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Abstract The model we consider consists in a double pendulum set, where the pivot points are
free to shift along a horizontal line. Moreover, the two pendula are coupled by means of a spring
whose extremities connect two points of each pendulum, at a fixed distance from the corresponding
pivot. The mathematical model is first written encompassing a large class of setting for the device
(different sizes, different physical properties, ...). In order to carry on the problem of synchronization
via analytical methods, we focus on the circumstance of identical pendula: in that case, some
classical theorems concerning the zeroes of polynomial equations are used in order to locate the
eigenvalues governing the process, so that the possibility of synchronization of the device can be
better understood.
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1 Introduction

The interest on non-linear oscillations problems is ever more increasing, due to the large scale of applications
in many fields. In particular, the question whether the system will attain a state of synchronization
(in–phase or anti–phase) is one of the major achievements. Here we refer to a basic model similar to the
ones studied in [1], [3], [6], where Kuramoto coupled pendula are studied either analitically or numerically.
The system consists in a couple of pendula, interacting by way of a spring connecting the rigid oscillating
bars. With respect to the cited models, we omit the action of the motor torque controlling one of the
pendula, but we let the pivoting points to slide on a horizontal support acting as a non–smooth constraint.

As in [9], our main interest is to detect the feasibilty of in–phase or anti–phase synchronization,
whenever the system underoges the action of gravity and the elastic force uniquely: actually, in our mind
this point is not investigated enough in literature, where synchronization is mainly explained as the effect
of an escapement device.

The elastic interaction is here caused by a spring connecting the pendula not necessarily at the
pivoting points: as we will see, the position of the extremities of the spring plays a crucial role from
the analytical point of view. The first part of the paper makes an effort in formulating rigorously the
mathematical model in the most general background of pendula different in the physical properties and
central spring forcing in a non–simmetrical way. In our view this is in itself an important point of our
proposal, since models in literature on the same or closely related topics are often presented directly
through their simplified adaptation, avoiding any analytical or physical argument.

We also pay some attention to list the stable configurations of the system. At a later time, since we
are mainly focused on an analytical study of the problem, we have to release some assuptions moving
to the case of identical pendula: the mathematical advantage is certainly significant, since the system
can be variables disentangled with respect to the variables related to in–phase (difference of the angles)
and to anti–phase (sum of the angles) synchronization. Via linearization of the system of equations at
the stable equilibrium, we mainly investigate the possibility of locating the eigenvalues of the linearized
problem: such an information can bring into being the way to control the synchronization phenomena, on
the strength of the values of the parameters entering the process.

Even though the analytical results exhibited in the paper may appear restricted to some specific
instances, the advantage we claim is to trace a method which can be easily adopted for numerical
simulations in more general cases (releasing for instance the assumption of identical physical data of the
pendula): this is the reason why we consider it significant to write the equations of the model under wide
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assumptions and to point out in a definite way the dependence on the main parameters. As far as we
know, the technique adopted here via the localization of the eigenvalues is somehow a novelty within the
context of synchronization.

2 The Mathematical Model

The model we are considering is outlined in Figure 1, where the couple of pendula swinging on a vertical
plane are sketched. The two bobs P1 (mass m1) and P2 (mass m2) oscillate with respect to the pivots
A1 (mass M1) and A2 (mass M2), which can move on the horizontal line joining them. The schematic
trace of the Figure plays a big role in several situations and can be connected to a varied class of physical
systems where the central objective is the synchronizing mechanism. The applications embrace biological
rhytyms, chemical phenomena or analogous classic models for quantum models.

Setting the lenghts `i = AiPi, i = 1, 2, an interaction between the two pendula is exerted by a spring
connecting C1 ∈ A1P1 with C2 ∈ A2P2, at the distances `i,0 = AiCi, i = 1, 2. The latter quantities are
assigned and fixed in each experiment.

Figure 1: the experimental device

The number of independent parameters which define the configuration of the system is clearly four:
the two coordinates of A1 and A2 on the horizontal line and the two angles which P1 and P2 form with
the vertical direction are feasible lagrangian coordinates. In that case, fixing a cartesian frame of reference
such that the apparatus is contained in the vertical plane y = 0, the line A1A2 is the x–axis and the
z–axis is upward–vertically directed and choosing q = (x1, x2, θ1, θ2) as the lagrangain parameters (xi
coordinate of Ai, ϑi angle which Pi − Ai forms with the downward vertical direction, i = 1, 2), the
Lagrangian function of the system is L(q, q̇) = 1

2 q̇ · A(q)q̇ − V (q), where

A =


M1 +m1 0 m1`1 cos θ1 0

0 M2 +m2 0 m2`2 cos θ2
m1`1 cos θ1 0 m1`

2
1 0

0 m2`2 cos θ2 0 m2`
2
2

 (1)

V (q) = −m1g`1 cos θ1 −m2g`2 cos θ2 + 1
2k (|C1 − C2| − d)2 (2)

In (2) the lenght of the spring at rest is assumed to be d ≥ 0. Regarding the friction forces, whenever the
damping is formulated as ΦAi = −βiȦi, i = 1, 2 ΦPi = −β2+iṖi, i = 1, 2, the lagrangian components of
them are

Φ(q) =


−(β1 + β3)ẋ1 − β3`1θ̇1 cos θ1
−(β2 + β4)ẋ2 − β4`2θ̇2 cos θ2
−β3`1ẋ1 cos θ1 − β3`

2
1θ̇1

−β4`2ẋ2 cos θ2 − β4`
2
2θ̇2

 = −D(q)q̇ (3)
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where the elements of the positive definite matrix D are easily deduced. We assume that Bi, i = 1, 2, 3, 4
in (3) are constant. Since D is also symmetric, we observe that the friction term can be expressed by
means of a kynetic potential D(q, q̇) = 1

2 q̇ · Dq̇ as

− D(q)q̇ = −∇q̇D(q, q̇). (4)

The equations of motion d

dt
(∇q̇L)−∇qL = Φ(q) write explicitly



d

dt

(
(M1 +m1)ẋ1 +m1`1θ̇1 cos θ1

)
+ k(x1 − x2 + `1,0 sin θ1

−`2,0 sin θ2)E(q) = −(β1 + β3)ẋ1 − β3`1θ̇1 cos θ1,

d

dt

(
(M2 +m2)ẋ2 +m2`2θ̇2 cos θ2

)
− k(x1 − x2 + `1,0 sin θ1

−`2,0 sin θ2)E(q) = −(β2 + β4)ẋ2 − β4`2θ̇2 cos θ2,

m1`
2
1
..

