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Abstract In this paper, we introduce generalized quasi-equilibrium problems. These contain several 
problems in the optimization theory as special cases. We give sufficient conditions on the existence 
of their solutions. In particular, we establish several results on the existence of fixed p oints for 
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well-known fixed point theorems obtained by previous authors as F. E. Browder and Ky Fan, X. 
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1 Introduction

It is well-known that the theory of fixed points plays an important role in applied mathematics. Many
results in this theory become a tool to show the existence for solutions and to construct algorithms
for finding solutions of many mathematical problems as optimization, variational, complementarity,
equilibrium problems. We can shortly describe the main development of fixed point results of continuous
mappings as follows. In 1911, L. Brouwer [1] used combinatorial method to show that a continuous
mapping f from a simplex K ⊂ Rn into itself has a fixed point, i. e, there exists a point x̄ ∈ K such
that f(x̄) = x̄. J. Schauder, 1930, [2] extended this result to the case that K is a nonempty convex
compact subset in Rn. In 1941, S. Kakutani [3] generalized to the case when f is a upper semi-continuous
mapping with nonempty convex and closed values from K to itself in Rn. In 1967, Ky Fan [4] proved a
fixed point theorem of upper semi-continuous mappings with nonempty convex and closed values from a
nonempty convex and compact subset K into itself in Hausdorff topological locally convex spaces. In 1968
F. E. Browder and Ky Fan [5]obtained a fixed point theorem of multivalued mapping which has open
lower sections. Recently, many authors studied fixed point theorems of lower semi-continuous multivalued
mappings with nonempty convex closed values, by using a continuous selection theorem, see for example,
N. C. Yannelis and N. D. Prabhakar [6], Ben-El-Mechaiekh [7], X P. Ding, W. K. Kim and K. K. Tan [8],
C. D. Horvath [9], X. Wu [10], S. Park [11],Z. T. Yu and L. J. Lin [12] and many others. In particular,
Wu [10] obtained the following result.

Theorem ([16]) . Let X be a nonempty subset of Hausdorff locally convex topological vector space, let
D be a nonempty compact metrizable subset of X and let T : X → 2D be a multivalued mapping with the
following properties:
(i)T (x) is a nonempty convex closed set for each x ∈ X;
(ii)T is lower semi-continuous.
Then there exists a point x ∈ D such that x ∈ T (x).

In this paper, we first establish a theorem on the existence of quasi-equilibrium points of multivalued
mappings defined on subsets of Hausdorff locally convex topological vector spaces as follows.
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Let X,Y be Hausdorff locally convex topological vector spaces over reals, D ⊂ X be a nonempty
subset. Given multi-valued mappings P : D → 2D and F : D → 2Y , we are interested in the problem,
denoted by (QEP ), of finding x̄ ∈ D such that

x̄ ∈ P (x̄);
0 ∈ F (x̄).

This problem is called a quasi-equilibrium problem in which the multivalued mapping P is a constraint
mapping and F is a utility multivalued mapping that are often determined by equalities and inequalities,
or by inclusions and intersections of other multi-valued mappings, or by general relations in product
spaces. The existence of solutions to this problem is studied in [[13], [14]] for the case the multivalued
mapping P is continuous, and the multivalued mapping F is upper semicontinuous. All these mapping P
and F need to have nonempty convex and closed values.

As far as we know equilibrium problems as generalizations of variational inequalities and optimization
problems, including also optimization-related problems such as fixed point, complementarity problems,
Nash equilibrium, minimax problems, etc. For the last decade there has been a number of generalizations
of these problems to different directions such as quasi-equilibrium problems with constraint sets depending
on parameters, quasi-variational and quasi-equilibrium inclusion problems with multi-valued data (see,
for examples, in [8],[13], [14], [15]). Problem (QEP) described above is quite general. It encompasses a
large class of problems of applied mathematics including quasi-optimization problems, quasi-variational
inclusion, quasi-equilibrium problems, quasi-variational relation problems etc. Typical instances of (QEP)
are shown in [13], [14] and [15] involving upper semi-continuous utility multivalued mappings with
nonempty convex closed values. In this paper, we consider the above (QEP) in the product spaces as
follows.

Let X,Y and Z be Hausdorff locally convex topological vector spaces over reals, D ⊂ X,K ⊂ Z be
nonempty subsets. Given multi-valued mappings P : D ×K → 2D, Q : D ×K → 2K and G : D ×K →
2X , H : D ×K → 2Z we are interested in the problem, denoted by (QEP ), of finding (x̄, ȳ) ∈ D ×K
such that

(x̄, ȳ) ∈ P (x̄, ȳ)×Q(x̄, ȳ);
0 ∈ G(x̄, ȳ)×H(x̄, ȳ).

Theorem 1 in Section 3 below shows sufficient conditions for the existence of solutions to this problem
with different continuous assumptions on the multivalued mappings P,Q,G and H.

