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Abstract. The theory of the matter movement in black holes (BH) in the frame of non – local 
quantum hydrodynamics (NLQHD) is considered. The theory corresponds to the limit case when the 
matter density tends to infinity when the theory of General Relativity is not applicable in principle. 
From calculations follow that NLQHD equations for the black holes have the solutions limited in 
space. The domain of the solution existence is limited by the event horizon where gravity tends to 
infinity. It was shown: 1) internal perturbations in BH lead to the appearance of the packets of the 
gravitational waves. 2) The width of the wave packet is inversely proportional to the magnitude of 
internal energy. 3) Increasing of the internal energy leads to the transformation of the mode of anti-
gravity into the attraction regime. 4) A strong mutual influence of the gravitational, anti-
gravitational and electromagnetic fields exists. The velocity of gravitational waves is more than the 
speed of light. The numerical calculations of the Cauchy problem are delivered.  

Keywords: Black Holes, transport processes in Black Holes, velocity of gravitational waves, 
microscopic and macroscopic Black Holes, explosive maximon instability, transformations of 
gravitation and anti-gravitation regimes 

1   Introduction 

The first ideas about the existence of cosmic objects whose gravitation is so big that the escape velocity 
would be faster than the speed of light, were formulated in 1783 by English geologist named John 
Michell. In 1796, Pierre-Simon Laplace promoted the same idea in his book “Exposition du système du 
Monde”. In 1916 Albert Einstein introduced an explanation of gravity called general relativity. 
According to the general theory of relativity, a black hole is a region of space from which nothing, 
including light, can escape. It is the result of “the denting of spacetime” caused by a very compact mass. 

In 1930, Subrahmanyan Chandrasekhar [1, 2] predicted that stars heavier than the sun could collapse 
when they ran out of hydrogen or other nuclear fuels to burn and die. In 1967, John Wheeler gave black 
holes the name "black hole" (BH) for the first time, [3]. Astronomers have identified numerous stellar 
black hole candidates, and have also found evidence of super massive black holes at the center of every 
galaxy. In 1970, Stephen Hawking and Roger Penrose proved that black holes must exist (see for 
example [4]). Around a black hole there is an undetectable surface which marks the point of no return, 
called an event horizon. It is called "black" because it absorbs all the light that hits it, reflecting nothing, 
just like a perfect black body in thermodynamics. Black holes possess a temperature (and therefore the 
internal energy) and emit Hawking radiation through slow dissipation by anti-protons. This temperature 
is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to 
observe. BH could be also electrically charged. 

Let us investigate the possibilities delivering by the unified generalized quantum hydrodynamics [5, 6] 
for investigation of these problems. From position of non – local quantum hydrodynamics (NLQHD) the 
mentioned theory has two limit cases connected with the density ρ  evolution:  
1. The density ρ → ∞ . From the physical point of view this case corresponds to the matter motion in
the Black Hole regime.
2. The density 0ρ → . From the physical point of view this case corresponds to the motion in the Big
Bang regime.

Newtonian gravity propagates with the infinite speed. This conclusion is connected only with the 
description in the frame of local physics. Usual affirmation - general relativity (GR) reduces to 
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Newtonian gravity in the weak-field, low-velocity limit. In literature you can find criticism of this 
affirmation because the conservation of angular momentum is implicit in the assumptions on which GR 
rests. Finite propagation speeds and conservation of angular momentum are incompatible in GR. 
Therefore, GR was forced to claim that gravity is not a force that propagates in any classical sense, and 
that aberration does not apply. But here I do not intend to join to this widely discussed topic using only 
unified non-local model. 

2   Main Transport Equations 

Strict consideration leads to the following system of the generalized hydrodynamic equations (GHE) [5, 
6] written in the generalized Euler form: 
continuity equation for species α  
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and continuity equation for mixture 
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Momentum equation for species 
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Generalized moment equation for mixture 
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Energy equation for component 
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and after summation the generalized energy equation for mixture 
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Here ( )1
αF  are the forces of the non-magnetic origin, B  - magnetic induction, I

�
 - unit tensor, qα  - 

charge of the α -component particle, pα  - static pressure for α -component, αε  - internal energy for the 
particles of α - component, 0v  - hydrodynamic velocity for mixture. For calculations in the self-
consistent electro-magnetic field the system of non-local Maxwell equations should be added. 

Call attention to the fact that equations (2.1) – (2.6) contain two forces of gravitational origin, F  the 
force acting on the unit volume of the space and g  - the force acting on the unit mass.  

In the following item we intend to consider the 1D transport processes in the spherical one species 
Black Holes (BH) after perturbations on the BH surface. 