θ1 +m1`1
..
x1 cos θ1 +m1g`1 sin θ1 + k`1,0 (`2,0 sin(θ1 − θ2)

+(x1 − x2) cos θ1) E(q) = −β3`1ẋ1 cos θ1 − β3`
2
1θ̇1,

m2`
2
2
..

θ2 +m2`2
..
x2 cos θ2 +m2g`2 sin θ2 − k`2,0 (`1,0 sin(θ1 − θ2)

+(x1 − x2) cos θ2) E(q) = −β4`2ẋ2 cos θ2 − β4`
2
2θ̇2

(5)

with
E(q) = |C1 − C2| − d

|C1 − C2|
(6)

and |C1 −C2| = [(x1 − x2)2 + `21,0 + `22,0 − 2`1,0`2,0 cos(θ1 − θ2) + 2(x1 − x2)× (`1,0 sin θ1 − `2,0 sin θ2)]1/2.
The case d = 0 corresponds to E ≡ 1 in system (5). We find it important an accurate production of the
mathematical equations via the Lagrangian method: as to the physical basis of (5), analogies and some
incongruencies with the model presented in [1] (where `1,0 = `2,0 = 0 and an escaping mechanism is
adopted) and the ones in [3], [6] (where the pivot points are fixed, `1,0 = `2,0 are constant and a motor
torque exerts a control action) have been discussed in [9].

2.1 Equilibrium

Having in mind to perform a linear approximation of the system (small oscillations), it is necessary to
inspect the equilibrium positions and the possible stable feature. For this purpose, we start by remarking
that, by summing up first and second equation in (5), one gets

M
d2ξ

dt2
= −(β1 + β3)ẋ1 − (β2 + β4)ẋ2 − β3`1θ̇1 cos θ1 − β4`2θ̇2 cos θ2 (7)

where we defined

ξ = 1
M

[(M1 +m1)x1 + (M2 +m2)x2 +m1`1 sin θ1 +m2`2 sin θ2] (8)

which corresponds to the x–coordinate of the centre of mass of the system. On the other hand, by also
defining

η = x1 − x2 (9)

the potential energy (2) is now written as (see also (6))

V = − m1g`1 cos θ1 −m2g`2 cos θ2 + 1
2k{[η

2 + `21,0 + `22,0 (10)

− 2`1,0`2,0 cos(θ1 − θ2) + 2η(`1,0 sin θ1 − `2,0 sin θ2)]1/2 − d}2

independently of ξ. The meaning of (7) and (10) is evident: equilibrium makes sence with respect to the
motion of ξ (for instance, in absence of damping the velocity of the centre of mass is conserved) and the
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stationary positions of (10) with respect to (η, θ1, θ2) will produce the equilibrium configurations (relative
to ξ) we are looking for. Although we will focus on a specific stable configuration as the reference one for
our analysis, it is worth to shortly examine the various possibilites of setting equilibrium: this will make
clearer when the choosen reference position is stable and render rigorous the approach by means of small
oscillation. The conditions for equilibrium ∇(η,θ1,θ2)V = 0 (see (10)) consists in

k(η + `1,0 sin θ1 − `2,0 sin θ2)E(η, θ1, θ2) = 0,
α1 + (`2,0 sin(θ1 − θ2) + (x1 − x2) cos θ1) E(η, θ1, θ2) = 0,
α2 − (`1,0 sin(θ1 − θ2) + η cos θ2) E(η, θ1, θ2) = 0

(11)

where αi = mig`i
k`i,0

, i = 1, 2 and E(η, θ1, θ2) is achieved by means of (6). Without loss of generality, let

`1,0 ≥ `2,0 and consider only the solutions of (11) positioned in the lower half–plane z ≤ 0: the equilibrium
configurations where both pendula remain vertical are

¬ in any case: η = 0, θ1 = θ2 = 0
 if `1,0 − `2,0 < d : |η| =

(
d2 − (`1,0 − `2,0)2)1/2 , θ1 = θ2 = 0.

There are other possibilities of equilibrium, which are listed hereafter and shown in Figure 2:

® if d+ α1 ≤ `1,0 − `2,0 : θ2 = 0, η = −`1,0 sin θ1, cos θ1 = 1
`1,0

(`2,0 + d+ α1)

¯ if `1,0 − `2,0 ≤ d− α2 ≤ `1,0 + `2,0 : θ1 = 0, η = `2,0 sin θ2, cos θ2 = 1
`2,0

(`1,0 − d+ α2)

° if − (`1,0 − `2,0) ≤ d− α1 ≤ `1,0 + `2,0 : θ2 = 0, η = −`1,0 sin θ1, cos θ1 = 1
`1,0

(`2,0 − d+ α1)

1
C

C

C

C22

1

A = A A A
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2
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Figure 2: The equilibrium configurations are sorted by cases A : `1,0−`2,0 > d and B : 0 ≤ `1,0−`2,0 ≤ d.
Case A is consistent with ¬ (C2 over C1, stretched spring), ® (C2 over C1, stretched spring) and ° (C1
over C2, compressed spring).
Case B is consistent with ¬ (C2 over C1, compressed spring),  (only when d > 0, spring at rest), ¯
for `1,0 − `2,0 ≤ d− α2 ≤ `1,0 + `2,0, (C2 over C1, compressed spring), ° for 0 ≤ d− α1 ≤ `1,0 + `2,0, (C1
over C2, compressed spring).