2 Preliminaries and Definitions

Throughout this paper, as mentioned in the introduction, X,Y and Z are real Hausdorff topological
vector spaces, R is the space of real numbers, R∗ = R ∪ {±∞}. Given a subset D ⊂ X, we consider a
multivalued mapping F : D → 2Y . Let F−1 : Y → 2X be defined by the condition that x ∈ F−1(y) if and
only if y ∈ F (x). We recall that

(a) The domain and the graph of F are denoted by

domF = {x ∈ D|F (x) 6= ∅} ,

Gr(F ) = {(x, y) ∈ D × Y |y ∈ F (x)} ,
respectively;

(b) F is said to be a closed mapping if the graph Gr(F ) of F is a closed subset in the product space
X × Y ;

(c) F is said to be a compact mapping if the closure F (D) of its range F (D) is a compact set in Y ;
(d) F : D → 2Y is said to be upper semi-continuous (in short, u.s.c) at x̄ ∈ D if for each open set V

containing F (x̄), there exists an open set U of x̄ such that for each x ∈ U,F (x) ⊂ V. F is said to be
u.s.c on D if it is u.s.c at all x ∈ D;
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(e) F is said to be lower semi-continuous ( in short, l.s.c) at x̄ ∈ D if for any open set V with
F (x̄)∩ V 6= ∅, there exists an open set U containing x̄ such that for each x ∈ U,F (x)∩ V 6= ∅. F is said
to be l.s.c on D if it is l.s.c at all x ∈ D;

(f) F is said to be continuous on D if it is at the same time u.s.c and l.s.c on D;
(g) F is said to have open lower sections if the inverse mapping F−1 is open valued, i.e„ for all

y ∈ Y, F−1(y) is open in X.

Proposition 1. F : D → 2Y is l.s.c at x ∈ D,F (x) 6= ∅, if and only if for any net {xα} in D,xα →
x, y ∈ F (x), there is a net {yα} with yα ∈ F (xα), yα → y.

Proof. Let F is l.s.c at x and xα → x and y ∈ F (x). For arbitrary neighborhood V of the origin in Y ,
there exists α0 such that F (xα)∩(y+V ) 6= ∅, for all α ≥ α0. Therefore, we can choose yα ∈ F (xα)∩(y+V ).
Thus, we have yα − y ∈ V, for all α ≥ α0. This shows yα → y. Conversely, let x ∈ D and N be an open
subset such that F (x)∩N 6= ∅. We assume that F is not l.s.c. at x. Then, there is an open subset N in Y
with F (x)∩N 6= ∅ such that for any neighborhood Uα of x there exists xα ∈ Uα such that F (xα)∩N = ∅.
This follows F (xα) ⊆ Y \N, a closed set. Without loss of generality, we may maxpose that xα → x. If
yα ∈ F (xα), yα → y, we deduce y ∈ Y \N and so y /∈ N. Thus, xα → x and for any y ∈ F (x), we can
not find any yα ∈ F (xα) with yα → y. And, we have the proof of the converse part.

By X∗ we denote the dual space of X i.e.,

X∗ = {f : X → R|f is a linear and continuous function }.

The pairing < ., . > between elements of p ∈ X∗ and x ∈ X is defined by < p, x >= p(x). We have

Proposition 2. Asume that F : D → 2Y is a l.s.c ( u.s.c) multivalued mapping with nonempty values
on D and p ∈ X∗ > . Then, the function cp : D → R∗, defined by cp(x) = inf

v∈F (x)
< p, v > ( respectively,

cp(x) = sup
v∈F (x)

< p, v >) is upper semi-continuous on D.

Proof. Let x ∈ D, {xα} be a net in D and xα → x. Given ε > 0, we take a neighborhood V of the origin
in X such that | < p, v > | < ε, for all v ∈ V. For y ∈ F (x), we have F (x) ∩ (y + V ) 6= ∅. The lower
semi-continuity of F implies that there exists α0 such that F (xα) ∩ (y + V ) 6= ∅ with α > α0. Therefore,
we can take yα ∈ F (xα) ∩ (y + V ), yα = y + v, with v ∈ V, or y = yα − v ∈ F (xα) + V. This follows

< p, y >=< p, yα − v >≥ inf
w∈F (xα)+V

< p,w >≥

inf
w∈F (xα)

< p,w > + inf
w∈V

< p,w >≥ inf
w∈F (xα)

< p,w > −ε = cp(xα)− ε.

Taking lim
α

both the sides, we conclude

< p, y >≥ lim
α
cp(xα)− ε.

This gives
cp(x) ≥ lim

α
cp(xα).

Thus, the function cp(.) is upper semi-continuous and the proof for the rest assertion is analogous.

Proposition 3. Let F : D → 2Y be a multivalued mapping with nonempty values on D. Then, if F has
open lower sections, then F is l.s.c on D.
Proof. Let x ∈ D and N be an open subset in Y with F (x) ∩ N 6= ∅. We take y ∈ F (x) ∩ N. Then,
x ∈ F−1(y). Since this set is open, then there exists a neighborhood U of x such that x ∈ U ⊂ F−1(y).
This follows x′ ∈ F−1(y) for all x′ ∈ U, and hence y ∈ F (x′)∩N. Therefore, F (x′)∩N 6= ∅, for all x′ ∈ U.
Thus, F is l.s.c. on D. The proof of the proposition is completed.

It is easy to give examples proving that a continuous mapping may not have open lower sections.
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Proposition 4. Let Fi : D → 2Y , i = 1, 2, be a l.s.c multivalued mapping with nonempty values on D.
Then, the multivalued mapping F : D → 2Y defined by

F (x) = (F1 + F2)(x) = F1(x) + F2(x), x ∈ D,

is also l.s.c on D.
Proof. The proof is trivial by using Proposition 2.

