International Journal of Pharmaceutical Sciences and Drug Research 2018; 10(5): 394-405

Research Article

ISSN: 0975-248X CODEN (USA): IJPSPP

(CC) BY-NC-SA

Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment of Severe Malaria: A Meta-Analysis Approach

Jeetu Gangil^{1*}, Bhaswat S. Chakraborty²

¹Department of Pharmacology, KB Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Near GH6, Pujya Mota Cir, Sector 23, Gandhinagar- 382023, Gujarat, India ²Institute of Pharmacy, Nirma University, S-G Highway, Ahmedabad- 382481, Gujarat, India

Copyright © 2018 Jeetu Gangil *et al.* This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

ABSTRACT

Despite progress in antimalarial management and intensive care, the prevalence of malaria is growing and the mortality rate is very high. Yet even with timely treatment of quinine in maximum doses, the death in patients of severe malaria is very high. The successive synthesis of artemether and artesunate has supplied highly successful substitutes to quinine. This systematic review and meta-analysis approach provides a comparative outcome analysis of Artemisinin derivatives (intervention) and other antimalarials (comparison) in the paediatric and adult population. From the year 1985 to the year 2015, studies were recognized using database searches, citation searches of selected articles. The electronic databases searched engines: Pubmed, Web of Science, Global Health, Medline & Cochrane review of Journals up to April 2015. We selected published randomized controlled clinical trials information comparing artemisinin derivatives and quinine for the management of severe malaria in adult and paediatric population as per WHO malaria treatment guideline, any gender, age group less than or greater than 15 years who were diagnosed with severe malaria. The primary outcome was efficacy in terms of parasite clearance time (PCT), Parasite clearance at D7 and D28 and fever clearance time (FCT). The secondary outcome was the mortality and adverse events. We measured 95% confidence interval by the using of REVMAN software version 5.3 for meta-analysis and summarized the collected data on the basis of characteristics of inclusion criteria of articles. We included total 33 RCTs, enrolling 8396 paediatric and adult patients who were suffering from severe malaria. Artemisinin and its derivatives showed mean parasite clearance time (PCT) (MD -8.50 hours, 95% CI -9.41 to -7.60) and mean fever clearance time (FCT) (MD -9.51 hours, 95% CI -11.22 to -7.81) P<0.00001 statistically significant as compared to quinine therapy. Artemisinin and its derivatives showed a statistically significant clearance of parasites when compared to quinine at Day 7 (OR 0.41, 95% CI 0.21, 0.81, random effect model, P=0.01). Overall artemisinin derivatives has shown more parasite clearance at D28 than quinine group (Odds ratio 0.54, 95% CI 0.23, 1.29, random effect model, P=0.17). We evaluated secondary outcomes mortality which showed artemisinin or its derivatives a statistically significant mortality reduction as compared to quinine. (Odds Ratio 0.77, 95% CI 0.67 to 0.89; 27 trials, 8396 participants) P=0.0002 and also showed a statistically significant reduction in the adverse events as compared with quinine (RR0.73, 95% CI 0.62 to 0.87) P=0.003. An overall positive result was found with artemisinin derivatives across all evaluated outcomes.

Keywords: Artesunate, Arteether, Artemether, Antimalarial, Children, Adult, Severe Malaria.

DOI: 10.25004/IJPSDR.2018.100506

Int. J. Pharm. Sci. Drug Res. 2018; 10(5): 394-405

*Corresponding author: Mr. Jeetu Gangil

Address: Ph.D Scholar, Department of Pharmacology, KB Institute of Pharmaceutical Education and Research, Kadi Sarva Vishwavidyalaya, Near GH6, Pujya Mota Cir, Sector 23, Gandhinagar- 382023, Gujarat, India E-mail 🖂: jeetu.gangil@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 25 July, 2018; Revised: 31 August, 2018; Accepted: 04 September, 2018; Published: 23 September, 2018

INTRODUCTION

Malaria is one of the major health concerns in most of the tropical countries.^[1] It constitutes a medical crisis as it can quickly lead to complications and death without timely and suitable management. Malaria is caused by protozoa of the genus Plasmodium and humans can be affected by one or more of the following species: P. falciparum, P. vivax, P. ovale, and P. malariae. Despite progress in antimalarial management and intensive care, the prevalence of malaria is increasing, and the mortality rate is very high. ^[2] WHO report shows that, in 2015 there were approximately 212 million new malaria cases throughout the world and the estimated deaths due to malaria were about 429 000. The number of Artemisinin based combination therapy treatment courses obtained from manufacturers raised from 187 million in 2010 to 393 million in 2013, globally. [3]