The nonlocal 1D hydrodynamic equations (2.2), (2.4), (2.6) take the form: 
continuity equation (non-stationary spherically symmetric case) 
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where τ  is a nonlocality parameter.  
Momentum equation in the non-stationary spherically symmetric case is 
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The energy equation 
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We consider the limit case of the one species system in which the density ρ → ∞ . From the physical 
point of view this case corresponds to the matter motion in the Black Hole regime. Let us introduce now 
the main mentioned before assumption leading to the theory of motion inside the black holes: the 
density ρ → ∞ . Derivating the basic system of equations, we should take into account two facts: 

1. The density can tend to infinity by the arbitrary law. 
2. The ratio of pressure to density defines the internal energy of the mass unit /E p ρ=  and 

should be considered as a dependent variable by ρ → ∞ . 
As a result we have the following system of equations: 

(continuity equation) 
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(momentum equation) 
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(energy equation) 
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The transfer to the stationary case leads to the result: 
(continuity equation) 
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 (momentum equation) 
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 (energy equation) 
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3   Transformations of Nonlocal Transport Equations 

The nonlocal continuity equation can be immediately integrated 
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which is used in the following transformations of momentum and energy equations. Obvious question - 
what equations correspond to the local physical description ( 0τ = )? From (3.1) we find 0 0rv = , from 
momentum equation one obtains the transparent force relation 
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and energy equation (2.15) is satisfied identically. Then the local description of transport processes in 
BH leads to the unacceptable physical picture.  
Simplifying the theory we suppose that the nonlocal parameter τ  is constant. We have the system of 
equations: 
continuity equation  

 ( )2 2
0

0 2

1 0r
r r

r v Ev g
r rr

τ
 ∂ ∂ − + − =
 ∂ ∂
 

  (3.4) 

momentum equation 

 

( ) ( ) ( ) ( )

( ) ( )

2 2
0 2 2 2 3 2

0 0 02 2 2 2 2

2
0 02

2 2

1 1 1 2

12 0,

r
r r r r r r

r r

r vE g g r v r v r g v
r r r rr r r r r

r Ev Ev
r

r r r rr r

τ τ τ

ττ

 ∂∂ ∂ ∂ ∂ − + + − +
 ∂ ∂ ∂ ∂∂
 

   ∂ ∂∂ ∂   − − =
   ∂ ∂ ∂ ∂  

  (3.5) 

104 Advances in Astrophysics, Vol. 3, No. 3, August 2018

AdAp Copyright © 2018 Isaac Scientific Publishing



energy equation 
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Equations (2.14), (2.15) and (3.5), (3.6) can be simplified using the relation (3.2). As the result we 
have the system of equations for unknown values: 0, ,r rE v g .  
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2. For the case constτ =  we obtain the system 
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The following application of (3.2) leads to the moment equation 

 
( ) ( ) { } ( )2 2 32
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r vEv Evg
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r r rr r τ

∂∂ ∂∂∂
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∂ ∂ ∂∂ ∂
  (3.11) 

and energy equation 
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  (3.12) 

The energy equation can be integrated 
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  (3.13) 

The constant C  can be found using the condition 0r = . As a result we have 0C = , then 

 ( ) ( )( ) ( )2 2 2 2 2 2
0 0 0 0 0 0 0

25 8 7 3 5 10 0.r r r r r r r r r
Ev E v v E v v E v g v Eg E

r r r
∂τ
∂
 ∂

+ − + + + − − + = ∂ 
  (3.14) 

The system of equations (3.1), (3.11) and (3.14) can be numerically integrated using for example the 
Maple possibilities.  

4   Results of the Mathematical Modeling 

Let us formulate the mathematical problem: 
1. We consider the limit case of the one species system in which the density ρ → ∞ . From the physical 
point of view this case corresponds to the matter motion in the Black Hole regime. 
2. We intend to find the energy E , velocity 0rv  and gravitational acceleration rg  in the vicinity of BH 
after appearing the speed and energy perturbations on the spherical BH surface. 
3. The investigation of the Black Hole configuration in the spherical coordinate system leads to the 
appearance of the singular point (of the “numerical” origin) at the origin 0r = . The problem of the 
transport processes description in the vicinity of this singular point is fully adequate to the analogue 
situation in the classic theory of the point explosion in the gas dynamics (see for example [6 - 14]). As 
usual with the aim to avoid the non-physical influence of the singularity 0r = , the Lagrangian 
coordinates system is introduced and an additional area in the vicinity 0r =  where the Sedov’s self-
similar solution is fulfilled [7]. But we investigate the system evolution after appearance the 
perturbations on the spherical surface. As a result we have no problems with the mentioned singularity. 
The appearance of two boundaries for the equation solution corresponds to two event horizons. In other 
words we intend to consider the BH evolution under influence of the perturbations of the Cauchy 
conditions. Therefore we reach the following system of equations (4.2) - (4.4) written in the 
dimensionless form using the scales (dimensionless quantities marked with tilde) 
 2

0 0 0 0 0 0 0 0,  ,  ,  / ,  /rr u E t r u g u r         = =            (4.1) 
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  (4.4) 

Now we are ready to display the results of the mathematical modeling realized with the help of Maple 
(the versions Maple 9 or more can be used). The system (4.2) - (4.4) have the great possibilities of 
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mathematical modeling as result of changing of five Cauchy conditions and parameter τ�  describing the 
character features of physical system.  

Maple program contains Maple’s notations – for example the expression ( ) ( )0 1 1rD v =�  means in the 
usual notations ( ) ( )0 / 1 1rv r∂ ∂ =� � , independent variable t  responds to r� . The following Maple 
notations on figures are used: v- velocity 0rv� , g - self-consistent gravitational acceleration g� , and E- the 
energy E� , T - τ� . Explanations placed under all following figures. The results of the calculations are 
presented in figures 4.1 - 4.19. The information required is contained in the figures and in figure 
captions. We use for all calculations reflected on figures 4.1 - 4.11 the Cauchy conditions 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 1r rv E D v D E g= = = = =� �� �   (4.5) 

which of course can be changed; parameter τ�  varies widely. As a rule we use the following lines: 0rv�  - 
solid line, E�  - dashed line, g�  - dotted line. 