Proposition 5. Let Fi : D → 2Y , i = 1, 2, be multivalued mappings with nonempty values on D. Assume
that F1 is l.s.c and F2 has open lower sections. Then, the multivalued mapping F : D → 2Y defined by

F (x) = F1(x) ∩ F2(x), x ∈ D,

is l.s.c on D.
Proof. Let x ∈ D and N be an open subset in Y such that F1(x) ∩ F2(x) ∩N 6= ∅. We take y in this
set. Since N is open, we can choose an open neighborhood V of the origin in Y such that y + V ⊂ N. For
y ∈ F2(x) and F2 has open lower sections, one can find a neighborhood U1 of x such that x ∈ U ⊂ F−1

2 (y)
Hence, y ∈ F2(x′), for any x′ ∈ U1. Further, since y ∈ F1(x) ∩ (y + V ) and F1 is l.s.c at x, then there is a
neighborhood U2 such that F1(x′) ∩ (y + V ) 6= ∅, for all x′ ∈ U2 and so y ∈ F1(x′) ∩N, for all x′ ∈ U2.
Setting U = U1 ∩ U2, we conclude that y ∈ F1(x′) ∩ F2(x′) ∩ N 6= ∅, for all x′ ∈ U. This shows that
F = F1 ∩ F2 is l.s.c at x. Thus, the proof of the proposition is completed.

Proposition 6. Let F : D → 2Y be a multivalued mapping with nonempty values on D. If F has open
lower sections, then the multivalued mapping coF : D → 2Y , defined by (coF )(x) = coF (x), with co(A)
denoting the convex hull of A, also has open lower sections.
Proof. Let y ∈ Y and x ∈ D with y ∈ (coF )(x). We can write y =

∑n
i=1 αiyi with αi ≥ 0,

∑n
i=1 αi =

1, yi ∈ F (x). This follows x ∈ F−1(yi) Since F has open lower sections, there exists Ui such that
x ∈ Ui ⊆ F (yi). for i = 1, ..., n Taking U = ∩ni=1Ui, we can see yi ∈ F (x′) for all x′ ∈ U and i = 1, ..., n.
Therefore, y =

∑n
i=1 αiyi ∈ coF (x′) for all x′ ∈ U and so x ∈ U ⊆ (coF )−1(y). This shows that coF has

open lower sections. The proof of the proposition is completed.

Proposition 7. Let F : D → 2Y be a l.s.c multivalued mapping with nonempty values on D. Then so is
the multivalued mapping coF : D → 2Y , defined by (coF )(x) = coF (x) .
Proof. Indeed, let x, xα ∈ D,xα → x and y ∈ (coF )(x), y =

∑m
i=1 αiy

i with αi ≥ 0,
∑m
i=1 αi = 1

and yi ∈ F (x). Since F is l.s.c, there exist yiα ∈ F (xα), yiα → yi. Taking yα =
∑m
i=1 αiy

i
α, we can see

yα ∈ (coF )(xα) and yα → y.

The proof of the proposition is completed.
The following theorem is very important in the proof of the main result in this paper.

Theorem 8. ( [16]). Let {Vα}α∈Λ be a an open cover of locally compact Hausdorff space X, D ⊂ Xbe
a compact set. Then, there exist continuous functions ψi : D → R, (i = 0, 1, ..., s) such that
(i) 0 ≤ ψi(x) ≤ 1;
(ii)

s∑
i=1

ψi(x) = 1, for all x ∈ D;

(iii)For any i ∈ {0, 1, ..., s}, there exists α ∈ Λsuch that suppψi ⊂ Vα, where suppψ = {x ∈ D|ψ(x) 6=
0}.

The system of functions {ψi}, i = 0, 1, ..., s, is said to be a partition of unity corresponding to the
open cover {Vα}.
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3 Main Results

In this section we shall apply Theorem 8 in Section 2 above on partition of unity and our result in [13] to
obtain sufficient conditions for solutions of (QEP). Before proving the main results in this section, we
recall the following notions. Let D be a subset in X and x ∈ D. The set

TD(x) = {α(y − x), y ∈ D,α ≥ 0} = {cone(D − x)},

is called the tangent cone to the set D at x, where coneM = {αz, z ∈M,α ≥ 0}.
We now prove the following theorem on the existence for solutions of the above quasi-equilibrium

problems concerning separately l.s.c. and u.s.c multivalued mappings.

Theorem 1. We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;
(ii) P : D ×K → 2D is a continuous multivalued mapping with nonempty closed convex values;
(iii) Q : D ×K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(iv) G : D ×K → 2X is a l.s.c multivalued mapping;
(v) H : D ×K → 2Z is a u.s.c multivalued mapping;
(vi) For any (x, y) ∈ P (x, y) × Q(x, y), G(x, y) is nonempty, H(x, y) is nonempty convex closed and

G(x, y) ⊂ TP (x,y)(x), H(x, y) ∩ TQ(x,y)(y) 6= ∅.

Then there exists (x̄, ȳ) ∈ D ×K such that

(x̄, ȳ) ∈ P (x̄, ȳ)×Q(x̄, ȳ);
0 ∈ G(x̄, ȳ)×H(x̄, ȳ).

