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Abstract. The separation algorithm of linear two sets using their ε-nets in the range space 
( , )d dR H  is proposed in the paper. The algorithm is illustrated by two examples for normal and 
uniform distributions. The set of possible values of ε and its properties are considered in the 
manuscript. 
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1   Introduction 

In 1987 D. Haussler and E. Welzl [6] introduced ε-nets. Since that time ε-nets are used in computational 
and combinatorics geometry [1,4,5,10,11]. Numerous works study ε-nets of one set. In this paper we will 
build ε-nets of two sets for solving the classification problem. In the first part the algorithm of building 
two separable ε-nets with respect to halfspaces is proposed. The algorithm is illustrated by examples for 
normal and uniform distributions. In the second part the separating algorithm of two ε-nets is proposed 
and illustrated. The result of classification using ε-nets is compared with SVM-method. 

2   Building Separable ε-Nets 

Definition 1. Sets A  and B  are called ε-separable if there exist sets 1A A⊂ , 1B B⊂ , such that 

 1 1( \ ) ( \ )conv A A conv B B = ∅   (1) 

and  
 1 1 ( )A BA B n nε+ < +   (2) 

Definition 2. Hyperplane L  is called separating for the sets A  and B  if Aconv L+⊂ , Bconv L−⊂ . 

Definition 3. Hyperplane Lε  is called ε-separating for the sets A  and B  if 

 1
A B

A L B L

n n
ε ε ε
+ −∩ + ∩

≥ −
+

  

Consider an infinite range space ( , )d dR H , where dH  is the closed halfspaces in dR  bounded by 
hyperplanes. 

Theorem 1. [7] A necessary and sufficient condition that two sets of points A  and B  are ε-separable 
is there exist ,A Bε ε  and corresponding ε-nets 

A

ANε , 
B

BNε  in ( , )d dR H  such that  

 ( )A A B B A Bn n n nε ε ε+ < +   (3) 

and  
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A B

A BconvN convNε ε = ∅   (4) 

In the manuscript we will consider two examples. In the first example we will consider two sets which 
are generated by the normal distribution. In the second one the sets are generated by the uniform 
distribution. Algorithms proposed in the paper are implemented in the Matlab. 

Example 1.  
1. Normal distribution 

Consider two sets A  and B , which are generated from the normal distributions with parameters 

500An = , (3;5)Aµ = , 2 0
0 2

Aσ
 

=  
 

, 500Bn = , (9;9)Bµ = , 2 0
0 1

Bσ
 

=  
 

 (Fig. 1). 

 
Figure 1. Two sets generated by the normal distribution 

2. Uniform distribution 
Consider two sets A  and B , which are generated from the uniform distributions with parameters 

1000An = , (1;1)Aa = , (5;5)Ab = , 1000Bn = , (4;4)Ba =  , (8;8)Ab =  (Fig. 2) 

 
Figure 2. Two sets generated by the uniform distribution 

We will build the separable ε-nets 
A

ANε , 
B

BNε  for two ε-separable sets ,A B . According to theorem 1, 

,A Bε ε  have to satisfy the condition (3). 
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Definition 4. The set 
 { }1 2 1 22

, 1 2( , ) (0,1) : , ,A B A B A BD N N convN convNε ε ε εε ε= ∈ ∃ ∩ = ∅   (5) 
is called the separation space for ,A B . 

It is clear that condition (4) holds for ,,A B A BDε ε ∈ . So, sets A  and B  are ε-separable if there 
exists ( ) ,,A B A BDε ε ∈  that satisfies the condition (3). It’s enough to show that 

( )
,

0 0

( , )
, arg min

A B A B

A A B B
A B

D A B

n n
n nε ε

ε ε
ε ε

∈

+
=

+
 satisfies the condition (3). If condition (3) does not hold for the 

( )0 0,A Bε ε , it does not hold for all ( ) ,,A B A BDε ε ∈ , which means sets A  and B  are not ε-separable. 

In the Fig. 3 you can see the bounded line for ,A BD  and the point ( )0 0,x y , which is found as solution 

of the minimization problem minA A B B

A B

n n
n n

ε ε+
→

+
 with condition ( ) ,,A B A BDε ε ∈ . 

 
Figure 3. Bounded line for ,A BD  and the point ( )0 0,A Bε ε  

Let 1, Rξ η ∈  be continuous random variables with distribution functions ,F Fξ η .  

Definition 5. The set lD  

 { }2 1: ( , ) (0,1) : , { } , { }lD x y h R P h x P h yξ η+ −= ∈ ∃ ∈ ∈ ≤ ∈ ≤   (6) 
is called the separation space for ,ξ η . 

Lemma 1. Let the inverse function Fξ  exist. Then the sets lD  and ( )2: 0,1 \lD D=  are separated by 
the line 
 ( ) ( )( ) ( )( )( )1 1min 1 ,1y x F F x F F xη ξ η ξ

− −= − −   (7) 

Proof. Consider two possible cases. 
1. Let the inequality ( ) ( )F h F hξ η>  hold for ( ),h ∈ −∞ ∞ , then the set lD  is described by the system 

of inequality  
1 ( )

( )
x F h
y F h

ξ

η

 ≥ −


≥
. 
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Then the line that separates sets lD  and lD  is 

 ( ) ( )( )1 1y x F F xη ξ
−= −  

2. Let the inequality ( ) ( )F h F hξ η≤  holds for ( ),h ∈ −∞ ∞ , then the set lD  is described by the system 
of inequality 

 
( )

1 ( )
x F h
y F h

ξ

η

 ≥


≥ −
 

In this case the line that separates sets lD  and lD  is 

 ( ) ( )( )11y x F F xη ξ
−= −  

So, in general, sets lD  and lD  are separated by the line  

 ( ) ( )( ) ( )( )( )1 1min 1 ,1y x F F x F F xη ξ η ξ
− −= − − . 

Lemma is proved.                                                                           

Corollary 1. Lemma’s condition can be changed to the existence of 1Fη
− . Then separating line is 

 ( ) ( )( ) ( )( )( )1 1min 1 ,1x y F F y F F xξ η ξ η
− −= − −   

Let’s consider the general case, when distribution functions don’t have the inverse functions in some 
points. We will use the generalized inverse [3]. 

Definition 6. For an increasing function :T R R→  with ( ) lim ( )xT T x↓−∞−∞ =  and 
( ) lim ( )xT T x↑∞∞ = , the generalized inverse 

 { }( ) inf : ( ) ,T y x R T x y y R− = ∈ ≥ ∈   (8) 

with the convention that inf ∅ = ∞ . If : [0,1]T R →  is a distribution function, : [0,1]T R− →  is also 
called the quantile function of T . 

Lemma 2. Sets lD  and ( )2: 0,1 \lD D=  are separated by the line 

 ( ) ( ) ( ) ( ) ( )min 1 ,1y x F F x F F xη ξ η ξ

− −    = − −        
  (9) 

Proof. Let (0;1)x ∈  be the point where inverse function 1Fξ
−  does not exist. Let’s use (6) to find the 

function ( )y x . According to (5), for any 0δ >   

( ) ly x Dδ+ ∈ , ( ) ly x Dδ− ∈ .  
So, sets lD  and lD  are separated by the line (6). 
Lemma is proved.    
Let’s consider the set { }1 2 1 22

, 1 2( , ) (0,1) : , ,A B A B A BD N N convN convNε ε ε εε ε= ∈ ∀ ∩ ≠ ∅ .                

Theorem 2. Let the following conditions exist: 
1. The sets ,A B  of size ,A Bn n  are generated by the independent continuous random variables 

,ξ η . 

2. The sets ,A BD  and ,A BD  are separated by the line , ( )A By x .  
Then there exists the following equality  

,,
lim ( ) ( )

A B
A Bn n

y x y x
→∞

= , 

where 
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 ( ) ( ) ( ) ( ) ( )1 1
min 1 ,1

G G
y x F F x F F xη ξ η ξ

− −    = − −        
 

Proof. To prove the theorem it is enough to show that the relations  
 ( ) ( )1 1( ) ( ) , (0,1)

B An nF F y F F y yη ξ
− −→ ∈  (8) 

and 
 ( ) ( )1 11 ( ) 1 ( ) , (0,1)

B An nF F y F F y yη ξ
− −− → − ∈  (9) 

hold. 
Let’s show that relation (8) holds. 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

η ξ η η η ξ

η η η ξ

η η η ξ

− − − − − −

∈ ∈

− − − −

∈ ∈

− −

∈∈

− = + − − ≤

≤ − + − ≤

≤ − + −
1

1 1 1 1 1 1

[0,1] [0,1]

1 1 1 1

[0,1] [0,1]

1 1

[0,1]

( ) ( ) ( ) ( ) ( ) ( )sup sup

( ) ( ) ( ) ( )sup sup

( ) ( )sup sup

B A B A A A

B A A A

B A

n n n n n n
y y

n n n n
y y

n n
yx R

F F y F F y F F y F F y F F y F F y

F F y F F y F F y F F y

F x F x F F y F F y

  

According to the Glivenko-Cantelli theorem [8] the first term is 
 

1

( ) ( ) 0,sup
Bn B

x R

F x F x nη
∈

− → → ∞ , 

Let η  have the density of distribution f Kη < . Then we have for a second term  

 ( ) ( )1 1 1 1

[0,1] [0,1]
( ) ( ) ( ) ( )sup sup

A An n
y y

F F y F F y K F y F yη η ξ ξ
− − − −

∈ ∈

− ≤ −   

Let’s show that 1 1

[0,1]
( ) ( ) 0sup

An
y

F y F yξ
− −

∈

− → . Suppose that 0 0( ) (0,1)F x yξ = ∈  is fixed. Assume that 

1 1

[0,1]
( ) ( ) 0sup

An
y

F y F yξ
− −

∈

− →/ , then 0 0( ) ( ) 0
AnF x F xξ − →/ . We arrive at contradiction.  

So, relation (8) holds. By analogy, relation (9) also holds.                                

Example 2.  
1. Normal distribution 

lD  and lD  are separated by the line which is illustrated in the Fig. 4. 

 
Figure 4. Bound line for the separation space for normal distribution 

Since 0.028
A B

A convB B convA
n n

+ ∩
=

+



, let 0.025; 0.025A Bε ε= = .  

According to the Fig. 4, (0.025;0.025) lD∈  
2. Uniform distribution 

lD  and lD  are separated by the line which is illustrated in the Fig. 5. 
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Figure 5. Bound line for the separation space for uniform distribution 

Since 0.06
A B

A convB B convA
n n

+ ∩
=

+



, let 0.05; 0.05A Bε ε= =  

According to the Fig. 5, (0.05;0.05) lD∈  
Let’s build the ε-net for the set A  by the following: 
Algorithm of the ε-net building 
Let’s select ,,A B A BDε ε ∈ . 

Let set A  contain the point with minimal y-coordinate. Let’s denote the point of set A  with 
minimal x-coordinate by mina , and the point with maximal x-coordinate by maxa . Let’s draw 

1 1
A

k
ε
 

= + 
  

 vertical lines from mina  to maxa  in a manner that there are A Anε  points in each of 1

Aε
 
 
  

 

bands. Vertical lines which separate the bands are described by the equations  
 , 1,ix C i k= = , 
where constant iC  can be found from the equation 

 ( )i AF C iε=  

For each i -th band, 11 i
ε
 

≤ ≤  
 

, let’s denote: 

iA  is the set which contains points from the set A  that are contained in the i -th band;  
iB  is the set (may be empty) which contains points from the set B  that are contained in the i -th 

band; 
min
iay , max

iay  are points from the set iA  with minimal and maximal y-coordinates; 

min
iby , max

iby  are points from the set iB  with minimal and maximal y-coordinates.  
A

AN ε  is the set of points which we will select in the ε-net of the set A . 
From the i -th band we will select two points in the set AN . The first point is the point min

iay . 
According to the assumption, set A  is placed below the set B . The second point from the set iA  in 
the set A

AN ε  will be selected according to the following rule. 

If iB = ∅  (it means that i -th band does not contain points from the set B ),  
add point max

iay  to the set A
AN ε   

else 
if max min

i iay by<  (it means that in i -th band convex hulls of sets ,A B  are not intersected),  
add point max

iay  to the set A
AN ε   

else (some points of the set B  exist in the i -th band and they are placed bellow some points of 
set A ) 
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add point ia A∈  to the set A
AN ε  such that point ia  is the nearest neighbor to the point 

min
iby . We will call point ia  the basis point of the set A . 

In the same way we build horizontal bands and select two points from each band to the set A
AN ε .   

Example 3.  
1. Normal distribution 
Vertical and horizontal bands for the set A  are illustrated in the Fig. 6 

 
Figure 6. Vertical and horizontal bands for the set A  which is generated by the normal distribution 

2. Uniform distribution 
Vertical and horizontal bands for the set A  are illustrated in the fig.7 

 
Figure 7. Vertical and horizontal bands for the set A  which is generated by the uniform distribution 

Lemma 3. The set A
AN ε  is ε-net for the set A . 

Proof. Let’s make an indirect proof. Assume A
AN ε  is not an ε-net of the set A . It means that there 

exists a halfspace 2H R⊂  that contains at least A Anε  sets of point A , but each point does not belong 
to the set A

AN ε . Let’s denote Z  as the set of points from the set A  that belong to the halfspace H  
and A AZ nε≥ . Consider a point z Z∈ . This point belongs to one horizontal and one vertical band. 
Together with point z  one of extreme points of horizontal or vertical band or basis point belongs to the 
halfspace H . According to the building process, set A

AN ε  consists of extreme and basis points of the set 
A , so A

AZ N ε∩ ≠ ∅ . This contradicts the assumption.  
Lemma is proved. 
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According to the algorithm, ε-net A
AN ε  consists of 4

Aε
 
 
  

 points. ε-net B
BN ε  is built using the same 

algorithm. 

Example 4.  
1. Normal distribution 
ε-nets of the sets ,A B  are illustrated in the Fig. 8 

 
Figure 8. ε-nets of the sets ,A B  which are generated by the normal distribution. 

2. Uniform distribution 
ε-nets of the sets ,A B  are illustrated in the Fig. 9 

 
Figure 9. ε-nets of the sets ,A B  which are generated by the uniform distribution. 

 

3   ε-Nets’ Separating 

Let’s separate sets A
AN ε  and B

BN ε  using the separation algorithm of the convex hulls, which is 
described in [9].  
Separation algorithm of the convex hulls  
1. Build convex hulls A

AconvN ε  and B
BconvN ε .  

2. Find outlier points. In order to minimize the algorithm’s time complexity, we find outliers only 
among the basis points. Point Ax NB∈ , where B

Bx convN ε∈ , is the outlier point of the set A
AN ε . 
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The set of outlier points of the set A
AN ε  is denoted by A

AP ε . 
3. Reject the outliers from the set A

AN ε  and build the convex hull of the set \A A
A A AN N Pε ε′ = . 

4. Among the edges of the polygons AconvN ′  and B
BconvN ε  find the edge so that points of the set 

AN ′  and points of the set B
BN ε  are placed in different halfspaces which are generated by the line l  

containing this edge.  
5. The line l  is the separating line for the sets A

AN ε  and B
BN ε . In order to minimize the algorithm’s 

time complexity, we find separating line among the edges containing basis points.  

If ε-nets are not linear separable, we propose to use Voronoi diagram [8] . 

Example 5.  
1. Normal distribution 
The separating line for ε-nets is illustrated in the Fig. 10 

 
Figure 10. The separating line for ε-nets for normal distribution. 

2. Uniform distribution 
The separating line for ε-nets is illustrated in the Fig. 11 

 
Figure 11. The separating line for ε-nets for uniform distribution 

According to the theorem 1, separating line for the ε-nets A
AN ε  and B

BN ε  is ε-separating for the sets 
A  and B . 

Example 6. 
1. Normal distribution 
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The ε-separating line for sets A  and B  is illustrated in the Fig. 12 

 
Figure 12. The ε-separating line for the sets ,A B  which are generated by the normal distribution. 

2. Uniform distribution 
The ε-separating line for sets A  and B  is illustrated in the Fig. 13 

 
Figure 13. The ε-separating line for the sets ,A B  which are generated by the uniform distribution. 

Let’s compare the classification using the algorithm described above and the classification using the 
Support Vector Machine (SVM) [2].  

Example 7. 
1. Normal distribution 
Classification using ε-nets gives 3.0% errors; classification by SVM 2.9% errors (Fig. 14) 

 

 
Figure 14. Comparing classification for the normal distribution 
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2. Uniform distribution
Classification using ε-nets gives 5.9% errors; classification by SVM 5.9% errors (Fig. 15). The separating
lines coincide.

Figure 15. Comparing classification for the uniform distribution 

4   Conclusions 

The algorithm of building ε-nets for two sets is described in the paper. The ε-nets, constructed 

according to this algorithm have size 4

Aε
 
 
  

, which does not depend on the size of the set. It is shown in 

the paper that for separating two sets one can use their ε-nets, which considerably reduce the 
complexity of the separating algorithm for large sets. Two examples in the paper illustrate the 
algorithm’s effectiveness. 
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