 
Figure 4.1. Evolution of ( ) ( ),v r E r�� � � ; 100τ =� . 

 
Figure 4.2. Evolution of ( )g r� � ; 100τ =� . 

As we see from figures 4.1 and 4.2 the left boundary of the solution existence is 0.606; the right 
boundary of the solution existence is 1.282 and the width of the perturbation zone is 0.676r∆ =� . 
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Figure 4.3. Evolution of ( ) ( ),v r E r�� � � ; 10τ =� . 

 
Figure 4.4. Evolution of ( )g r� � ; 10τ =� . 

As we see from figures 4.3 and 4.4 the left boundary of the solution existence is 0.612; the right 
boundary of the solution existence is 1.295 and the width of the perturbation zone is 0.683r∆ =� . 

 
Figure 4.5. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� . 
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From figure 4.5 follows that the left boundary of the solution existence is 0.647; the right boundary of 
the solution existence is 1.620 and the width of the perturbation zone is 0.973r∆ =� . 

 
Figure 4.6. Evolution of ( ) ( ),v r E r�� � � ; 0.1τ =� . 

 
Figure 4.7. Evolution of ( )g r� � ; 0,1τ =� . 

As we see from figures 4.6 and 4.7 the left boundary of the solution existence is 0.903; the right 
boundary of the solution existence is 1.158 and the width of the perturbation zone is 0.255r∆ =� . 

 
Figure 4.8. Evolution of ( ) ( ),v r E r�� � � ; 0.01τ =� . 
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Figure 4.9. Evolution of ( )g r� � ; 0.01τ =� . 

From figures 4.8 and 4.9 follow that the left boundary of the solution existence is 0.993; the right 
boundary of the solution existence is 1.011 and the width of the perturbation zone is 0.0184r∆ =� . 

 
Figure 4.10. Evolution of ( ) ( ),v r E r�� � � ; 0.001τ =� . 

 
Figure 4.11. Evolution of ( )g r� � ; 0.001τ =� . 

From figures 4.10 and 4.11 follow that the left boundary of the solution existence is 0.9993; the right 
boundary of the solution existence is 1.00112 and the width of the perturbation zone is 0.00182r∆ =� . 
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We use for the following calculations reflected on figures 4.12, 4.13 the Cauchy conditions 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 1r rv E D v D E g= = = − = − =� �� �   (4.6) 

 
Figure 4.12. Evolution of ( )g r� � ; 1τ =� . 

 
Figure 4.13. Evolution of ( )g r� � ; 1τ =� . 

From figures 4.12 and 4.13 follow that the left boundary of the solution existence is 0.753; the right 
boundary of the solution existence is 1.209 and the width of the perturbation zone is 0.456r∆ =� . 
Compare now the results of the calculations shown in figures 4.5 and 4.12, 4.13, corresponding to the 
same value of the parameter τ  but the opposite gradient values. We see: 
1. The width of the solution existence for the negative gradients in the Cauchy conditions diminished 
practically in two times.  
2. The general features of the ( )g r� �  distribution remain the same. 
3. The decrease in the nonlocal parameter τ�  (if 1τ <� ) leads to decreasing the width of the solution 
existence. 

Let us investigate now the behavior of BH in the case of the very large τ� -parameters. For example 
this case can correspond to BH of small radii (see figures 4.14 - 4.16). 
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Figure 4.14. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1000τ =� , Cauchy conditions (4.5). 

 

Figure 4.15. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 10000τ =� , Cauchy conditions (4.5). 

From figures 4.2, 4.3, 4.14 and 4.15 follow that increasing dimensionless parameter τ�  leads to the 
same limit distribution of the BH characteristics. For the negative gradients in the Cauchy conditions 
(4.6) we have the similar picture inside BH, see Fig. 4.12, 4.13 and 4.16. 

 
Figure 4.16. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 10000τ =� , Cauchy conditions (4.6). 
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From figures 4.1 - 4.16 follow that the solutions exist in the finite domains of space. Let us deliver 
more details concerning the solution behavior near the boundaries of the perturbation zone. Compare for 
example the results of the calculations shown in figure 4.13 near the left and right boundaries. We find 
for the left boundary 

0.753251τ =� , 0.8423862E =� , 1.5889098v =� , 73937.719g = −� , lim1 0.75325τ =� ; 
for right boundary 

1.20882243τ =� , 0.4900765E =� , 1.2080964v =� , 126582.7699g =� , lim 2 1.2088225τ =�  
1.20882244τ =� , 0.4900749E =� , 1.207204v =� , 183021.2718g =� . 

The Maple program writes “cannot evaluate the solution further right lim2 1.2088225= , probably 
singularity”. Near the mentioned boundaries g → ±∞�  in spite of the finite values of energy E�  and 
velocity v� . 