Proof. We set
B = {(x, y) ∈ D ×K|x ∈ P (x, y), y ∈ Q(x, y)}.

Since the multivalued mapping S : D ×K → 2D×K , defined by

S(x, y) = P (x, y)×Q(x, y), (x, y) ∈ D ×K,

is upper semi-continuous with nonempty convex and compact values, by using Ky Fan fixed point Theorem,
we conclude that S has a fixed point in D×K. Therefore, B is a nonempty set. The upper semi-continuity
and the closedness of values of S imply that B is a closed and then compact set.

Assume that for any (x, y) ∈ B, 0 /∈ G(x, y) × H(x, y). Take a fixed v ∈ G(x, y). Remarking that
H(x, y) is a nonempty closed convex, so is the set {v} × H(x, y). Since 0 /∈ {v} × H(x, y), by Hahn
-Banach Theorem, there exists p ∈ (X × Z)∗ such that

β = sup
(v,w)∈{v}×H(x,y)

p(v, w) < 0.

We have
p(v, 0) + p(0, w) ≤ p(v, 0) + sup

w∈H(x,y)
p(0, w) < 0.

This gives
inf

v∈co(G(x,y))
p(v, 0) + sup

w∈H(x,y)
p(0, w) < 0.

Further, we define functions cp1(., .) : D ×K → R∗, cp
2(., .) : D ×K → R∗ by

cp
1(x, y) = inf

v∈co(G(x,y))
p(v, 0);
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cp
2(x, y) = sup

w∈H(x,y)
p(0, w).

By Proposition 2 in Section 2, these functions are u.s.c on D ×K, therefore, the set

Up(x, y) = {(x′, y′) ∈ D ×K|cp1(x′, y′) + cp
2(x′, y′) < 0}

is a nonempty open neighborhood of (x, y).
Thus, for any (x, y) ∈ B there is p ∈ (X × Z)∗ such that

Up(x, y) = {(x′, y′) ∈ D ×K|c1p(x′, y′) + c2p(x′, y′) < 0}

is nonempty and open and hence {Up(x, y)}p∈(X×Z)∗ , (x, y) ∈ B, is an open cover of B. Since B is
compact, there exist finite p1, ..., ps ∈ (X × Z)∗ such that

Further, since B is closed in D ×K,Up0 = D ×K \B is open in D ×K and hence {Up0 , Up1 , ..., Ups}
is an open cover of the compact set D ×K. By Theorem 8 in Section 2, there exist continuous functions
ψi : D ×K → R, (i = 0, 1, ..., s) such that
(i) 0 ≤ ψi(x, y) ≤ 1;
(ii)

s∑
i=1

ψi(x, y) = 1, for all (x, y) ∈ D ×K;

(iii)For any i ∈ {0, 1, ..., s}, there exists j(i) ∈ {0, ..., s} such that suppψi ⊂ Upj(i) . It is clear that
suppψ0 ⊂ Up0 ⊂ D ×K \B.
Further, we set D̃ = K̃ = D ×K and define the function φ : K̃ × D̃ × D̃ → R by

φ(((v, y), (x,w), (t, z)) =
s∑
i=0

ψi(x, y).(pj(i)(t− x, 0) + pj(i)(0, z − y)), (v, y), (x,w), (t, z) ∈ D ×K.

Then, φ is a continuous function on K̃× D̃× D̃. Moreover, for any fixed (v, y) ∈ D×K,φ((v, y), (x,w), .) :
D̃ → R is a linear function and φ((v, y), (t, z), (t, z)) = 0 for all (v, y)(t, z),∈ D × K. Therefore,
D̃, K̃, P̃ ((x,w), (v, y)) = P (x, y)×K, Q̃((x,w), (v, y)) = D×Q(x, y) and φ satisfy all conditions of Corol-
lary 3.4 in [13]. It implies that there is (x̄, w̄), (v̄, ȳ) ∈ D̃ × K̃ such that (x̄, w̄) ∈ P̃ (x̄, w̄), (v̄, ȳ)), (v̄, ȳ) ∈
Q̃(x̄, w̄), (v̄, ȳ)) and φ((v̄, ȳ), (x̄, w̄), (t, z)) ≥ 0,for all (t, z) ∈ P̃ ((x̄, w̄)(v̄, ȳ)). This gives

s∑
i=0

ψi(x̄, ȳ).(pj(i)(t− x̄, 0) + pj(i)(0, z − ȳ)) ≥ 0 for all (t, z) ∈ P̃ (x̄, w̄), (v̄, ȳ)). (3.1)

Setting p∗ =
s∑
i=0

ψi(x̄, ȳ).pj(i), we get from (3.1) (p∗(t − x̄, 0) + p∗(0, z − ȳ) >≥ 0, for all (t, z) ∈

P (x̄, ȳ) × K, and hence p∗(v, 0) + p∗(0, w) ≥ 0, for all (v, w) ∈ TP (x̄,ȳ)(x̄) × TK(ȳ). By Assumption
(v), G(x̄, ȳ) ⊂ TP (x̄,ȳ)(x̄);H(x̄, ȳ) ∩ TQ(x̄,ȳ)(ȳ) 6= ∅;TQ(x̄,ȳ)(ȳ) ⊂ TK(y), we conclude that for any (v, w) ∈
co(G(x̄, ȳ))× (H(x̄, ȳ) ∩ TQ(x̄,ȳ)(ȳ)) it holds

p∗(v, w) = p∗(v, 0) + p∗(0, w) ≥ 0.