Each of the positions from ¬ to ® has the symmetrical configuration, where η is opposite in sign.
Regarding stability, the analysis of the Hessian matrix Jq(∇qV ) makes us conclude as follows:
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• if `1,0 − `2,0 < d, then ¬ is unstable, position  exists is stable, position ® does not exist,
• if d < `1,0 − `2,0 < d+ α1 then ¬ is stable and , ® do not exist,
• if `1,0 − `2,0 > d+ α1, then ¬ is unstable, position  does not exist, position ® exists and the latter
one is stable.

Owing to the effect of the damping forces, the stable positions are also asymptotically stable. Particular
cases are `1,0−`2,0 = d: then ¬ and  overlap, d = 0: then only ¬ and ° when α1 ≤ `1,0−`2,0, `1,0 = `2,0:
then ° is not possible, d = 0, `1,0 = `2,0: then equilibrium is only for ¬.

2.2 Synchronization: the Equations of Motion

In order to better face the problem of possible synchronization of the system, we make use of the variables

q̄ = q̄(q), q̄ = (ξ, η, σ, δ) (12)

where ξ and η are defined in (8), (9) and

σ = θ1 + θ2, δ = θ1 − θ2

The onset of in–phase synchronization corresponds to solutions where to δ(t)→ 0, on the other hand the
anti–phase synchronization corresponds to σ(t)→ 0. We notice that transformation (12) can be inverted
everywhere, since det Jqq̄ = 2. In particular:

θ1 = σ + δ

2 , θ2 = σ − δ
2 . (13)

With respect to the new variables q̄, the equations of motion are of the form (they are obtained by
multiplying (5) by JTq̄ q)

A(σ, δ)
..
q̄ +W(σ, δ, σ̇, δ̇) +∇q̄V (η, σ, δ) = −D(σ, δ) ˙̄q (14)

where the matrices A and D are related to those appearing in (1) and (3) by means of A = (Jq̄q)TA(Jq̄q)
and D = (Jq̄q)TD(Jq̄q); moreover W, containing the quadratic terms with respect to σ̇ and δ̇, has its

general form in W =
[
Jq̄(A ˙̄q)− 1

2 [Jq̄(A ˙̄q)]T
]

˙̄q. Lastly, V = V (q(q̄)) (see (10)). Concerning the explicit

writing of system (14), if one defines Ψi(σ, δ;C1, C2), C1, C2 ∈ R, i = 1, 2 as

Ψ1(σ, δ;C1, C2) = C1 cos(σ/2) cos(δ/2) + C2 sin(σ/2) sin(δ/2),

Ψ2(σ, δ;C1, C2) = C1 sin(σ/2) cos(δ/2) + C2 cos(σ/2) sin(δ/2)
(15)

(from now on we omit the arguments σ and δ for the sake of brevity), he will find the following elements
for the matrices and the vectors in (14):

A1,1 = M,A1,2 = A1,3 = A1,4 = 0,A2,2 = MP ,A2,3 = Ψ1(B−m/M ,−B
+
m/M ),

A2,4 = Ψ1(B+
m/M ,−B

−
m/M ),A3,3 = A+

m − 1
M Ψ2

1 (B+
m,−B−m),

A3,4 = A−m − 1
M Ψ1(B+

m,−B−m)Ψ1(B−m,−B+
m),A4,4 = A+

m − 1
M Ψ2

1 (B−m,−B+
m)
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D1,1 = β,D1,2 = C−β ,D1,3 = Ψ1(B+
β ,−B

−
β )− β

M
Ψ1(B+

m,−B−m),

D1,4 = Ψ1(B−β ,−B
+
β )− β

M
Ψ1(B−m,−B+

m),D2,2 = C+
β ,

D2,3 = Ψ1(B−β/M ,−B
+
β/M )− C−

β

M Ψ1(B+
m,−B−m),

D2,4 = Ψ1(B+
β/M ,−B

−
β/M )− C−

β

M Ψ1(B−m,−B+
m),

D3,3 = 1
M Ψ1(B+

m,−B−m)
(
β
M Ψ1(B+

m,−B−m)− 2Ψ1(B+
β ,−B

−
β )
)

+A+
β ,

D3,4 = 1
M Ψ1(B−m,−B+

m)
(
β
M Ψ1(B+

m,−B−m)− Ψ1(B+
β ,−B

−
β )
)

− 1
M Ψ1(B+

m,−B−m)Ψ1(B−β ,−B
+
β ) +A−β ,

D4,4 = 1
M Ψ1(B−m,−B+

m)
(
β
M Ψ1(B−m,−B+

m)− 2Ψ1(B−β ,−B
+
β ) +A+

β

)
,

W1 = 0,W2 = − 1
2ψ2(B−m/M , B

+
m/M )(σ̇2 + δ̇2)− Ψ2(B+

m/M , B
−
m/M )σ̇δ̇,

W3 = 1
2M Ψ1(B+

m,−B−m)
[
Ψ2(B+

m, B
−
m)(σ̇2 + δ̇2) + 2Ψ2(B−m, B+

m)σ̇δ̇
]
,

W4 = 1
2M Ψ1(B−m,−B+

m)
[
Ψ2(B+

m, B
−
m)(σ̇2 + δ̇2) + 2Ψ2(B−m, B+

m)σ̇δ̇
]