5   Multiscale Modeling and Nonlocal Physics. Maximon Instabilities. 

The concept of a massive body, whose gravitational attraction is so great that the velocity needed to 
overcome the gravity (the escape velocity) equals or exceeds the speed of light, was first proposed in 
1784 by John Michell in a letter that he sent to the Royal society. The letter included a calculation, 
which indicated that for a radius of 500 solar radii and density of the Sun the escape velocity at its 
surface would equal the speed of light. Thus, the light will not be able to leave this body, and it will be 
invisible. Michelle suggested that in space there can be many such inaccessible to observation objects. In 
1796, Laplace included a discussion of this idea in his work "Exposition du Systeme du Monde". These 
ideas have the very simple mathematical support in the frame of local physics.  

According to the Newton’s law the gravitational between two point-like bodies is directly proportional 
to the product of their masses (M  and m ) and inversely proportional to the distance r  between them. 
In a Newtonian gravitational field for a particle at rest at infinity the law of conservation of energy is 
written as 

 
2

0
2

GMm mv
r

− + =   (5.1) 

where G  is the gravitational constant - an empirical physical constant involved in the calculation of 
gravitational effects in the Newton’s law of universal gravitation and in the Einstein variant of general 
theory of relativity (GR). Its measured value is approximately 11 3 1 26.674 10G m kg s− − −= ⋅ . From (5.1) 
follows the well known relation 

 
2

2GMr
v

=   (5.2) 

which is transforming for v c=  in relation known even to Michell 

 
2

2
g

GMr
с

=   (5.3) 

The BH has a "horizon," the radius of which is gr r=  defining the event horizon or Schwarzschild 
radius. It means there is a region from which you can't escape. But if you stay outside of the horizon, 
you can avoid getting sucked in. In other words, if the Universe mass tends to infinity the horizon radii 
also tends to infinity and from position of local physics (including GR) all Universe transforms into BH 
[15].  
As you see we investigate the limit case M → ∞  which can not be considered in local physics including 
GR. Conclusions: 
1. Limit case ρ → ∞  does not lead to singularities in nonlocal description of the limit BH∞ . 
2. The corresponding BH∞  can form a stable structure of a finite size. In the definite sense we obtain 
the space quantization. 
3. The perturbations on the BH∞  surface do not destroy this object in the considered above calculations. 
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4. If dimensionless parameter τ → ∞�  (for example for the very small radii) the BH∞  structure tends to 
the limit reasonable structure. 

Now we intend to demonstrate how the multiscale problems can be solved in nonlocal description. 
Two time limits exist in physics: Uτ  - time of the visible Universe existence (~ 174.35 10 s⋅ ) and the 
Planck time Pτ  (~ 445.39 10 s−⋅ ). The following definitions are used: 

Planck length 
3P
Gl
c

=
� , Planck mass P

cm
G

=
� , Planck time 

2 5
P

P
P

l G
c m c c

τ = = =
� � , 

( )8 3 26.6739 10 /G cm g s−= ⋅ ⋅ , 102.99 10 /c cm s= ⋅ . Let us calculate now the dimensional nonlocal time 

 0tτ τ= �   (5.4) 

for the before considered cases.  
1. 0 Ut τ= . 
Let 0.001τ =� , then 144.35 10 sτ = ⋅ . It is reasonable to believe that it should be 1Uτ τ<< =� �  in spite the 
existing reasonable numerical solutions for the larger τ� , referring to invisible part of the Universe. 
Interesting to notice, that the theories exist suggesting that our own Universe may be the interior of a 
black hole existing inside another universe [16]. 

2. 0 Pt τ= ; Pτ ττ= � . In this case ( )0 5
/ / /P B P

GE E E E E E k T E
c

= = = =�
�

. 

Let 0.001τ =� , then 475.39 10 sτ −= ⋅ . It is reasonable to believe that it should be 1Pτ τ≥ =� �  in spite the 
existing reasonable numerical solutions for the smaller τ� . Then for the scale 0 Pt τ=  ( 1τ ≥� ) the area 
begins of the maximon particles. 

In 1966, Markov had suggested the existence of elementary particles with extremely large mass 
(maximón). Heavier particles, which the de-Broglie wavelength is less than their gravitational radius, 
may be quantum black holes. Since all known quantum particles have only certain possible values of the 
mass, it seems that quantum black holes should also have a discrete spectrum of well-defined masses. In 
[17] a theory is considered in which a “maximon” (a particle of maximum mass in the mass spectrum of 
“elementary particles”) determines the numerical value of a “minimon” (a particle of minimum, though 
nonzero, mass). 

If Pτ ττ= � , as we see from the calculations presented in the figures (4.1) - (4.5), (4.14), (4.15) that the 
solutions exist in the same finite domains of space with the same distribution of the energy E�  and 
velocity v� . This investigation supports the maximon theory from nonlocal positions. 

But what can be said about the maximon stability? Let us consider now the following calculations 
(see figures 5.1 - 5.4) from this point of view. We use the Cauchy conditions 

( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1r rv E D v g= = = =� � �  with the variations of ( ) ( )1D E� . 

 
Figure 5.1. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.0285E =� . 
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Figure 5.2. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.0287E =� . 

 
Figure 5.3. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.0288E =� . 

 
Figure 5.4. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.0295E =� . 

From figures 5.1 - 5.4 follow that decreasing of (1)E�  to the values less than 0.0288 leads to the 
maximon explosion because the quantum pressure no longer holds this microscopic BH. This process can 
be realized under the influence of the external action as a result of collisions with the high energy 
particles in spite of the existence of anti-gravitational forces.  