This follows
inf

(v,w)∈co(G(x̄,ȳ)×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))
p∗(v, w) ≥ 0. (3.2)

Further, put I(x̄, ȳ) = {i ∈ {0, 1, ..., s}|ψi(x̄, ȳ) > 0}. Since ψi(x̄, ȳ) ≥ 0 and
s∑
i=1

ψi(x, y) = 1, we deduce

I(x̄, ȳ) 6= ∅. So, for any i ∈ I(x̄, ȳ), (x̄, ȳ) ∈ suppψi ⊂ Upj(i) and remarking (x̄, ȳ) ∈ B,

c1pj(i)(x̄, ȳ) = inf
v∈co(G(x̄,ȳ))

pj(i)(v′, 0);

c2pj(i)(x̄, ȳ) = sup
w′∈H(x̄,ȳ)

pj(i)(0, w′)

and
c1pj(i)(x̄, ȳ) + c2pj(i)(x̄, ȳ) < 0 . (3.3)
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For any (v, w) ∈ co(G(x̄, ȳ))× (H(x̄, ȳ) ∩ TQ(x̄,ȳ)(ȳ)), we have

p∗(v, 0) + p∗(0, w) =
s∑
i=0

ψi(x̄, ȳ).{pj(i)(v, 0) + pj(i)(0, w)}

≤
s∑
i=0

ψi(x̄, ȳ) max
i=1,...,s

{pj(i)(v, 0) + pj(i)(0, w)} ≤ max
i=1,...,s

{pj(i)(v, 0) + pj(i)(0, w)}.

Hence,

inf
(v,w)∈co(G(x̄,ȳ)×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

p∗(v, w) = inf
(v,w)∈co(G(x̄,ȳ))×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

{p∗(v, 0) + p∗(0, w)}

≤ inf
(v,w)∈co(G(x̄,ȳ))×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

max
i=1,...,s

{pj(i)(v, 0) + pj(i)(0, w)}. (3.4)

Setting C = c̄o{pj(1), ..., pj(s)}, E = co(G(x̄, ȳ))× (H(x̄, ȳ) ∩ TQ(x̄,ȳ)(ȳ)), f(p, u) = p(v, 0)− p(0, w), u =
(v, w) and using the weak∗ topology on (X×Z)∗, we can easily verify that all conditions of Sion’s minimax
Theorem in [17] are satisfied. Therefore, we obtain

inf
(v,w)∈co(G(x̄,ȳ))×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

max
i=1,...,s

{pj(i)(v, 0) + pj(i)(0, w)}

= max
i=1,...,s

inf
(v,w)∈co(G(x̄,ȳ))×H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ)

pj(i)(v, w)

≤ max
i=1,...,s

{ inf
v∈co(G(x̄,ȳ))

pj(i)(v, 0) + sup
w∈(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

pj(i)(0, w)}

≤ max
i=1,...,s

{c1pj(i)(x̄, ȳ) + c2pj(i)(x̄, ȳ)} < 0 . (3.5)

A combination of (3.4) and (3.5) implies

inf
(v,w)∈co(G(x̄,ȳ))×(H(x̄,ȳ)∩TQ(x̄,ȳ)(ȳ))

p∗(v, w) < 0.

Thus, we have a contradiction to (3.2).
This completes the proof of the theorem.

In Particular, we obtain the fixed point result.

Corollary 2. We assume that the following conditions hold:
(i) D,K are nonempty convex compact sets;
(ii) P : D ×K → 2D is a continuous multivalued mapping with nonempty closed convex values;
(iii) Q : D ×K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(iv) G : D ×K → 2X is a l.s.c multivalued mapping ;
(v) H : D ×K → 2Z is a u.s.c multivalued mapping;
(vi) For any (x, y) ∈ P (x, y) × Q(x, y), G(x, y) is nonempty, H(x, y) is nonempty convex closed and

G(x, y)− x ⊂ TP (x,y)(x), (H(x, y)− y) ∩ TQ(x,y)(y) 6= ∅.

Then there exists (x̄, ȳ) ∈ D ×K such that

(x̄, ȳ) ∈ (P (x̄, ȳ)×Q(x̄, ȳ)) ∩ (G(x̄, ȳ)×H(x̄, ȳ)).

Proof. We define the multivalued mappings G̃ : D ×K → 2X ; H̃ : D ×K → 2Z by

G̃(x, y) = G(x, y)− x ;
H̃(x, y) = H(x, y)− y, (x, y) ∈ D ×K.