The drug suggested for the management of severe malaria in South America, Africa, and most of Asia is quinine. Yet even with timely treatment of quinine in maximum doses, the death in patients of severe malaria is very high. An important feature of severe malaria is cerebral malaria, has a treated death rate of around 15-20%. Due to different vital organ failure, the death rates can increase by more than 30%. The rediscovery artemisinin in China in 1972 and the successive synthesis of artemether and artesunate have supplied highly successful substitutes to quinine. ^[4]

There are four formulations of artemisinin: artesunate, arteether, dihydroartemisinin and artemether. ^[2] The artemisinin derivatives are quick acting with the clearance of parasites from the blood occurring within 48 h in most cases and effective of all the other antimalarial drugs. They can be administered once in a day and are safer to administer than quinine. ^[4] These drugs if used early help in preventing clinical deterioration and have specific benefits over quinine drugs in the management of severe malaria. ^[5]

In patients with severe malaria, pilot randomised comparison results of IV artesunate and quinine in Thailand showed that death rate in the quinine treated group was 22% and in the artesunate group was 12%. The major pharmacodynamic contrast between quinine and artesunate is the much wider stage specificity of action of the artemisinin derivatives. [4] The main aim of management for malaria patients is to reduce the mortality and the development of its complications. The clinical response rate and parasites clearance can provide significant comparative data between alternative therapies. ^[5] The artemisinin derivatives have confirmed their effectiveness in the management of malaria, including severe, cerebral malaria and multi-resistant malaria. They earn a significant place in the treatment of malaria due to their efficacy, lack of major adverse effects and low costs of manufacturing and distribution. ^[1] We conducted this meta-analysis to get stronger evidence on treatment outcomes of malaria in adult and children population. This systematic review and meta-analysis approach sharing the comparative outcome analysis of Artemisinin derivatives (intervention) and other antimalarial such as quinine, chloroquine (comparison) in the paediatric and adult population. Clinical outcome in various aspects such as mortality, FCT, PCT, parasite clearance at D7, parasite clearance at D28 and adverse events were evaluated.

MATERIALS AND METHODS

Types of studies

Study searched; randomized clinical trials (RCT) of treatment comparator, abstracts or full article, review article.

Types of participants

Children and adults with complicated malaria disease as defined by the WHO, Study subjects will belong to any gender, any country, with confirmed malaria infection through RDT or by blood slide test/ microscopy age less than and more than 15 years. Pregnant or lactating women, uncomplicated malaria patients were excluded.

Types of Interventions

RCT or study was selected in which the route of administration was intramuscular, intravenous route of administration or both, rectal and followed by oral antimalarial treatment as applicable. We excluded trials with any other routes of administration than described above.

Outcomes

Primary outcome was to evaluate the clinical characteristic of malaria symptoms; Fever Clearance Time (FCT), Parasite clearance time (PCT in hours), Parasite clearance at D7 and D28. The secondary outcome was to evaluate morality and adverse effects due to severe malaria during the treatment.

Studies inclusion and search methodology

From the year 1985 to the year 2015, studies were recognized using database searches, citation searches of selected articles. The electronic databases searched engines: Pubmed, Web of Science, Global Health, Medline & Cochrane review of Journals. In this metaanalysis, individual study is provided with a coding consisting of name of the investigator, initial three alphabet of Country code where the study was conducted, the study year published in the respective journal. Keywords were used for searching in the database; Antimalarial Drug, Quinine, Drug Resistance, Efficacy, Safety, and Tolerability, Malaria, Artemisinin, Dihydroartemisinin, Artesunate, Artemether, Arteether, severe malaria, complicated malaria, paediatrics and children.

Data extraction and management

We extracted complete data from the included RCT articles and collected in the datasheet as per predefined outcomes for meta-analysis. The primary measure of effectiveness was parasite clearance at D7, D28, Parasite clearance time (hours) and fever clearance time (hours) and secondary measure mortality and adverse effects. (Fig 1: Flow Chart for Identification and inclusion of studies).

Data Synthesis

Analysis of data was performed through Review Manager (updated software version Revman 5.3) pooling data where appropriate. Standard methods of Meta-analysis, e.g., Peto-Mantel-Haenszel method to test for differences in odds ratio or relative risk in terms of above-mentioned outcomes was used for this study. The mean difference was calculated for data of FCT, PCT and Parasite clearance is compared on day 7 and day 28. We included total thirty- seven RCT to evaluate for our outcome analysis.