Let us consider now the situation when the derivatives in the Cauchy conditions have the opposite 
signs (Figures 5.5 - 5.8). Namely  
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( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 6.96, 1.r rD v D E g v E τ= − = = = = =� �� � �  (Fig. 5.5) 

 
Figure 5.5. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 6.96E =� . 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 6.97, 1.r rD v D E g v E τ= − = = = = =� �� � �  (Fig. 5.6) 

 
Figure 5.6. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 6.97E =� . 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 0.333, 1.r rD v D E g v E τ= = − = = = =� �� � �  (Fig. 5.7) 

 
Figure 5.7. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.333E =� . 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 01 1, 1 1, 1 1, 1 1, 1 0.334, 1.r rD v D E g v E τ= = − = = = =� �� � �  (Fig. 5.8) 
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Figure 5.8. Evolution of ( ) ( ) ( ), ,v r E r g r�� � � � � ; 1τ =� , (1) 0.334E =� . 

As we see the situation when the derivatives in the Cauchy conditions have the opposite signs also 
can lead to the explosive maximon instability (Figures 5.6, 5.7). Figures 5.1 - 5.8 contain the nearest 
results to the explosion boundary. Interesting to notice that the Cauchy conditions with the negative 
gradients for 0rv�  and E�  on the surface do not lead to the explosion regime. The explosive instability 
forms a natural limit to the existence conditions of maximons. 

The maximon mass is equal to the Planck mass 19 2 51.2209 10 / 2.176 10Pm GeV c g−= ⋅ = ⋅ . The energy 
corresponding to the rest mass of maximon is 285 10 eV⋅ . LHC in CERN has the planned maximum 
energy per beam 127 10 eV⋅ . The TNT equivalent is a convention for expressing energy released in an 
explosion. Then the maximon explosion corresponds to 1912 kg in TNT equivalent. 

6   Oscillations of Black Holes as a Source of the Gravitational Waves 

Usually at least two major types of black holes are involved into consideration: a) Stellar Mass Black 
Holes which are formed when dying stars run out of nuclear fuel in their centers. The result is a massive 
supernova explosion, leaving a black hole behind where the star once existed. b) Super-massive Black 
Holes are the largest type of black hole, up to billions of solar masses. It could be supposed that super-
massive black holes grow over billions of years by the constant accretion of huge plumes of gases and 
other matter. 

A dying star goes to the energetically more economical oscillating mode of operation (like the global 
sun oscillations). No surprise that X-ray light coming from black holes often exhibit rhythmic pulses, 
referred to as quasi-periodic oscillations or QPOs, usually occurring at multiple frequencies [18, 19]. 
From the power density spectra follow, that quasi-periodic oscillations are seen at a few Hz and also 
occasionally at hundreds of Hz for stellar black holes. For super-massive black holes, the time-scale of 
the oscillations ranges from hours to weeks. The various explanations of QPOs remain controversial and 
the conclusions reached from their study remain provisional. 

Let us apply the nonlocal physics to the investigation of the wave processes in the spherical black 
holes. The following problems are interesting for us: 

1. Is it possible to tie the oscillation processes in BH with the birth of gravitational waves? 
2. Can gravity waves form the wave packets? 
3. Is it possible to obtain the continuous transformation of the gravitational force of attraction into so 

called the "event horizon" that marks the point of no return as a result of the self-consistent solution of 
nonlocal hydrodynamic equations? 

All the mentioned above questions have the positive answer. Then we intend to follow the creation of 
the theory of the transport processes in the field where the classical GR theory is not applicable. 

However, it is worth noting that the concepts of a non-rotating (or Schwarzschild) black hole, the 
basic properties of such a black hole as a static solution to Einstein phenomenological equations in a 
spherically symmetric and vacuum space-time are discussed in [20]. The research area is increasing 
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steadily as gravitational detectors become more and more sensitive, and as detectors of new generation 
are becoming operative [21]. 

In following we intend to investigate the possibility of the travelling wave’s appearance as a result of 
the transport processes in BH. For solution of these problems we suppose: 
1. One species object has spherical symmetry, 
2. We use the condition 
 p constυ =   (6.1) 

for periodic BH’s pulsation. 
Let us write down the basic nonlocal hydrodynamic equations in the limit ρ → ∞ . 

(The continuity equation) 

 
( ) ( )2 2 2

0 02 20
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t r r t r r rr r r r
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  (6.2) 

(Momentum equation) 
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  (6.3) 

(Energy equation) 
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  (6.4) 

where the following notations are introduced: 0rv  is the radial component of the hydrodynamic velocity, 

rg  is the radial gravitational acceleration, mε  is the internal energy for the mass unit, E  is the 
thermal energy for the mass unit.  

We apply the dimensionless form of non-local equations (6.1)-(6.4) using the scales 
0 0 0 0 0, , ,u r u tρ = 2

0 0 0p uρ=  and condition 0/ 1C C u= =� . Let us introduce the frequency of oscillations 

 r
p

v
r

υ=   (6.5) 

and the additional conditions written in the dimensionless form 

118 Advances in Astrophysics, Vol. 3, No. 3, August 2018

AdAp Copyright © 2018 Isaac Scientific Publishing



     pconst constτ υ= =��   (6.6) 

We introduce now new variable 
 r Ctξ = −   (6.7) 

where C is phase velocity of the travelling wave. We intend to find the solutions of equations (6.2) - (6.4) 
in the form of travelling waves, depending on ξ  and satisfying the conditions (6.6). 

We find the following system of dimensionless equations: 
(continuity equation) 
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  (6.8) 

 (motion equation) 
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  (6.9) 

(energy equation) 
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  (6.10) 

This system of equations after transformations takes the form: 
CONTINUITY EQUATION 
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  (6.11) 

MOMENTUM EQUATION 
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  (6.12) 

ENERGY EQUATION 
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  (6.13) 

Now we are ready to display the results of the mathematical modeling realized with the help of Maple 
(the versions Maple 9 or more can be used). The system (6.11) - (6.13) have the great possibilities of 
mathematical modeling as a result of changing of five Cauchy conditions and parameters τ�  and mε� �  
describing the character features of physical system. The internal energy mε� �  contains the energy of 
the chemical origin and so called the BH spin. If BH can be presented as a rotating ball, then the 
corresponding part of the internal energy ( )/ 1 / 5.

rot
mε =� �  

Maple program contains Maple’s notations – for example the expression ( ) ( )0 0 1rD v =�  means in the 
usual notations ( ) ( )0 / 0 1rv r∂ ∂ =� � , independent variable t  responds to ξ� . The following Maple 

notations on figures are used: v- velocity 0rv� , g - self-consistent gravitational acceleration rg� , and E- 
the energy E� , T τ↔ � , Q mε↔ � � . Explanations placed under all following figures. The results of the 
calculations are presented in figures 6.1 - 6.11. The information required is contained in the figures and 
in figure captions. We use for all calculations reflected on figures 6.1 - 6.9 the Cauchy conditions 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 1, 0 1, 0 1, 0 0r r rv E D v D E g= = = = =� �� �   (6.14) 

which of course can be changed; parameter τ�  varies widely. As a rule we use the following lines: 0rv�  - 
solid line, E�  - dashed line, rg�  - dotted line. 

 

Figure 6.1. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 0mε =� � , 1τ =� , lim 2.137.ξ =�  
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Figure 6.2. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 1mε =� � , 1τ =� , lim 1.594.ξ =�  

 

Figure 6.3. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 2mε =� � , 1τ =� , lim 1.3075.ξ =�  

 
Figure 6.4. Evolution of ( ) ( ) ( )0

, , rr
v r E r g r�� � � � � ; 1τ =� , / 3mε =� � , 1τ =� , lim 1.1986.ξ =�  
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Figure 6.5. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 4mε =� � , 1τ =� , lim 1.1461.ξ =�  

 

Figure 6.6. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 5mε =� � , 1τ =� , lim 1.115.ξ =�  

 

Figure 6.7. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 10mε =� � , 1τ =� , lim 1.0518.ξ =�  
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Figure 6.8. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 100mε =� � , 1τ =� , lim 0.9922.ξ =�  

 

Figure 6.9. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 1000mε =� � , 1τ =� , lim 0.9872.ξ =�  

Cauchy conditions which were used for calculations are reflected in Fig. 6.10: 
 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 0.001, 0 1, 0 1, 0 1, 0 0r r rv E D v D E g= = = = =� �� �   (6.15) 

 

Figure 6.10. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 1mε =� � , 1τ =� , lim 16.2570.ξ =�  

Cauchy conditions which were used for calculations are reflected in Fig. 6.11: 
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 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 100, 0 100, 0 1, 0 0r r rv E D v D E g= = = = =� �� �   (6.16) 

 

Figure 6.11. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 1mε =� � , 1τ =� , lim 0.08119.ξ =�  

The following figures 6.12, 6.13 and 6.14 reflect the difference between so called “cold” BH ( )0 1E <<  
and “hot” BH ( )0 1E >>  

 

Figure 6.12. Evolution of ( ) ( ) ( )0
, , rr

v r E r g r�� � � � � ; 1τ =� , / 1mε =� � , 1τ =� , lim 5.656.ξ =�  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 0.001, 0 1, 0 1, 0 0r r rv E D v D E g= = = = =� �� �  

 

Figure 6.13. Evolution of ( )E r� � ; 1τ =� , / 1mε =� � , 1τ =� , lim 274.228.ξ =�  
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( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 10000, 0 1, 0 1, 0 0r r rv E D v D E g= = = = =� �� �  

 

Figure 6.14. Evolution of ( ) ( )0
, rr

v r g r� � � � ; 1τ =� , / 1mε =� � , 1τ =� , lim 274.228.ξ =�  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 10000, 0 1, 0 1, 0 0r r rv E D v D E g= = = = =� �� �  

From the equations 6.11 - 6.13 and the calculations (Figures 6.1 - 6.11) follow: 
1. Internal perturbations in BH lead to the appearance of the packets of the gravitational waves.  
2. The transport nonlocal equations do not contain the oscillation frequency in the explicit form in the 
case of the constant frequency pυ . 
3. The width of the wave packet is inversely proportional to the magnitude of internal energy /mε� �  
(figures 6.1 - 6.9). 
4. Increasing /mε� �  parameter leads to the transformation of the mode of anti-gravity (and therefore the 
event horizon) into the attraction regime (figures 6.1 - 6.9). The critical / mε� �  value is equal ~3 (see Fig. 
6.4). 
5. There is a strong influence of Cauchy conditions on the BH evolution (see also figures 6.10, 6.11). 