Remarking that by Propositon 4 in Section 2 G̃ is l.s.c.H̃ is u.s.c and G̃(x, y) 6= ∅, H̃(x, y) is nonempty
closed and convex G̃(x, y) ⊂ TP (x,y)(x); H̃(x, y) ∩ TQ(x,y)(y) 6= ∅ for any (x, y) ∈ P (x, y) × Q(x, y) .
Further, the proof of this corollary follows immediately from Theorem 1.
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Corollary 3. We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;
(ii) P : D ×K → 2D is a continuous multivalued mapping with nonempty closed convex values;
(iii) Q : D ×K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(iv) G : D ×K → 2X is a l.s.c multivalued mapping;
(v) For any (x, y) ∈ P (x, y)×Q(x, y), x /∈ G(x, y), and G(x, y)− x ⊂ TP (x,y)(x).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) G(x̄, ȳ) = ∅.
Proof. We assume that G(x, y) 6= ∅, for all (x, y) ∈ P (x, y)×Q(x, y). We define the multivalued mapping
G̃ : D ×K → 2X , H̃ : D ×K → 2Z by

G̃(x, y) = G(x, y)− x, ;

H̃(x, y) = y, (y, x) ∈ D ×K.

Then G̃(x, y) 6= ∅ for all (x, y) ∈ P (x, y)×Q(x, y) and G̃(x, y) ⊂ TP (x,y)(x), H̃(x, y)− y = 0 ∈ TQ(x,y)(y).
Using Proposition 4 in Section 2, we conclude that G̃ is a l.s.c multivalued mapping and G̃(x, y) 6= ∅ for
all (x, y) ∈ P (x, y)×Q(x, y). Further, the proof of this corollary follows immediately from Corollary 2 to
obtain (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) x̄ ∈ G(x̄, ȳ). Thus, we have a contradiction and the proof of the corollary is complete.

Corollary 4. We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;
(ii) P : D ×K → 2D is a continuous multivalued mapping with nonempty closed convex values;
(iii) Q : D ×K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(iv) H : D ×K → 2Z is a u.s.c multivalued mapping with nonempty convex compact values;
(v) For any (x, y) ∈ P (x, y)×Q(x, y), y /∈ H(x, y), and (H(x, y)− y) ∩ TQ(x,y)(y) 6= ∅.

Then there exists (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) H(x̄, ȳ) = ∅.
Proof. We assume that H(x, y) 6= ∅, for all (x, y) ∈ P (x, y)×Q(x, y). We define the multivalued mapping
G̃ : D ×K → 2X , H̃ : D ×K → 2Y by

G̃(x, y) = x,

H̃(x, y) = H(x, y)− y, (y, x) ∈ D ×K.

Then H̃(x, y) 6= ∅ for all (x, y) ∈ P (x, y)×Q(x, y) and H̃(x, y) ⊂ TQ(x,y)(y) 6= ∅. Using Proposition 4 in
Section 2, we conclude that H̃ is a u.s.c multivalued mapping with nonempty convex compact values
and H̃(x, y) 6= ∅ for all (x, y) ∈ P (x, y)×Q(x, y). Further, the proof of this corollary follows immediately
from Corollary 2 to obtain (x̄, ȳ) ∈ D ×K such that
1) x̄ ∈ P (x̄, ȳ);
2) ȳ ∈ Q(x̄, ȳ);
3) x̄ ∈ H(x̄, ȳ). Thus, we have a contradiction and the proof of the corollary is complete.
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Corollary 5. We assume that the following conditions hold:

(i) D,K are nonempty convex compact sets;
(ii) Q : D ×K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(iii) G : D ×K → 2X is a l.s.c multivalued mapping with G(x, y) 6= ∅ and G(x, y)− x ⊆ TD(x), for any

x ∈ D, y ∈ Q(x, y).

Then there exists (x̄, ȳ) ∈ D ×K such that
1) ȳ ∈ Q(x̄, ȳ);
2) x̄ ∈ G(x̄, ȳ).
Proof. The proof of this corollary follows immediately from Theorem 1 with taking G̃(x, y) = G(x, y)−
x, H̃(x, y) = y, P (x, y) = D, for all (x, y) ∈ D ×K.

We have a fixed point result of separately l.s.c and u.s.c multivalued mappings with nonempty convex
closed values. This is a generalization of Ky Fan’s Theorem.

Corollary 6. We assume that the following conditions hold:
(i)D is nonempty convex compact subsets of X ;
(ii)P : D → 2D is a continuous multivalued mapping with nonempty values;
(ii)G : D → 2X is a l.s.c multivalued mapping with nonempty values such that G(x) ⊂ TP (x)(x) for any
x ∈ P (x).
Then there exists x̄ ∈ D such that x̄ ∈ G(x̄) ∩ P (x̄).

Proof. We put G̃(x, y) = G(x); P̃ (x, y) = P (x); Q̃(x, y) = H̃(x, y) = K for any (x, y) ∈ D×K and apply
Corollary 2.

Corollary 7. We assume that the following conditions hold:
(i)K is a nonempty convex compact subset of Z ;
(ii)Q : K → 2K is a u.s.c multivalued mapping with nonempty closed convex values;
(ii)H : K → 2K is a u.s.c multivalued mapping with nonempty closed convex values such that H(y) ∩
TQ(y)(y) 6= ∅ for any y ∈ Q(y).
Then there exists ȳ ∈ K such that ȳ ∈ H(ȳ) ∩Q(ȳ).

Proof. We put G̃(x, y) = K; P̃ (x, y) = D ; Q̃(x, y) = Q(y), H̃(x, y) = H(y) for any (x, y) ∈ D ×K and
apply Corollary 2.