∇q̄V 1 = 0,∇q̄V 2 = kE [η + 2Ψ2(`−0 , `
+
0 )],

∇q̄V 3 = gΨ2(B+
m, B

−
m) + kEηΨ2(`−0 ,−`

+
0 ),

∇q̄V 4 = gΨ2(B−m, B+
m) + kE [ηΨ1(`+0 ,−`

−
0 ) + `1,0`2,0 sin δ]

where E(η, σ, δ) is calculated by means of (6) and (13). The constant quantities with superscript +, − are

`±0 = 1
2 (`1,0 ± `2,0), β =

4∑
i=1

βi, MP = 1
M (M1 +m1)(M2 +m2)

A±m = 1
4 (m1`

2
1 ±m2`

2
2), A±β = 1

4 (β3`
2
1 ± β4`

2
2),

B±m = 1
2 (m1`1 ±m2`2), B±β = 1

2 (β3`1 ± β4`2),
B±m/M = 1

2M [(M2 +m2)m1`1 ± (M1 +m1)m2`2] ,
B±β/M = 1

2M [(M2 +m2)`1β3 ± (M1 +m1)`2β4] ,
C+
β = 1

M2

[
(β1 + β3)(M2 +m2)2 + (β2 + β4)(M1 +m1)2] ,

C−β = 1
M [(β1 + β3)(M2 +m2)− (β2 + β4)(M1 +m1)] .

(16)

An overview on (14) shows that, as far as the pendula are more and more similar (so that the constant
quantities in (16) with superscript −, except for `−0 , tend to zero), the variable σ is coupled stronger to ξ
than to η, while δ is coupled stronger to η.

2.3 The Linear Approximation

We will investigate the mathematical problem of small oscillations focussing on the equilibrium con-
figuration  (see Paragraph 1.1). Assuming ξ(0) = 0, we make reference to the position (see (13))
σ = δ = 0 and ηeq = [d2 − (`1,0 − `2,0)2]1/2. Such a choice has to be considered the most appropriate
one, since the position is stable and the condition of existence `1,0 − `2,0 < d moves in the direction of
our next assumption (needed in order to facilitate calculations) `1,0 ∼ `2,0. The standard second order
approximation of the Lagrangian function and the remark (4) make us write the linearized problem as

A0
..
q̄ +V0(q̄ − q̄0) = −D0 ˙̄q, q̄0 = (0, ηeq, 0, 0),

A0 = A(0, 0),D0 = D(0, 0),V0 = Jq̄(∇q̄V )
∣∣
(η,σ,δ)=(ηeq,0,0) .

(17)
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Calling κ = k
η2
eq

d2 , MP = 1
M

(M1 +m1)(M2 +m2) and referring again to (16) for the constant quantities,
the explicit calculation leads to the entries

(A0)1,1 = M, (A0)1,2 = (A0)1,3 = (A0)1,4 = 0, (A0)2,2 = MP , (A0)2,3 = B−m/M ,

(A0)2,4 = B+
m/M , (A0)3,3 = A+

m − 1
M (B+

m)2
, (A0)3,4 = A−m − 1

MB+
mB
−
m,

(A0)4,4 = A+
m − 1

M (B−m)2
,

(V0)1,1 = (V0)1,2 = (V0)1,3 = (V0)1,4 = 0, (V0)2,2 = κ, (V0)2,3 = κ`−0 ,

(V0)2,4 = κ`+0 , (V0)3,3 = 1
2gB

+
m + κ(`−0 )2, (V0)3,4 = 1

2gB
−
m + κ`+0 `

−
0 ,

(V0)4,4 = 1
2gB

+
m + κ(`+0 )2,

(D0)1,1 = β, (D0)1,2 = C−β , (D0)1,3 = B+
β −

β
MB+

m, (D0)1,4 = B−β −
β
MB−m

(D0)2,2 = C+
β , (D0)2,3 = B−β/M −

1
MC−β B

+
m, (D0)2,4 = B+

β/M −
1
MC−β B

−
m,

(D0)3,3 = A+
β + 1

MB+
m( βMB+

m − 2B+
β ), (D0)3,4 = A−β + 1

MB−m( βMB+
m −B+

β )− 1
MB+

mB
−
β ,

(D0)4,4 = A+
β + 1

MB−m( βMB−m − 2B−β ).

Since our interest is focussed on specific solutions of (17) (those producing synchronization), we need

to put the system in an explicit form: the standard procedure performed by setting y =
(

q̄ − q̄0
˙̄q

)
yields

ẏ = M0y,M0 =
(

O I
−A−1

0 V0 −A
−1
0 D0

)
(18)

where I, O are the null and the identity matrix of order 4. As it is known, the characteristic polynomial
P(λ) connected to (18) is

det
(
λ2A0 + λD0 + V

)
= 0. (19)

3 Identical Pendula

When the physical characteristics of the two pendula are exaclty the same, namely

m1 = m2 = m, M1 = M2 = M, `1 = `2 = `,

β1 = β2 = β, β3 = β4 = β̂,
(20)

the quantities in (16) with superscript − (except for `−0 ) vanish and those with superscript + are

M = 2(M +m), β = 2(β + β̂), MP = 1
2 (M +m), C+

β = 1
2 (β + β̂),

A+
m = 1

2m`
2, A+

β = 1
2 β̂`

2, B+
m = m`, B+

β = β̂`,

B+
m/M = 1

2m`, B
+
β/M = 1

2 β̂`.