7   Transport Processes in the Charged BH 

Let us consider now the wave transport processes in the electrical charged Black Holes. Taking in view 
this aim we transform the system of equations (6.11) - (6.13). The non-stationary 1D nonlocal Gauss 
equation in spherical coordinate system can be written [5] as 

 ( ) ( )2
02

2 2

1 1ˆ 4 r
r

r nvni r g e n
r t rr rφε π τ

  ∂∂ ∂  = − +
  ∂ ∂ ∂

  

  (7.1) 

where r̂g φ  is radial component of the electric field intensity vector, n  is the number density, e  is the 
absolute electron charge, 1i = ±  for the positive and negative charges of BH correspondingly. In the 
limit case ρ → ∞  we find (

,

lim
M m

n M m
→∞

= ) 

 
( )2

02
02 2

ˆ1 1 1 rr
r vg

i r
r e n rr r

φεε
τ τ

∂ ∂
  = −
 ∂ ∂ 

  (7.2) 

We introduce the acceleration 

 0
2

ˆ1 r
r

g
g

en
φ

φ

ε ε

τ
=   (7.3) 
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then 

 2

0
r̂ r

eng gφ φτ
εε

=   (7.4) 

and the electrical induction is 
 0

ˆ
r rD g φε ε=   (7.5) 

Let us transform the equation (7.2) using (7.4), (7.5) 

 ( ) ( )2
02

2 2

1 1 1 r
r

r v
i r g

r rr rφτ
τ

∂∂
= −

∂ ∂
  (7.6) 
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2 2
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r v
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r e n rr rτ τ
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  (7.7) 

Applying the condition r
p

v
const

r
υ= =  we have 

 ( )2 2 0
0 0

1 3 r
r r r

v
i v g v

r rφτ
τ

 ∂∂
= − 

∂ ∂  
  (7.8) 

and in the dimensionless form 

 ( )2 2 0
0 0

1 3 , 1r
r r r

v
i v g v i

rφτ
τξ

 ∂∂
= − = ± 

∂∂   

�
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  (7.9) 

The current density is 
 ( ) ( )0rj envξ ξ=   (7.10) 

and the changing (in space and time) electric field 

 ( ) 2 2
0
ˆ ( )r r r rD g eng enСg

t t tφ φ φξ εε τ τ
ξ

∂ ∂ ∂ ∂
= = = −

∂ ∂ ∂ ∂
  (7.11) 

Following the Maxwell equation 

 ( ) ( ) ( )rot
t

ξ ξ ξ∂′ = +
∂

H j D   (7.12) 

in the local spherical coordinate system ( ), ,r ϑ ψ  one obtains 

 ( ) ( ) 2
0, r rrot env enC g φϑ ψ

ξ ξ τ
ξ
∂ ′ = −  ∂

H �   (7.13) 

or in the dimensionless form: 

 ( ) ( ) 2
0, r rrot v g φϑ ψ

ξ ξ τ
ξ
∂ ′ = −  ∂

H� � � � ��   (7.14) 

and finally 

 
,

,

rot C
ϑ ψ

ϑ ψξ
 ′∂ ′ =    ∂ 

BE   (7.15) 

 
,

,

rot
ϑ ψ

ϑ ψξ
 ′∂ ′ =    ∂ 

BE
�

�
�   (7.16) 

Now we are ready to combine the full system of equations for the charged BH adding to (7.9) the 
following nonlocal continuity, momentum and energy equations: 
CONTINUITY EQUATION 
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  (7.17) 

MOMENTUM EQUATION 
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  (7.18) 

ENERGY EQUATION 
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  (7.19) 

As before we have the Cauchy problem with unknown variables 0rv� , E�  and two accelerations rg�  and 

rg φ
�  connected with the gravitational or anti-gravitational forces and electric field correspondingly. 

Cauchy conditions 0 (0)rv� , ( ) ( ) ( ) ( ) ( ) ( ) ( )00 , 0 , 0 , 0 , 0r r rE D v D E g g φ
� �� � �  and three parameters , ,i

m
ε τ
�
�

�
 

should be formulated. Let us demonstrate now the results of calculations using as before the Maple 
notifications. It is reasonable to remind Maple’s notations – for example the expression ( ) ( )0 0 1rD v =�  
means in the usual notations ( ) ( )0 / 0 1rv r∂ ∂ =� � , independent variable t  responds to ξ� . The following 
Maple notations on figures are used: v- velocity 0rv� , g - self-consistent gravitational acceleration rg� , h - 
the self-consistent acceleration rg φ

�  originated by electric field, s is the resultant acceleration ( )rs r� �  and 
E- the energy E� , T τ↔ � , Q mε↔ � � . Explanations placed under all following figures. The results of 
the calculations are presented in figures 7.1 - 7.16. The information required is contained in the figures 
and in figure captions. We use for all calculations reflected on figures 7.1 - 7.6 ( 1i = − ) the Cauchy 
conditions 
 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 00 1, 0 1, 0 1, 0 1, 0 0, 0 0r r r rv E D v D E g g φ= = = = = =� �� � �   (7.20) 

The type of lines used is indicated in all figures. 
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Figure 7.1. Evolution of ( ) ( )0

,
r

v r E r�� � � ; / 1mε =� � , 0.0001τ =� , lim 0.00069944.ξ =�  

 
Figure 7.2. Evolution of ( )rg r� , ( )rg rφ

� � , ( )rs r� � ; / 1mε =� � , 0.0001τ =� , lim 0.00069944.ξ =�  

 
Figure 7.3. Evolution of ( )0

,
r

v r� � ( )rg r� � , ( )rg rφ
� � ; 1τ =� , / 1mε =� � , lim 0.4574.ξ =�  
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Figure 7.4. Evolution of ( )0

,
r

v r� � ( )E r� � , ( )rg rφ
� � ; 1τ =� , / 1mε =� � , lim 0.4574.ξ =�  

 
Figure 7.5. Evolution of ( )rg r� , ( )rg rφ

� � , ( )rs r� � ; / 1mε =� � , 1000τ =� , lim 0.4149.ξ =�  

 

Figure 7.6. Evolution of ( )0
,

r
v r� � ( )E r� � ; 1000τ =� , / 1mε =� � , lim 0.4149.ξ =�  

All calculations reflected on figures 7.7 - 7.14 correspond to ( 1i = ) and the Cauchy conditions (7.20). 
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Figure 7.7. Evolution of ( )0
,

r
v r� � ( )E r� � ; 0.0001τ =� , / 1mε =� � , lim 0.00069944.ξ =�  

 

Figure 7.8. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 0.0001τ =� , lim 0.00069944.ξ =�  

 

Figure 7.9. Evolution of ( )0
,

r
v r� � ( )E r� � ; 0.001τ =� , / 1mε =� � , lim 0.0048966.ξ =�  
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Figure 7.10. Evolution of ( )rg r� , ( )rg rφ

� � , ( )rs r� � ; / 1mε =� � , 0.001τ =� , lim 0.0048966.ξ =�  

 

Figure 7.11. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 0.01τ =� , lim 0.031049.ξ =�  

 

Figure 7.12. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 0.15τ =� , lim 0.42086.ξ =�  
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Figure 7.13. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 0.32τ =� , lim 0.6851.ξ =�  

 

Figure 7.14. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 0.35τ =� , lim 0.7519.ξ =�  

 

Figure 7.15. Evolution of ( )rg r� , ( )rg rφ
� � , ( )0rv r� � ; / 1mε =� � , 1τ =� , lim 0.4574.ξ =�  
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Figure 7.16. Evolution of ( )0rv r� � , ( )E r� � , ( )rg r� � ; / 1mε =� � , 1τ =� , lim 0.4574.ξ =�  

 

Figure 7.17. Evolution of ( )rg r� , ( )rg rφ
� � , ( )rs r� � ; / 1mε =� � , 100τ =� , lim 0.41531.ξ =�  

 

Figure 7.18. Evolution of ( )0rv r� � , ( )E r� � ; / 1mε =� � , 1000τ =� , lim 0.4149.ξ =�  

Advances in Astrophysics, Vol. 3, No. 3, August 2018 133

Copyright © 2018 Isaac Scientific Publishing AdAp



8   Conclusion and Discussion 

1. The appearance of a charge in BH can lead to the absolutely different behavior of the acceleration 
curves (compare for example figures 6.2, 7.3 and 7.10 - 7.15) including the disappearance of the total 
gravitational, anti-gravitational and electric fields inside the wave packet. 
2. The calculations are performed when the - nonlocal parameter is changed to seven orders of 
magnitude (see for example figures 7.7 and 7.8 and 7.18). Diminishing τ�  leads to diminishing of the 
bunch character size. 
3. The usual direction of the field strength lines for positive and negative charges is typical only for 
small nonlocal parameters τ�  (see figures 7.2, 7.8 and 7.15, 7.17). Moreover the directions of the field 
strength lines for positive and negative charges may experience changes in the bunch (see figure 7.14). 
4. The Nobel Prize for Physics was awarded to the Ligo team that has spotted three instances of 
gravitational waves coming from black holes merging, the first of which was announced in February 
2016. Recently, the team has spotted the gravitational waves from the merging of neutron stars for the 
first time. The team was also able to detect electromagnetic radiation coming from the event and 
gamma ray bursts given off just seconds later.  
5. From our calculations follow that the very strong mutual influence of the gravitational, anti-
gravitational and electromagnetic fields exists for the wave bunches originated by charged BH, (figures 
7.2, 7.5, 7.10 - 7.17). Appearance of electromagnetic radiation (ER) and gamma ray bursts coming from 
the event later than the gravitation part (GP) of the bunch means that the gravitational waves (GW) 
have the velocity more than the speed of light (see the velocity distribution in the wave bunch, figures 
7.1 - 7.17). The difference between the times of arriving for GP and ER defines the time parameter of 
nonlocality τ . The real velocity of GW depends on physical conditions originating these waves. 
6. The regimes exist when the accelerations originated by the electric and gravitational fields 
compensate each other in large part (see figures 7.10 - 7.14). Then the nonlocal physics explains the 
appearance gravitational waves convoying electromagnetic bursts. 
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