4 Some Applications

In this section we introduce some applications of the above results to consider the existence of solutions to
mixed generalized quasi-equilibrium problems concerning l.s.c and u.s.c continuous multivalued mappings.
We assume that X,Z, Y, Yi, i = 1, 2, are real Hausdorff topological vector spaces, D ⊂ X,K ⊂ Z
are nonempty subsets . Given multivalued mappings S : D × K → 2D, T : D × K → 2K and F :
K ×K ×K ×D → 2Y , we are interested in the problem of finding (x̄, ȳ) ∈ D ×K such that
i) x̄ ∈ S(x̄, ȳ);
ii) ȳ ∈ T (x̄, ȳ);
iii) 0 ∈ F (ȳ, ȳ, v, x̄), for all v ∈ T (x̄, ȳ).
This problem is called a generalized quasi-equilibrium problem of type I , denoted by (GEP )I .

Given multivalued mappings P, P0 : D ×K → 2D, Q : D ×K → 2K , Q0 : K × D × D → 2K , and
F : K ×K ×D ×D → 2Y , we are interested in the problem of finding (x̄, ȳ) ∈ D ×K such that

x̄ ∈ P (x̄, ȳ);
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ȳ ∈ Q(x̄, ȳ)

and
0 ∈ F (ȳ, v, x̄, t), for all t ∈ P0(x̄, ȳ) and v ∈ Q0(ȳ, x̄, t).

This problem is called a generalized quasi-equilibrium problem of type II , denoted by (GEP )II .
Further, given multivalued mappings S : D × D → 2D, T : D × K → 2K , P0 : D × K → 2D, Q0 :

K ×D ×D → 2K and F1 : K ×K ×K ×D → 2Y1 , F2 : K ×K ×D ×D → 2Y2 , we are interested in the
problem of finding (x̄, ȳ) ∈ D ×K such that
i) x̄ ∈ S(x̄, ȳ);
ii) ȳ ∈ T (x̄, ȳ);
iii) 0 ∈ F1(ȳ, ȳ, v, x̄), for all v ∈ T (x̄, ȳ);
iv) 0 ∈ F2(ȳ, v, x̄, t), for all t ∈ P0(x̄, ȳ), v ∈ Q0(ȳ, x̄, t).
This problem is called a mixed generalized quasi-equilibrium problem , denoted by (MGQEP ), in
which the multivalued mappings S, T, P0, Q0 are called constraint mappings and F1, F2 are called utility
multivalued mappings.
We apply the obtained results in Section 3 to get the existence to solutions for (MGQEP ) as follows.

Theorem 1. The following conditions are sufficient for (MGQEP ) to have a solution:

i) D and K are nonempty convex compact subsets;
ii) P : D×K → 2D is continuous multivalued mapping with nonempty convex closed values, Q : D×K →

2K is u.s.c. multivalued mapping with nonempty convex values;
iii) P0 : D × K → 2D is a multivalued mapping with nonempty values and has open lower sections ;

coP0(x, y) ⊆ P (x, y) for any (x, y) ∈ D ×K;
iv) The set A = {(y, w, v, x) ∈ K ×K ×K ×D|0 ∈ F1(y, w, v, x)} is closed ;
v) For any fixed (y, x) ∈ K ×K ×D, the set B = {w ∈ T (x, y)|0 ∈ F1(y, w, v, x) for all v ∈ T (x, y)} is

nonempty convex.

vi) For any fixed t ∈ D, the set

A1 = {(x, y) ∈ D ×K| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)},

is open in D;
vii) For any fixed y, v ∈ K, 0 ∈ F2(y, v, x, x) for any x ∈ D.

Proof. We define the multivalued mapping Q : D ×K → 2K by

H(x, y) = {v ∈ Q(x, y)|0 ∈ F1(y, v, w, x), for all w ∈ Q(x, y)}.

Conditions v) and vi) imply that H(x, y) 6= ∅ and nonempty closed convex for any (x, y) ∈ D ×K. Now,
let (xα, yα) be a net converging to (x, y) and wα be a net with wα ∈ H(xα, yα), wα → w. We have to
show w ∈ H(x, y). Indeed, we can see 0 ∈ F1(yα, wα, uα, xα), for all uα ∈ Q(xα, yα). Let v ∈ Q(x, y)
be arbitrary. Since Q is l.s.c, there is vα ∈ Q(xα, yα), vα → v. Therefore, we get 0 ∈ F1(yα, wα, vα, xα).
For (yα, wα, vα, xα) → (y, w, v, x) and the set A is closed, we deduce (y, w, v, x) ∈ A. Hence, 0 ∈
F1(y, w, v, x), for all v ∈ Q(x, y). This shows that the multivalued mapping H is closed, and then H is
u.s.c with nonempty closed convex values on D ×K.

Further, we define the multivalued mapping G : D ×K → K by

G(x, y) = {t ∈ P0(x, y)|0 /∈ F2(y, v, x, t) for some v ∈ Q0(y, x, t)}, (x, y) ∈ D ×K.

We can write G(x, y) = T (x, y) ∩ P0(x, y), where

T (x, y) = {t ∈ D|0 /∈ F2(y, v, x, t) for some v ∈ Q0(y, x, t)}.