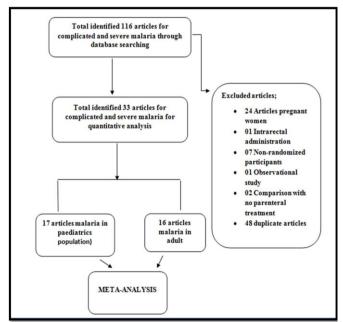


Fig. 1: Flow Chart for Identification and inclusion of studies

RESULTS

All collected and evaluated thirty-three RCT studies (8396 participants) showed comparative outcome in artemisinin derivatives other and antimalarials paediatric and adult patients. We included RCT studies mainly three artemisinin given intervention derivatives: arteether, artemether and artesunate; artesunate (ninestudies; ArjenAQUAMATAFR2010 [6], BirkuETH1999 ^[7], HienVIE1991 ^[8], HienVIE1992 ^[9], LooareesuwanTHA1997 ^[10], MohantyIND2004 [11] PhuongVIE1997^[12], ThweMYA1996^[13], VinhVIE1992 ^[14]), Artemether (twenty-two studies; AdamAFR2002 [15] [16] AguwaNIG2010 BunnangTHI1992 [17] DanisAFR1996 [18], HienVIE1996 [19], HudaIND2003 [20], [21] KarbwangTHI1992 KarbwangTHI1994 [22] [23] [24] KarbwangTHI1995 MintaMLI2005 [25] [26] MurphyKEN1996 OjuawoNIG1998 [27] [28] OlumeseNIG1999 OsonugaNIG2009 PhuVIE2010 [29], SattiSUD2002 [30], SeatonPNG1998 [31], TaylorMAL1998^[32], [33] VanhensbroekGAM1996 WalkerNIG1993 [34], WhiteGAM1992 [35], WinMYA1992 ^[36]) and arteether (two studies; MoyouCAM2001 ^[37], ThumaZAM2000 [38]). These RCT conducted in various countries; Africa (4 studies), Nigeria (5 studies), Thailand (5 studies), India (2 studies), Sudan (01 studies), Malawi (1 study), Mali (1 study), Gambia (2 studies), Cameroon (1 study), Kenya (1 study), Vietnam (6 studies) and Zambia (1 study), Myanmar (2 studies), Papua New Guinea (1 study) detail showed in table 1.

Dose and frequency

Included RCT studies showed variability in dose of artesunate derivatives and quinine as per WHO guideline, ArjenAQUAMATAFR2010 malaria [6] Artesunate was given either intramuscularly (i.m.) or intravenously (i.v.) initial dose 2.4 mg per kg at the period of admission at twelve hours of span following once in a day until patient was conscious to take oral antimalarial drug though Quinine was given 20 mg per kg initial dose in 5% of dextrose thrice a day until patient was responsive to take oral antimalarial drug. In case of intramuscular administration, similar doses were given as in intravenous though quinine was diluted in normal saline and given into the anterior thigh of patients. BirkuETH1999 [7]; Artesunate was given intramuscularly 4250 mg (Initial dose 750 mg following 500 mg at twelfth hour, then 500 mg every day from day 2 to day 7) Quinine was administered intravenously 20 mg/kg over four hour followed by 10 mg/kg at 8 hour interval, till patient was responsive to take oral therapy.

HienVIE1991 [8]; (Artesunate i.m + MQ10 vs Artesunate i.v + MQ10) Artesunate was given 2 mg/kg at the initial dose followed by 1 mg/kg at 12th and 24th hour, then every day till the patient was conscious to take oral drugs + MQ 500 mg. HienVIE1992 [9]; (Artemisinin suppositories + Mefloquine 10 vs Artesunate i.v + MQ10 vs Quinine i.v) Artemisinin suppositories (600 mg initially, 4 hour, 400 mg at 24 hour, 32 hour, 48 hour and 56 hour) + MQ 500 mg Artesunate intravenously (60 mg initially and 4 h, 60 mg at 24 hour and 48 hour) + MQ 500 mg (single dose, sequential) Quinine 500 mg, 8 hours interval for 14 days. LooareesuwanTHA1997 [10]; (Artesunate suppositories 1200 + MQ25 vs Artesunate suppositories 1600 + MQ25) Artesunate 1200: 200 mg initially, 12 h followed by 24 h, 36 h, 48 h and 60 h + MQ1250 mg (sequential, 750 mg at 72 h & 500 mgat 84 h), Artesunate1600: 200 mg initially, followed by 4 h, 8 h, 12 h, 24 h, 36 h, 48 h and 60 h + MQ1250 (as previous).