(21)

Under assumption (20) of identical pendula

• η is eliminated from the ξ–equation (first line of (14)) and ξ is eliminated from the η–equation (second
line of (14)),

• the simplifications in (15)

Ψ1(σ, δ;C+
1 , C

−
2 ) = C+

1 cos(σ/2) cos(δ/2), Ψ1(σ, δ;C−1 , C
+
2 ) = C+

2 sin(σ/2) sin(δ/2),
Ψ2(σ, δ;C+

1 , C
−
2 ) = C+

1 sin(σ/2) cos(δ/2), Ψ2(σ, δ;C−1 , C
+
2 ) = C+

2 cos(σ/2) sin(δ/2),

where C+
1 , C+

2 , C−1 , C−2 are any constant in (16) with the same superscript, carry out the stronger or
weaker couplings we pointed at.
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In order to study system (18), the simplification arising whenever (20) is assumed is remarkable: in
that case, as the constant quantities (16) with superscript − (except for `−0 ) vanish, the matrices in (14)
reduce to special structures.

Indeed, in case of (20), the entries (A0)i,j (D0)i,j with i+ j odd number are null: this makes, as far as
only the kinetic energy A0 and the damping forces D0 are concerned, system (17) uncoupled, separating
(ξ, σ) from (η, δ). When considering also the active forces V0, we remark that the coupling between the
two pairs of variables (ξ, σ) and (η, δ) is due only to `−0 6= 0 (i. e. different distances where the spring is
fixed): in order to make it clear, it is worthwhile to write again the equations of motion at this stage,
thas it (20), hence (21), but `−0 6= 0:

M
..

ξ = −βξ̇ − `(β̂ − β mM )σ̇,
(M +m)

..
η+M`

..

δ+2κ
[
(η − ηeq) + `−0 σ + `+0 δ

]
= −(β + β̂)η̇ − β̂`δ̇,

1
2m`

2 m

M +m

..
σ+1

2gM`σ + κ
[
`−0 (η − ηeq) + (`−0 )2σ + `+0 `

−
0 δ
]

=

−`
(
β̂ − β

MM
)
ξ̇ −−`2

[
m
M

(
β mM − 2β̂

)
+ 1

2 β̂
]
σ̇,

m`
..
η+m`2

..

δ+gm`δ + 2κ
[
`+0 (η − ηeq) + `+0 `

−
0 σ + (`+0 )2δ

]
= −β̂`η̇ − β̂`2δ̇

(22)

Writing (19) for (22), straightforward calculations lead to

P(λ) = λP3(λ)P4(λ) + (`−0 )2λ(β +Mλ)P2(λ). (23)

We explain the structure of P in (23): as expected, there is a null eigenvector λ = 0, the one associated to
ξ. Moreover, it is easy to check that Pj , j = 2, 3, 4 are the following polynomials in λ of degree j:

P4 = 1
4`

2mMλ4 + 1
4`

2(mβ +Mβ̂)λ3 + 1
2 [MPB

+
mg + 1

2`
2β̂β + κ(m(`− `+0 )2

+M(`+0 )2)]λ2 + 1
2

[
B+
mC

+
β g + κ

(
β̂
(
`+0 − `

)2 + β(`+0 )2
)]
λ+ 1

2κB
+
mg,

P3 = `2mMλ3 +mβ̂`2
(
β

β̂
+ M

m

)
λ2 + [M(1

2B
+
mg + κ(`−0 )2κ) + `2β̂β]λ

+β( 1
2B

+
mg + κ(`−0 )2),

P2 = κ2[(2`+0 B
+
m/M −A

+
m − (`+0 )2MP )λ2 + (2`+0 Bβ/M −A

+
β − (`+0 )2C+

β )λ
−B+

mg/2]

As expected, the coefficients of the terms with even exponents in P4, λP3 and P2 depend on the
measure quantities of the system (masses, lenghts) and on the active forces, on the other hand the terms
with odd exponents depend on the friction and damping coefficients and are cancelled if these effects are
neglected. At this point, it is important to reaffirm what we remarked just before writing system (22):
if `−0 vanishes, then the motion is entirely uncoupled with respect to the pair of variables (ξ, σ) on the
one hand (first and third equations in (22)) and the pair (η, δ) on the other hand (second and fourth
equations of (22)). Still for `−0 = 0, it is immediate to realize that the characteristic polynomial for the
sub–system in (ξ, σ) is λP3, as well as the one for the sub–system in (η, δ) is P4: the factorization (23)
confirms such a property, since the gap `−0 plays the role of a sort of perturbation of the symmetrical case
A1C1 = A2C2.

3.1 Localization of the Eigenvalues

We examine now the solutions of P(λ) = 0 (see (19)) in the special case `−0 = 0: By virtue of the splitting
(23), the roots of P4(λ) = 0 determine the motion of (η, δ) and the roots of P3(λ) = 0 the motion of
(ξ, σ). Let us define the adimensional quantities

X = M

m
, Y = β

β̂
, γ1 = g

`

(
m

β̂

)2
, γ2 = 2 k`

mg
, ν = `+0

`
(24)
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and the time−1 constant µ = β̂

m
: the two polynomials can be written in the form:

4
mM`2 × P4(λ) = λ4 +

3∑
i=0

aiλ
i = λ4 + µX+Y

X λ3 + µ2
(
γ1γ2

ν2X+(1−ν)2

X +
γ1(1+X)+Y

X

)
λ2 + µ3γ1

1+Y+γ2(ν2Y+(1−ν)2)
X λ+ µ4γ2

1γ2
1
X ,

1
mM`2 × P3(λ) = λ3 +

2∑
i=0

biλ
i = λ3 + µX+Y

X λ2 + µ2 γ1(1+X)+Y
X λ+ µ3γ1

1+Y
X

where the values of the coefficients a0, a1, a2, a3 and b0, b1, b2 are easily deduced.

Remark 3.1 The asymptotical stability of the position we examine entails that the real parts of the roots
of (23) are negative: anyhow, it can be easily checked, at least in the simplified case `−0 = 0, that, by
implementing the Routh–Hurwitz stability criterion (see [7]), conditions

b2b1 > b0, a3a2 > a1, a1a2a3 > a2
1 + a2

3a0

ensure that all the roots lie in the left half complex plane.

At this point, we employ the Eneström–Kakeya Theorem, as stated in [2], [5]

Teorema 3.1 (E–K Theorem) Let pn(λ) = a0 + a1λ+ · · ·+ an−1λ
n−1 + anλ

n a polynomial with aj > 0
for any j = 0, . . . , n. Then, all the zeros of pn are contained in the annulus of the complex z–plane
ρm ≤ |z| ≤ ρM , where

ρm = min
{
a0

a1
,
a1

a2
, . . .

an−1

an

}
, ρM = max

{
a0

a1
,
a1

a2
, . . .

an−1

an

}
(25)

We refer to [2], [5] for the proof. In order to apply the Theorem, the calculate the ratio of the coefficients

a3 = µ
X + Y

X
,
a2

a3
= µ

γ1(1 +X) + Y + γ1γ2Λ(X)
X + Y

,

a1

a2
= µγ1

1 + Y + γ2Λ(Y )
γ1(1 +X) + Y + γ1γ2Λ(X) ,

a0

a1
= µ

γ1γ2

1 + Y + γ2Λ(Y ) ,

b2 = µ
X + Y

X
,
b1
b2

= µ
γ1(1 +X) + Y

X + Y
,
b0
b1

= µγ1
1 + Y

γ1(1 +X) + Y
.

(26)

where Λ is the linear function Λ(ζ) = ν2ζ + (1 − ν)2. According to our setting, we figure that in each
experiment the spring stiffness, the lenght `, the mass m, the coefficient β̂ of the pendula and the
placement `+0 are constant, so that γ1, γ2 and ν in (24) do not change. On the other hand, for the same
set of data the properties M and β of the sliding pivots can be modified (X and Y in (24)), in order to
inspect the response of the apparatus. Concerning the order of (26), we prove the following

Property 3.1 For any X > 0, Y > 0

b1
b2
<
a2

a3
,

b0
b1
< b2,

a1

a2
< a3 = b2,

a0

a1
<
a2

a3
. (27)

Proof: The first three inequalities in (27) are immediate. The fourth one writes explicitly

γ1ν
2
1XY + ν1Y

2 + γ1(ν1ν2 − γ2)X + [γ1(ν1ν2 − γ2) + ν2]Y + γ1ν
2
2 > 0

where ν1 = 1 + γ2ν
2, ν2 = 1 + γ2(1− ν)2. It is not difficult to check that ν1ν2 ≥ γ2 for any γ2 > 0 and

ν ∈ [0, 1]: this can be done, for instance, by remarking that (ν1(ν)ν2(ν))′ = 4γ2(ν − 1/2)(γ2ν
2 − γ2ν + 1)

and realizing that ν1(ν)ν2(ν)− γ2 is a nonnegative function. �
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By virtue of the previous property and calling A =
{
a0

a1
,
a1

a2
,
a2

a3
, a3

}
, B =

{
b0
b1
,
b1
b2
, b2

}
, the test on

the coefficients can be restricted to

min,maxA = min,max
{
a0

a1
,
a1

a2

}
, min,maxB = min,max

{
b0
b1
,
b1
b2

}
,

By using the explicit expressions (26), the information we need for ordering the coefficients corresponds
to the following inequalities in X, Y :

b0
b1
<
b1
b2

if and only if γ2
1X

2 + γ1XY + (1− γ1)Y 2

+γ1(2γ1 − 1)X + γ1Y + γ2
1 > 0 conic 1

b1
b2
< b2 if and only if (1− γ1)X2 +XY + Y 2 − γ1X > 0 conic 2

a0

a1
<
a1

a2
if and only if ν2

1Y
2 − γ1γ2ν1X + (2ν1ν2 − γ2)Y

+ν2
2 − γ1γ2ν2 > 0 conic I

a2

a3
< a3 if and only if (1− γ1ν1)X2 +XY + Y 2 − γ1ν2X > 0 conic II

(we wrote “conic k ”, k = 1, 2, I, II, for indicating the curve defined by replacing > with = in the
corresponding inequality). Let us examine hereafter the case γ1 > 1 (see (24)): this is a plausible
case, for standard physical data. On the positive quarter Q = {X > 0, Y > 0} the two curves 1
and 2 are branches of different two conics (for γ1 > 1 hyperboles) not intersecting each other. The
slope of the oblique asymptote of hyperbola 1 [respectively 2 ] is m1 = γ1

γ1 − 1(
√
γ1 − 3/4 + 1/2)

[resp. m2 =
√
γ1 − 3/4− 1/2 < m1]. The two branches have no intersection for any value of γ1 in the

whole quarter, as shown in Figure 3. Moreover, they keep the same profile independently of γ2, ν.
Referring to the same figure:

minB = b1/b2, maxB = b2 in B1 =
{

(X,Y ) over 1
}

minB = b0/b1, maxB = b2 in B2 =
{

(X,Y ) under 1 and over 2
}

maxB = b0/b1 minB = b1/b2 in B3 =
{

(X,Y ) under 2
}

Analogously, conditions I and II split the quarter Q in regions showing different values for the
minimum and the maximum of A. The curve I is an increasing branch of parabola whose axis of
simmetry is parallel to the X–axis and vertex on the X < 0 half–plane. Moreover, the intersection with
the X–axis is positive [resp. negative] according to ν2 > γ1γ2 [resp. <], that is γ2 <

(
γ1 − (1− ν)2)−1

[resp. >]. The curve II is an increasing branch of a hyperbola passing through the origin with infinite
slope. The asymptotic slope mII =

√
γ1ν1 − 3/4− 1/2 ≥ m2 (= only for ν = 0) becomes greater than

m1 for large values of γ2 and for ν 6= 0. Depending on the position of (X,Y ) ∈ Q, it is:

minA = a0/a1, maxA = a3 for A1 =
{

(X,Y ) over I and over II
}

minA = a0/a1, maxA = a2/a3 for A2 =
{

(X,Y ) over I and under II
}

minA = a1/a2, maxA = a3 for A3 =
{

(X,Y ) under I and over II
}

minA = a1/a2, maxA = a2/a3 for A4 =
{

(X,Y ) under I and under II
}

whenever the regions exist. Both curves I and II depend on the values of ν, γ1, γ2 and the regions appear
different according to them: basically, for ν2 ≥ γ1γ2, that is γ2 ≤ (γ1 − (1− ν))−1, hyperbola I remains
under II , possibly with a local crossing via two intersections. For γ2 > (γ1 − (1− ν))−1, either I is over
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B

B

B
3

2

1 21

Figure 3: The positive quarter Q is splitted into three regions, according to the value of maxB and minB.
Curves 1 and 2 do not match for any γ1 > 1. The graphic is plotted with the value γ1 = 3.1.

II without any intersection, or II passes over I , cutting it in one point of Q (this is the case plotted
in Figure 4).

The two pairs of curves 1 , 2 and I , II have to be traced together in order to compare the minima

and the maxima. Concerning the maximal radius, by (27) it is b1
b2
<
a2

a3
and b2 = a3. Moreover, it can

be easily seen that in Q hyperbola II is over 2 for any ν ∈ [0, 1] and γ2 > 0 and they meet only in
the origin: in other words, the region in Q where a2/a3 < a3 is contained in the region where b1/b2 < b2.
Thus, simply by overlapping the profiles of 2 and II , the comparison between maxA and maxB is
easily resolved in each point of Q as follows:

maxB = b2 = maxA = a3 for (X,Y ) over II

maxB = b2 < maxA = a2/a3 for (X,Y ) over 2 and under II

maxB = b1/b2 < maxA = a2/a3 for (X,Y ) under 2
The previous scheme together with Property 1.2, first inequality, entail the following

Property 3.2 The circle with radius maxB containing the eigenvalues P3 = 0 (motion of (ξ, σ)) is in
any case contained in the circle with radius maxA containing the eigenvalues P4 = 0 (motion of (η, δ)).
The regions which locate the eigenvalues according to the E. K. theorem have a non-empty intersection,
since a1

a2
< b2 (see (27)).

Remark 3.2 In other words, it is not possible to separate (minA,maxA) (containing the eignevalues of
P4) and (minB,maxB) (containing the eigenvalues of P3), as it was in the model discussed in [9] of two
oscillating pendula with pivots on a mobile support.

Since we are aiming to predict conditions which lead the system to a sharp tendency (in–phase or
antiphase), we are induced to detect deeper where the eigenvalues are located, by enclosing them in
narrower regions. First of all, we check the following statement concerning the kind of the roots.

Property 3.3 Set
c1 = b2 − 3b1

b2
, c2 = b2 − 9b0

b1
. (28)
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II

Figure 4: The regions on Q distincted by the values of maxA and minA. The curves are plotted by
setting γ1 = 3.1, γ2 = 2.2, ν = 0.4.

(1) If either c1 < 0 or c2 < 0, then P3 has only one real root; this occurs in particular for (X,Y ) ∈ B3.

(2) P3 has three real roots in and only if α > 0, β > 0 and
∣∣∣∣3b12b2

c2
c1
− b2

∣∣∣∣ < √b2c1.
(3) If either α = a3 −

8a2

3a3
< 0 or γ = a3 −

16a0

a1
< 0 then P4 has at most two real roots; especially this

occurs for (X,Y ) ∈ A2 or A4.

Proof: it results immediately from the calculation of the Sturm sequence for the two polynomials: as

for P3 one finds f0 = P3, f1 = 3λ2 + 2b2λ+λ0, f2 = b2

(
2
3c1λ+ b1

b2
c2

)
, f3 = −b1 + 3b1

c1
c2
− 27

4

(
b1
b2

c2
c1

)2

and the evaluation at λ = 0 and λ→ −∞ gives (1) and (2). The same procedure for P4, up to the first
three polynomial of the Sturm sequence, leads to (3). �

Remark 3.3 Case (2) in the previous Property and analogous conditions for P4 in order to have all
real roots can be detected deeper by plotting on Q the regions where the roots of both P3 and P4 are
negative real numbers: this will show a region alongside the positive Y –semiaxis, which can be described
by Y >> X. Such a condition is plausible if one goes back to the physical quantities (24).

4 Controlling the Eigenvalues of P3

As we already remarked, the localization based on the method (25) does not exhibit a spontaneous
separation of the roots of the two polynomial. Our final task consists in inspecting the possibility of
enclosing the spectrum of one of the two polynomial in a specific region depending on the values of
controllable parameters. Starting from the analysis developed above, we focus on the region B3, where P3
definitely has one real root and two complex conjugate roots, since c1 < 0.

We state the following

Proposition 4.1 If (X,Y ) ∈ B3 and c2 > 0 (see (28)), then the real parts of the roots λ of P3(λ) = 0
satisfy

<(λ) < −1
3
b0
b1
. (29)
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b  / b < a  / a
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31

3

Figure 5: comparison of the maximal radii all over Q. The value of maxA [resp. maxB] changes by
crossing the curve II [resp. 2 ]. The two curves match only in the origin, whatever the quantities γ1, γ2,
nu are. In each of the three regions the value of maxA and maxB are compared.

Proof. Let us consider the derived point ζ of λ = 0 for the polynomial P3: ζ = 0− 3P3(0)
P ′3(0) = −3b0

b1
.

As it is known, a Theorem of Laguerre ([8]) states that any circle passing through λ = 0 and ζ is such that
at least one root of P3 = 0 is internal to the circle, at least one root is external to it. Since (X,Y ) ∈ B3,
the coefficients are in the order −b1

b2
< −b2 < −

b0
b1
. Moreover, c2 > 0 implies −3b0

b1
> −b2. Now, we

calculate the Sturm sequence at the values λ = −b2 and λ = −3b0
b1
:

−b2 −3b0
b1

f0 = P3 b1( b0
b1
− b2) 2b0 + 3( b0

b1
)2( 1

3b2 −
b0
b1

)

f1 = P ′3 b22 + b1 27( b0
b1

)2 − 6b2 b0
b1

+ b1

f2 b2(− 2
3b2c1 + b1

b2
c2) b2(−2 b0

b1
c1 + b1

b2
c2)

f3 −b1 + 3b1 c1
c2
− 27

4

(
c2
c1

)2
( b1
b2

)2 −b1 + 3b1 c1
c2
− 27

4 ( c2
c1

)2( b1
b2

)2

Owing to the assumptions, for λ = −b2 the signs of the sequence are < 0, > 0, > 0, < 0 hence two
variations. On the other hand, since c1 < 0 it is easy to check that f1 > 0 at λ = −3b0

b1
. Thus, the

sequence of signs for λ = −3b0
b1

is > 0, > 0, > 0, < 0, giving one variation: we can conclude that the only

real root of P3 = 0 lies between −b2 and −3b0
b1
. Lastly, if one considers the circle C with diameter 3b0

b1

and centre in
(
−3

2
b0
b1
, 0
)
, the real root is external with respect to C, so that the conjugate complex roots

must be enclosed by C. At the same time, the couple of roots is contained in the annulus with minimum
radius ρm = b0

b1
: since C intersects the internal boundary of the annulus at Xi = −1

3
b0
b1
, the module of

the real part of the complex roots cannot place under |Xi|, hence (29) is proved. �
The two regions where c1 < 0 (encompassing B3) and where c2 > 0 correspond respectively to

(1 − 3γ1)X2 − XY + Y 2 − 3γ1X > 0, γ1X
2 + (1 − 8γ1)XY + Y 2 − 8γ1X + γ1Y > 0. The two conics

delimiting the regions in Q are c1 = 0, which is a branch of hyperbola very similar to 2 and standing
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above it with asymptotic direction mc1 =
√

3γ1 − 3/4 − 1/2 > m2, and c2 = 0, two branches of a
hyperbola with asymptotic slopes mc±

2
= [8γ1 − 1±

√
(8γ1 − 1)2 − 4γ1]/2. For any set of values of the

parameters it is mc−
2
< mc1 < mc+

2
; moreover, m2 > mc−

2
only for γ1 very close to 1. In any case, the

region on Q where c1 < 0 and c2 > 0, which is sketched in Figure 6. is not empty for any assignment of
γ1 > 1, γ2 and ν ∈ [0, 1].

c = 0

c  > 0, c < 0

2

12

1

c = 0

c = 0
2

2

B
3

Figure 6: the region where c1 < 0 is on the right w. r. t. the curve marked by c1 = 0 and encompasses B3,
the region where c2 > 0 is external w. r. t. the curves marked with c±2 = 0. Apart from a narrow strip
near the origin (actually the slope of c1 = 0 is infinte at that point and the slope of c+2 is finite), the main
part where c1 < 0 ∧ c2 > 0 is on the right w. r. t. c−2 = 0 and expands to infinite, by increasing X and Y .

The estimation (29) provides a tool in order to induce a preponderant anti–phase disposition of the
system: actually, by operating on the parameters entering b0/b1 it is possible to move away from 0 the
eigenvalues of P3, so that σ rapidly diminishes. On the other hand, the spectrum of P4, although it has
not been investigated in depth, is independent on the one of P3, because of the presence of γ2, ν1 and ν2,
so that a way to sharply separate the two set of roots is traced.

5 Conclusions

Our first purpose was to formulate accurately, via the Lagrangian formalism, the problem of coupled
oscillation of two different pendula, whose pivots are placed on masses moving along a track. The system
is susceptible to sliding friction and to air resistance. The system of equations, whenever the features
of the model are allowed to be general, is (5), then (14), as soon as the change of variables (12) has
been adopted. The corresponing mathematical problem, even though approximated as in (17), is anyway
difficult to face from the analytical point of view, if the investigation concerns the settlement of in–phase
or anti–phase synchronization. In writing explicitly the matrices of (17) we intended to highlight the
coupling of the significant variables σ and δ with the other ones: it appears clearly that the assumption
of identical properties of the teo pendula gives rise to a drastic simplification, due essentially to the
factorization of the characteristic polynomial. The approach we elaborated goes with the possibility in
the experimental device of modifying the masses sliding on the track and the friction on it. By employing
classical theorens on the placement of complex roots of polynomials (Eneström–Kakeya and Laguerre
theorems), it is possible to trace two regions on the complex plane where the eigenvalues connected
to σ and δ are positioned. Contrary to the case analyzed in [9], the two regions are not spontaneously
separated and some operations to control them (an istance is (28)) have to be performed in order to drive
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the system to synchronization. The corresponding conditions can be explained in terms of the physical
parameters. By preserving the same approach, other kind of responses of the system can be checked,
as, for istance, the role of the distance of the extremity of the spring from the pivot point, modifying ν.
From the mathematical point of view, the application of some refined versions of the E–K theorem, as for
istance the one in [4], can help for a more restricted localization on the quarter Q. On the other hand,
the analytical study of the more complex case of different pendula can be performed via implementing
a perturbation of the present case, by defining the deviations ε = G+ − G− of any quantity G±, and
writing (14) with additional terms depending on them. Finally, we remark that from the numerical point
of view, the method can provide a valid starting point in order to compute the spectrum and make the
computer information more accurate: indeed, the selection of the initial data on the regions of Q.
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