For any t ∈ D, the set T−1(t) = A1 = {(x, y) ∈ D ×K|0 /∈ F (y, v, x, t) for some v ∈ Q0(y, x, t)} is open
in D×K. So, the multivalued mapping T has open lower sections and then it is separately l.s.c. on D×K.
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For P0 has open lower sections, we apply Propositions 5 and 7 in Section 2 to conclude that G = T ∩ P0
is a l.s.c multivalued mapping with nonempty values. We set

B = {(x, y) ∈ D ×K|x ∈ P (x, y); y ∈ H(x, y)}.

It is clear that B is a nonempty closed set in D × K. Observe that if for some (x̄, ȳ) ∈ B, it gives
G(x̄, ȳ) ∩ P0(x̄, ȳ) = ∅, then
i) x̄ ∈ P (x̄, ȳ);
ii) ȳ ∈ Q(x̄, ȳ);
iii) 0 ∈ F1(ȳ, ȳ, w, x̄), for all w ∈ Q(x̄, ȳ).
vi) 0 ∈ F2(ȳ, w, x̄, t), for all t ∈ P0(x̄, ȳ) andw ∈ Q0(x̄, t, ȳ),
and hence the proof of the theorem is completed. Thus, our aim is to show the existence of such a point
(x̄, ȳ). Indeed, by contrary, we assume that for any (x, y) ∈ B, it implies that G(x, y) ∩ P0(x, y) 6= ∅. We
consider the multivalued mapping S : D ×K → 2D×K defined by

S(x, y) =
{
G(x, y) ∩ P0(x, y)× {y}, if (x, y) ∈ B,

P0(x, y)× {y}, else.

We show that S verifies the hypotheses of Corollary 2 in Section 3. Applying this corollary, we conclude
that there is a point (x̄, ȳ) ∈ D ×K such that x̄ ∈ P (x̄, ȳ), ȳ ∈ H(x̄, ȳ) and x̄ ∈ S(x̄, ȳ)). If (x̄, ȳ) ∈ B,
then x̄ ∈ G(x̄, ȳ) ∩ P0(x̄, ȳ) and hence 0 /∈ F2(ȳ, v, x̄, x̄), for some v ∈ Q0(x̄, x̄, ȳ), we have a contradiction
to Condition vii). If (x̄, ȳ) /∈ B, then (x̄, ȳ) ∈ P0(x̄, ȳ) ×H(x̄, ȳ) ⊂ P (x̄, ȳ) ×H(x̄, ȳ) = B and we also
have a contradiction. The proof of the theorem is complete.

Corollary 2. We assume that the following conditions hold:

i) D and K are nonempty convex compact subsets;
ii) P : D × K → 2D, Q : D × K → 2K are continuous multivalued mappings with nonempty convex

values;
(iii) φ : K ×K ×D ×D → R is a real function such that:

a) For any fixed t ∈ D, the function φ(., ., ., t) : K ×K → R are upper semi-continuous;
b) φ(y, v, x, x) ≥ 0, for all y, v ∈ K,x ∈ D.

Then there exists (x̄, ȳ) ∈ D ×K such that (x̄, ȳ) ∈ P (x̄, ȳ)×Q(x̄, ȳ) and

φ(ȳ, v, x̄, t) ≥ 0, for all (t, v) ∈ P (x̄, ȳ)×Q(x̄, ȳ).

Proof. We take P0 = P,Q0 : K×D×D → 2K defined byQ0(y, x, t) = Q(x, y) and F : K×K×D×D → 2R
defined by F2(y, v, x, t) = φ(y, v, x, t)−R+. We verify that for any fixed t ∈ D, the set

A1 = {(x, y) ∈ D ×K| 0 /∈ F2(y, v, x, t), for some v ∈ Q0(y, x, t)}

= {(x, y) ∈ D ×K| φ(y, v, x, t) < 0, for some v ∈ Q(x, y)}

is open in D ×K. Indeed,

(D ×K) \A1 = {(x, y) ∈ D| φ(y, v, x, t) ≥ 0, for all v ∈ Q(x, y)}.

If {(xα, yα)} is a net in (D×K)\A1, (xα, yα)→ (x, y) we have to show (x, y) ∈ (D×K)\A1. Take arbitrary
v ∈ Q(x, y). Since Q(., .) : D → K is l.s.c., there is vα ∈ Q(xα, yα), vα → v. For (xα, yα) ∈ (D ×K) \A1,
it follows φ(yα, vα, xα, t) ≥ 0. The upper semicontinuity of φ(., ., ., t) implies that φ(y, v, x, t) ≥ 0. Thus,
this shows that (x, y) ∈ (D ×K) \A1 and so, (D ×K) \A1 is closed and then A1 is open. To complete
the proof of the corollary, it remains to apply Theorem 1 with P0 = P,Q0 : K ×D ×D → 2K defined by
Q0(y, x, t) = Q(x, y) and F2.
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Conclusion. We prove Theorem 1 in Section 3 on the existence of solutions to quasi-equilibrium problems
involving product mappings of lower and upper semicontinuous mappings. As corollaries, we obtain some
fixed point results of product mappings. In Section 4, we introduce some applications of the above results
to consider the existence of solutions to mixed generalized quasi-equilibrium problems concerning l.s.c
and u.s.c continuous multivalued mappings.
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