Jeetu Gangil et al. / Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment

Table 1: Characteristics of included trials

S. No	Trial	Country	Study population	Inclusion	N Artemisinin derivatives/ Other Antimalarial	ROA	Outcome
1	ArjenAQUAMATAFR2 010	Africa Multicentre	<15 Yrs	PS +CF of severe malaria	2712/2713	A=i.m./I.V.Q=I. M.	Mortality
2	BirkuETH1999	Africa	>15 years	PS +CF of severe malaria	32/33	A=I.M., Q=I.V	Mortality, Parasite clearance at D and D28
3	HienVIE1991	Vietnam	>15 years	PS +CF of severe malaria	18/30	A=I.M/I.V	Mortality
4	HienVIE1992	Vietnam	>15 years	PS +CF of severe malaria	31/30	A=I.V/pr, Q=I.V	Mortality
5	LooareesuwanTHA1997	Thailand	>15 years	PS + CF of severe malaria	63/63	A=pr MQ=PO	Mortality, FCT, PCT, Al
6	MohantyIND2004	India	Paediatric, Age; NS	PS + CF of severe malaria	40/40	A=I.V, Q=I.M	FCT, Mortality, PC FCT,
7	PhuongVIE1997	Vietnam	<15 Yrs	PS + CF of severe malaria	37/35	A=I.M., Q=I.V.	Mortality, PCT, Parasite clearance at D
8	ThweMYA1996	Myanmar	>15 years	PS + CF of severe malaria	54/54	A=pr	Mortality, FCT, PCT
9	VinhVIE1992	Vietnam	>15 years	PS + CF of severe malaria	A=175	A=i.m/i.v/pr	Mortality, PCT, FCT
10	AdamAFR2002	Africa Multicentre	Paediatric, Age; NS	PS + CF of severe malaria	20/21	A=I.M., Q=I.V.	FCT, Mortality, AI PCT
11	AguwaNIG2010	Nigeria	<12 Yrs	PS + CF of severe malaria	44/46	A=I.M., Q=I.V./I.M.	Mortality
12	BunnangTHI1992	Thailand	>15 years	PS + CF of severe malaria	A=106	A=I.M	FCT, PCT
13	DanisAFR1996	Africa	>15 years	PS + CF of severe malaria	133/135	A=I.M Q=I.V	Mortality, FCT, PCT
14	HudaIND2003	India	<14 Yrs	PS + CF of severe malaria	23/23	A=I.M., Q=I.V.	Mortality, FCT, PCT
15	HienVIE1996	Vietnam	>15 years	PS + CF of severe malaria	284/276	A=I.M Q-I.M	Mortality, Al Parasite clearance at I FCT, PCT,
16	KarbwangTHI1992	Thailand	>15 years	PS + CF of severe malaria	14/12	A=I.M Q=I.V	Mortality, parasite clearance at I
17	KarbwangTHI1994	Thailand	>15 years	PS + CF of severe malaria	28	A=I.M	Parasite clearance at I
18	KarbwangTHI1995	Thialand	>15 years	PS + CF of severe malaria	50/52	A=I.M Q=I.V	PCT, FCT, A Mortality
19	MintaMLI2005	Mali	<15 Yrs	PS + CF of severe malaria	33/34	A=I.M., Q=I.V.	AE, FCT, Mortality, PC
20	MurphyKEN1996	Kenya	<12 Yrs	PS + CF of severe malaria	89/71	A=I.M., Q=I.V.	AE, FCT, Mortality, PC
21	OjuawoNIG1998	Nigeria	<6 Yrs	PS + CF of severe malaria	18/19	A=I.M., Q=I.V.	Mortality, FCT, Mortality, Parasite
22	OlumeseNIG1999	Nigeria	<5 Yrs	PS +CF of severe malaria	54/49	A=I.M., Q=I.V.	clearance at D7, Parasite clearance at D28, FCT, PC
23	OsonugaNIG2009	Nigeria	<12 Yrs	PS + CF of severe malaria	16/16	A=I.M., