Positive Solutions of Some Fourth-order Two Point Boundary Value Problem with All Order Derivatives

Fei Yang ${ }^{1 *}$ and Yuanjian Lin ${ }^{2}$
${ }^{1}$ Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi, P. R. China
${ }^{2}$ Nanchang Institute of Science and Technology, Nanchang 330108, Jiangxi, P. R. China
Email: feixu126@126.com

Abstract

In this paper, by the use of a new fixed point theorem and the Boundary Value Problem's Green function. the existence of at least one positive solutions for the fourth-order two point boundary value problem with all order derivatives $$
\left\{\begin{array}{l} u^{(4)}(t)+u^{\prime \prime}(t)=\lambda f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), t \in[0,1], \\ u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 \end{array}\right.
$$ is considered, where f is a nonnegative continuous function and $\lambda>0,0<A<\pi^{2}$.

Keywords: Fourth-order boundary value problem, fixed point theorem in a cone, positive solution.

1 Introduction

The deformation of an elastic beam in equilibrium state, whose two ends are simply supported, can be described by a fourth-order ordinary equation boundary value problem. Owing to its significance in physics, the existence of positive solutions for the fourth-order boundary value problem has been studied by many authors using nonlinear alternatives of Leray-Schauder, the fixed point index theory, the Krasnosel'skii's fixed point theorem and the method of upper and lower solutions, in reference [1-9][11]. In recent years, there has been much attention on the fourth-order differential equations with one or two parameters.

By the fixed point theorem and theory in cone [4], Bai investigated the following fourth-order two point boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)-\lambda f(u(t))=0, t \in[0,1] \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

where λ is a normal number, $f:[0,1] \times[0, \infty) \longrightarrow[0, \infty)$
By the monotone operator theorem and the critical point theory, Li [7] proved the existence and multiplicities of positive solutions for the fourth-order two point boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)-f(u(t))=0, t \in[0,1], \\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0 .
\end{array}\right.
$$

where $f:[0,1] \times R^{1} \longrightarrow R^{1}$ is continuous.
All the above works were done under the assumption that the first order derivative $u^{\prime} u^{\prime \prime} u^{\prime \prime}$ is not involved explicitly in the nonlinear term f. We are concerned with the existence of positive solutions for the fourth-order two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)+u^{\prime \prime}(t)=\lambda f\left(t, u(t), u^{\prime}(t), u^{\prime \prime}(t), u^{\prime \prime \prime}(t)\right), t \in[0,1] \tag{1.1}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

Throughout, we assume
$\left(H_{1}\right) \lambda>0,0<A<\pi^{2}$;
$\left(H_{2}\right) f:[0,1] \times[0, \infty) \times R \longrightarrow[0, \infty)$ is continuous.

2 Preliminary

Let $Y=C[0,1]$ be the Banach space equipped with the norm $\|u\|_{0}=\max _{t \in[0,1]}|u(t)|$.
Set λ_{1}, λ_{2} be the roots of the polynomial $P(\lambda)=\lambda^{2}+A \lambda$, namely $\lambda_{1}=0, \lambda_{2}=-A$. By $\left(H_{1}\right)$, it is easy to see that $-\pi^{2}<\lambda_{2}<0$.

Let $G_{i}(t, s)(i=1,2)$ be the Green's function of the linear boundary value problem: $-u^{\prime \prime}+\lambda_{i} u(t)=$ $0, u(0)=u(1)=0$.Then, carefully calculation yield:

$$
\begin{gathered}
G_{1}(t, s)=\left\{\begin{array}{l}
s(1-t), 0 \leq s \leq t \leq 1 \\
t(1-s), 0 \leq t \leq s \leq 1
\end{array}\right. \\
G_{2}(t, s)=\left\{\begin{array}{l}
\frac{\sin \sqrt{A} s \sin \sqrt{A}(1-t)}{\sqrt{A} \sin \sqrt{A}}, 0 \leq s \leq t \leq 1 \\
\frac{\sin \sqrt{A} t \sin \sqrt{A}(1-s)}{\sqrt{A} \sin \sqrt{A}}, 0 \leq t \leq s \leq 1
\end{array}\right.
\end{gathered}
$$

Lemma 2.1. ([8]) Suppose $\left(H_{1}\right)\left(H_{2}\right)$ hold. Then for any $g(t) \in C[0,1], B V P$

$$
\left\{\begin{array}{l}
u^{(4)}(t)+A u^{\prime \prime}(t)=g(t), t \in[0,1] \tag{2.1}\\
u(0)=u(1)=u^{\prime \prime}(0)=u^{\prime \prime}(1)=0
\end{array}\right.
$$

has a unique solution

$$
\begin{equation*}
u(t)=\int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) g(\tau) \mathrm{d} \tau \mathrm{~d} s \tag{2.2}
\end{equation*}
$$

where

$$
\begin{gathered}
G_{1}(t, s)=\left\{\begin{array}{l}
s(1-t), 0 \leq s \leq t \leq 1 \\
t(1-s), 0 \leq t \leq s \leq 1
\end{array}\right. \\
G_{2}(s, \tau)=\left\{\begin{array}{l}
\frac{\sin \sqrt{A} \tau \sin \sqrt{A}(1-s)}{\sqrt{A} \sin \sqrt{A}}, 0 \leq \tau \leq s \leq 1 \\
\frac{\sin \sqrt{A} s \sin \sqrt{A}(1-\tau)}{\sqrt{A} \sin \sqrt{A}}, 0 \leq s \leq \tau \leq 1
\end{array}\right.
\end{gathered}
$$

By $u(t)$, we get

$$
\begin{gather*}
u^{\prime}(t)=\int_{t}^{1} \int_{0}^{1} G_{2}(s, \tau) g(\tau) \mathrm{d} \tau \mathrm{~d} s-\int_{0}^{1} \int_{0}^{1} s G_{2}(s, \tau) g(\tau) \mathrm{d} \tau \mathrm{~d} s \tag{2.3}\\
u^{\prime \prime}(t)=-\int_{0}^{1} G_{2}(t, \tau) g(\tau) \mathrm{d} \tau \tag{2.4}\\
u^{\prime \prime \prime}(t)=-\int_{0}^{1} \frac{\partial G_{2}(t, \tau)}{\partial t} g(\tau) \mathrm{d} \tau \tag{2.5}
\end{gather*}
$$

Lemma 2.2. ([8]) Assume $\left(H_{1}\right)\left(H_{2}\right)$ hold. Then one has:
(i) $G_{i}(t, s) \geq 0, \forall t, s \in[0,1]$;
(ii) $G_{i}(t, s) \leq C_{i} G_{i}(s, s), \forall t, s \in[0,1]$;
(iii) $G_{i}(t, s) \geq \delta_{i} G_{i}(t, t) G_{i}(s, s), \forall t, s \in[0,1]$.
where $C_{1}=1, \delta_{1}=1 ; C_{2}=\frac{1}{\sin \sqrt{A}}, \delta_{2}=\sqrt{A} \sin \sqrt{A}$.
Lemma 2.3. If $g(t) \in C[0,1], g(t) \geq 0$, then the unique solution $u(t)$ of the $B V P(2.1)$ satisfies:

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq d_{1}\|u\|_{0}, \min _{\frac{1}{4} \leq t \leq \frac{3}{4}}\left(-u^{\prime \prime}(t)\right) \geq d_{2}\left\|u^{\prime \prime}\right\|_{0}
$$

where $d_{1}=\frac{\sqrt{A} \sin ^{2} \sqrt{A} C_{0} D_{1}}{M_{1}}, d_{2}=\sqrt{A} \sin ^{2} \sqrt{A} D_{2}, C_{0}=\int_{0}^{1} G_{1}(s, s) G_{2}(s, s) \mathrm{d} s$,

$$
M_{1}=\int_{0}^{1} G_{1}(s, s) \mathrm{d} s, D_{i}=\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} G_{i}(t, t),(i=1,2) .
$$

Proof. By (2.4) and (ii) of Lemma2.2, we have

$$
\begin{aligned}
u(t) & =\int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) g(\tau) \mathrm{d} \tau \mathrm{~d} s \\
& \leq C_{1} C_{2} \int_{0}^{1} \int_{0}^{1} G_{1}(s, s) G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau \mathrm{~d} s \\
& \leq C_{1} C_{2} M_{1} \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau
\end{aligned}
$$

So,

$$
\|u(t)\|_{0} \leq C_{1} C_{2} M_{1} \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau
$$

Using (iii) of Lemma2.2, we have:

$$
\begin{aligned}
u(t) & \geq \delta_{1} \delta_{2} \int_{0}^{1} \int_{0}^{1} G_{1}(t, t) G_{1}(s, s) G_{2}(s, s) G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau \\
& =\delta_{1} \delta_{2} C_{0} G_{1}(t, t) \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau \\
& \geq \frac{\delta_{1} \delta_{2} C_{0}}{C_{1} C_{2} M_{1}} G_{1}(t, t)\|u(t)\|_{0}
\end{aligned}
$$

So,

$$
\begin{aligned}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) & \geq \frac{\delta_{1} \delta_{2} C_{0} D_{1}}{C_{1} C_{2} M_{1}}\|u(t)\|_{0} \\
& =\frac{\sqrt{A} \sin ^{2} \sqrt{A} C_{0} D_{1}}{M_{1}}\|u(t)\|_{0} \\
& =d_{1}\|u(t)\|_{0} .
\end{aligned}
$$

By (2.6) and (ii) of Lemma2.2, we have:

$$
\begin{aligned}
-u^{\prime \prime}(t) & =\int_{0}^{1} G_{2}(t, \tau) g(\tau) \mathrm{d} \tau \\
& \leq C_{2} \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau
\end{aligned}
$$

So, we have:

$$
\left\|u^{\prime \prime}(t)\right\|_{0}=C_{2} \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau
$$

Using (iii) of Lemma2.2, We have:

$$
\begin{aligned}
-u^{\prime \prime}(t) & =\int_{0}^{1} G_{2}(t, \tau) g(\tau) \mathrm{d} \tau \\
& \geq \delta_{2} \int_{0}^{1} G_{2}(t, t) G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau \\
& =\delta_{2} G_{2}(t, t) \int_{0}^{1} G_{2}(\tau, \tau) g(\tau) \mathrm{d} \tau \\
& \geq \frac{\delta_{2} G_{2}(t, t)}{C_{2}}\left\|u^{\prime \prime}(t)\right\|_{0}
\end{aligned}
$$

So,

$$
\begin{aligned}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}}\left(-u^{\prime \prime}(t)\right) & \geq \frac{\delta_{2} D_{2}}{C_{2}}\left\|u^{\prime \prime}(t)\right\|_{0} \\
& =\sqrt{A} \sin ^{2} \sqrt{A} D_{2}\left\|u^{\prime \prime}(t)\right\|_{0} \\
& =d_{2}\left\|u^{\prime \prime}(t)\right\|_{0}
\end{aligned}
$$

Let X be a Banach space and $K \subset X$ in a cone. Suppose $\alpha, \beta: X \rightarrow R^{+}$are two continuous convex functionals satisfying $\alpha(\lambda u)=|\lambda| \alpha(u), \beta(\lambda u)=|\lambda| \beta(u)$, for $u \in X, \lambda \in R$, and $\|u\| \leq M \max \{\alpha(u), \beta(u)\}$, for $u \in X$ and $\alpha(u) \leq \alpha(v)$ for $u, v \in K, u \leq v$, where $M>0$ is a constant.

Theorem 2.1. ([10]) Let $r_{2}>r_{1}>0, L>0$ be constants and

$$
\Omega_{i}=\left\{x \in X: \alpha(x)<r_{i}, \beta(x)<L\right\}, i=1,2,
$$

two bounded open sets in X. Set

$$
D_{i}=\left\{x \in X: \alpha(x)=r_{i}\right\}, i=1,2 .
$$

Assume $T: K \rightarrow K$ is a completely continuous operator satisfying
$\left(A_{1}\right) \alpha(T x)<r_{1}, x \in D_{1} \bigcap K ; \alpha(T x)>r_{2}, x \in D_{2} \bigcap K ;$
$\left(A_{2}\right) \beta(T x)<L, x \in K$;
$\left(A_{3}\right)$ there is a $p \in\left(\Omega_{2} \bigcap K\right) \backslash\{0\}$ such that $\alpha(p) \neq 0$ and $\alpha(x+\lambda p) \geq \alpha(x)$, for all $x \in K$ and $\lambda \geq 0$.
Then T has at least one fixed point in $\left(\Omega_{2} \backslash \bar{\Omega}_{1}\right) \bigcap K$.

3 The main results

Let $X=C^{4}[0,1]$ be the Banach space equipped with the norm $\|u\|=\max _{t \in[0,1]}|u(t)|+\max _{t \in[0,1]} \mid$ $u^{\prime}(t)\left|+\max _{t \in[0,1]}\right| u^{\prime \prime}(t)\left|+\max _{t \in[0,1]}\right| u^{\prime \prime \prime}(t) \mid$, and $K=\left\{u \in X: u(t) \geq 0, u^{\prime \prime}(t) \leq 0, \min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq\right.$ $\left.d_{1}\|u\|_{0}, \max _{\frac{1}{4} \leq t \leq \frac{3}{4}}\left(-u^{\prime \prime}(t)\right) \geq d_{2}\left\|u^{\prime \prime}\right\|_{0}\right\}$ is a cone in X.

Define two continuous convex functionals $\alpha(u)=\max _{t \in[0,1]}|u(t)|+\max _{t \in[0,1]}\left|u^{\prime \prime}(t)\right|$ and $\beta(u)=\max _{t \in[0,1]}\left|u^{\prime}(t)\right|+$ $+\max _{t \in[0,1]} \mid u^{\prime \prime \prime}(t)$, for each $u \in X$, then $\|u\| \leq 2 \max \{\alpha(u), \beta(u)\}$ and $\alpha(\lambda u)=|\lambda| \alpha(x), \beta(\lambda u)=|\lambda| \beta(u)$, for $u \in X, \lambda \in R ; \alpha(u) \leq \alpha(v)$ for $u, v \in K, u \leq v$.

In the following, we denote

$$
\begin{aligned}
B & \left.=\int_{0}^{1} G_{2}(\tau, \tau)\right) \mathrm{d} \tau \\
F & =\int_{0}^{1} \frac{\sin \sqrt{A} \tau}{\sin \sqrt{A}} \mathrm{~d} \tau \\
\eta_{0} & =\frac{1}{C_{2} B\left(C_{1} M_{1}+1\right)}, \eta_{1}=\frac{1}{\int_{\frac{1}{4}}^{\frac{3}{4}} G_{2}\left(\frac{1}{2}, \tau\right) \mathrm{d} \tau}, \eta_{2}=\frac{2}{3 C_{2} B+4 F}, \theta=\left\{\frac{d_{1}}{2}, \frac{d_{2}}{2}\right\} .
\end{aligned}
$$

We will suppose that there are $L>b>\theta b>c>0$ such that $f\left(t, u, v, u_{0}, v_{0}\right)$ satisfies the following growth conditions:
$\left(H_{3}\right) f\left(t, u, v, u_{0}, v_{0}\right)<\frac{c \eta_{0}}{\lambda}$, for $\left(t, u, v, u_{0}, v_{0}\right) \in[0,1] \times[0, c] \times[-L, L] \times[-c, 0] \times[-L, L]$,
$\left(H_{4}\right) f\left(t, u, v, u_{0}, v_{0}\right) \geq \frac{b \eta_{1}}{\lambda}$, for $\left(t, u, v, u_{0}, v_{0}\right) \in\left[\frac{1}{4}, \frac{3}{4}\right] \times[\theta b, b] \times[-L, L] \times[-b, 0] \times[-L, L] \bigcup\left[\frac{1}{4}, \frac{3}{4}\right] \times$ $[0, b] \times[-L, L] \times[-b,-\theta b] \times[-L, L]$,
$\left(H_{5}\right) f\left(t, u, v, u_{0}, v_{0}\right)<\frac{L \eta_{2}}{\lambda}$, for $\left(t, u, v, u_{0}, v_{0}\right) \in[0,1] \times[0, b] \times[-L, L] \times[-b, 0] \times[-L, L]$.
Let $f_{1}\left(t, u, v, u_{0}, v_{0}\right)=f_{1}\left(t, u^{*}, v^{*}, u_{0}^{*}, v_{0}^{*}\right)$, where

$$
\begin{aligned}
u^{*} & =\max \{\max (u, 0), b\}, & v^{*} & =\max \{\max (v,-L), L\}, \\
u_{0}^{*} & =\max \left\{\max \left(u_{0},-b\right), 0\right\}, & v_{0}^{*} & =\max \{\max (v,-L), L\} .
\end{aligned}
$$

We denote

$$
\begin{align*}
(T u)(t) & =\lambda \int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \tag{3.1}\\
(T u)^{\prime}(t)= & \lambda\left[\int_{t}^{1} \int_{0}^{1} G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right. \\
& \left.-\int_{0}^{1} \int_{0}^{1} s G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right] \tag{3.2}\\
(T u)^{\prime \prime}(t) & =-\lambda \int_{0}^{1} G_{2}(t, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \tag{3.3}\\
(T u)^{\prime \prime \prime}(t) & =-\lambda \int_{0}^{1} \frac{\partial G_{2}(t, \tau)}{\partial t} f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \tag{3.4}
\end{align*}
$$

Lemma 3.1. Suppose $\left(H_{1}\right)$ hold. Then $T: K \rightarrow K$ is completely continuous. Suppose $\left(H_{1}\right)\left(H_{2}\right)$ hold. Then $T: K \rightarrow K$ is completely continuous.
Proof. For $u \in K$, by (3.1) and (3.3) with Lemma 2.2, there is $T u>0,(T u)^{\prime \prime} \leq 0$. so

$$
\begin{aligned}
\|T u\|_{0} & =\max _{t \in[0,1]}\left|\lambda \int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \lambda \int_{0}^{1} \int_{0}^{1} C_{1} C_{2} G_{1}(s, s) G_{2}(\tau, \tau) f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \\
& =\lambda C_{1} C_{2} M_{1} \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau, \\
\left\|(T u)^{\prime \prime}\right\|_{0} & =\max _{t \in[0,1]}\left|-\lambda \int_{0}^{1} G_{2}(t, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau\right| \\
& \leq \lambda C_{2} \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau
\end{aligned}
$$

By Lemma 2.2, (ii) and (3.1) (3.3), we have:

$$
\begin{aligned}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) & =\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} \lambda \int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \\
& \geq \lambda \delta_{1} \delta_{2} \int_{0}^{1} \int_{0}^{1} G_{1}(t, t) G_{1}(s, s) G_{2}(s, s) G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \lambda \delta_{1} \delta_{2} C_{0} G_{1}(t, t) \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \lambda \delta_{1} \delta_{2} C_{0} D_{1} \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \frac{\lambda \delta_{1} \delta_{2} C_{0} D_{1}}{\lambda C_{1} C_{2} M_{1}}\|T u\|_{0} \\
& =d_{1}\|T u\|_{0}
\end{aligned}
$$

$$
\begin{aligned}
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}}\left(-(T u)^{\prime \prime}(t)\right) & =\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} \lambda \int_{0}^{1} G_{2}(t, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \lambda \delta_{2} \int_{0}^{1} G_{2}(t, t) G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \lambda \delta_{2} G_{2}(t, t) \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \frac{\lambda \delta_{2} G_{2}(t, t)}{C_{2}}\left\|(T u)^{\prime \prime}\right\|_{0} \\
& \geq \frac{\lambda \delta_{2} D_{2}}{\lambda C_{2}}\left\|(T u)^{\prime \prime}\right\|_{0} \\
& =d_{2}\left\|(T u)^{\prime \prime}\right\|_{0},
\end{aligned}
$$

So we can get $T(K) \subset K$. Let $B \subset K$ is bounded, it is clear that $T(B)$ is bounded. Using $f_{1}, G_{1}(t, s), G_{2}(t, s)$ is continuous, We show that $T(B)$ is equicontinuous. By the Arzela-Ascoli theorem, a standard proof yields $T: K \rightarrow K$ is completely continuous.

Theorem 3.1. Suppose $\left(H_{1}\right)-\left(H_{5}\right)$ hold. Then BVP (1.1) has at least one positive solution $u(t)$ satisfying $c<\alpha(u)<b, \beta(u)<L$.

Proof. Take $\Omega_{1}=\{u \in X:|\alpha(u)|<c,|\beta(u)<L|\}, \Omega_{2}=\{u \in X:|\alpha(u)|<b,|\beta(u)<L|\}$, two bounded open sets in X, and $D_{1}=\{u \in X: \alpha(u)=c\}, D_{2}=\{u \in X: \alpha(u)=b\}$.

By Lemma 3.1, $T: K \rightarrow K$ is completely continuous, and there is a $p \in\left(\Omega_{2} \bigcap K\right) \backslash\{0\}$ such that $\alpha(p) \neq 0$ for all $u \in K$ and $\lambda \geq 0$.

$$
\begin{aligned}
\|T u\|_{0} & =\left|\lambda \int_{0}^{1} \int_{0}^{1} G_{1}(t, s) G_{2}(s, \tau) f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \lambda C_{1} C_{2} M_{1} \int_{0}^{1} G_{2}(\tau, \tau) f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \leq \lambda C_{1} C_{2} M_{1} \int_{0}^{1} G_{2}(\tau, \tau) \mathrm{d} \tau \times \frac{c \eta_{0}}{\lambda} \\
& =C_{1} C_{2} M_{1} B c \eta_{0}, \\
\left\|(T u)^{\prime \prime}\right\|_{0} & =\left|-\lambda \int_{0}^{1} G_{2}(t, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau\right| \\
& \leq \lambda C_{2} \int_{0}^{1} G_{2}(\tau, \tau) \mathrm{d} \tau \times \frac{c \eta_{0}}{\lambda} \\
& =C_{2} B c \eta_{0},
\end{aligned}
$$

Hence, for $u \in D_{1} \cap K, \alpha(u)=c$, we get

$$
\alpha(T u)=\|T u\|_{0}+\left\|(T u)^{\prime \prime}\right\|_{0}<C_{1} C_{2} M_{1} B c \eta_{0}+C_{2} B c \eta_{0}=\left(C_{1} C_{2} M_{1} B+C_{2} B\right) c \eta_{0} .
$$

Whereas for $u \in D_{2} \bigcap K, \alpha(u)=b$, there is $\|u\|_{0} \geq \frac{b}{2}$ or $\left\|u^{\prime \prime}\right\|_{0} \geq \frac{b}{2}$, By Lemma 2.4, we get

$$
\min _{\frac{1}{4} \leq t \leq \frac{3}{4}} u(t) \geq d_{1}\|u\|_{0} \geq \frac{d_{1} b}{2} \text { or } \min _{\frac{1}{4} \leq t \leq \frac{3}{4}}\left(-u^{\prime \prime}(t)\right) \geq \frac{d_{2} \xi}{c_{2}}\left\|u^{\prime \prime}\right\|_{0} \geq \frac{d_{2} b}{2} .
$$

Therefore, from $\left(H_{4}\right)$ and (3.3), we have

$$
\begin{aligned}
\left|(T u)^{\prime \prime}\left(\frac{1}{2}\right)\right| & =\left|\lambda \int_{0}^{1} G_{2}\left(\frac{1}{2}, \tau\right) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau\right| \\
& \geq \lambda \int_{\frac{1}{4}}^{\frac{3}{4}} G_{2}\left(\frac{1}{2}, \tau\right) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \\
& \geq \lambda \times \frac{b \eta_{1}}{\lambda} \int_{\frac{1}{4}}^{\frac{3}{4}} G_{2}\left(\frac{1}{2}, \tau\right) \mathrm{d} \tau \\
& =b .
\end{aligned}
$$

So,

$$
\alpha(T u) \geq\left|(T u)^{\prime \prime}\left(\frac{1}{2}\right)\right|=b
$$

By (3.2) (3.4) and $\left(H_{5}\right)$, we have

$$
\begin{aligned}
\left\|(T u)^{\prime}\right\|_{0} & =\max _{t \in[0,1]} \mid \lambda \int_{t}^{1} \int_{0}^{1} G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \\
& -\int_{0}^{1} \int_{0}^{1} s G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s \mid \\
& <\max _{t \in[0,1]}\left|\lambda \int_{t}^{1} \int_{0}^{1} G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& +\max _{t \in[0,1]}\left|\int_{0}^{1} \int_{0}^{1} s G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \lambda\left|\int_{0}^{1} \int_{0}^{1}(1+s) G_{2}(s, \tau) f_{1}\left(\tau, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \lambda \times \frac{\eta_{2} L}{\lambda}\left|\int_{0}^{1} \int_{0}^{1}(1+s) G_{2}(s, \tau) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \frac{3 C_{2}}{2} \eta_{2} L \times\left|\int_{0}^{1} G_{2}(\tau, \tau) \mathrm{d} \tau\right| \\
& =\frac{3 C_{2} B}{2} \eta_{2} L, \\
\left\|(T u)^{\prime \prime \prime}\right\|_{0} & =\max _{t \in[0,1]}\left|-\lambda \int_{0}^{1} \int_{0}^{1} \frac{\partial G_{2}(t, \tau)}{\partial t} f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right) \mathrm{d} \tau \mathrm{~d} s\right| \\
& \leq \lambda \int_{0}^{1} 2 \frac{\sin \sqrt{A} \tau}{\sin \sqrt{A}}\left|f_{1}\left(t, u(\tau), u^{\prime}(\tau), u^{\prime \prime}(\tau), u^{\prime \prime \prime}(\tau)\right)\right| \mathrm{d} \tau \\
& \leq \lambda \times \frac{\eta_{2} L}{\lambda} 2 \int_{0}^{1} \frac{\sin \sqrt{A} \tau}{\sin \sqrt{A}} \mathrm{~d} \tau \\
& =2 F \eta_{2} L .
\end{aligned}
$$

Hence, for

$$
\beta(T u)=\left\|(T u)^{\prime}\right\|_{0}+\left\|(T u)^{\prime \prime \prime}\right\|_{0}<\frac{3 C_{2} B}{2} \eta_{2} L+2 F \eta_{2} L<\left(\frac{3 C_{2} B}{2}+2 F\right) \eta_{2} L=L
$$

Theorem 2.1 implies there is $u \in\left(\Omega_{2} \backslash \bar{\Omega}_{1}\right) \bigcap K$ such that $u=T u$. So, $u(t)$ is a positive solution for BVP (1.1) satisfying

$$
c<\alpha(u)<b, \beta(u)<L
$$

Thus, Theorem 3.1 is completed.

4 Conclusion

In this paper, the existence of at least one positive solutions for the fourth-order two point boundary value problem with all order derivatives is considered. By using a new cone fixed point theorem, the sufficient conditions for the existence of positive solutions of the boundary value problem are verified.

References

1. Z.B. Bai, The method of lower and upper solution for a bending of an elastic beam equation, J. Math. Anal. Appl. 248 (2000) 195-202.
2. R. Ma, J. ZHANG, S. Fu. The Method of Lower and Upper Solutions for Fourth-Order Two-Point Boundary Value Problems. J. Math. Anal. Appl. 1997, 215: 415-422.
3. A. B. LIU. Positive Solutions of Fourth-Order Two-Point Boundary Value Problems. Appl. Math. Comput. 2004, 148: 407-420.
4. Z.B. BAI, H.Y. Wang. On the Positive Solutions of Some Nonlinear Fourth-Order Beam Equations. J. Math. Anal. Appl. 2002, 270: 357-368.
5. D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, New york, 1988.
6. Q.L. Yao, Local existence of multiple positive solutions to a singular cantilever beam equation, J. Math. Anal. Appl. 363 (2010) 138-154.
7. F. LI, Q. ZHANG, Z. LIANG. Existence and Multiplicity of Solutions of a Kind of Fourth-Order Boundary Value Problem. Nonlinear Anal, 2005, 62: 803-816.
8. Y.X. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl. 281 (2003) 477-484.
9. X.Z Lv, L.B Wang, M.H Pei, Monotone positive solution of a fourth-order BVP with integral boundary conditionsčňBoundary Value Problems (2015) 2015:172,1-12.
10. Yanping Guo, Positive solutions for three-point boundary value problems with dependence on the first order derivatives, Journal of Mathematical Analysis and Applications 290 (2004) 291-301.
11. Y.P Guo, F Yang, Y.C Liang, Positive solutions for nonlocal fourth-order boundary value problems with allorder derivatives, Boundary Value Problems (2012) 2012:29, 1-21.
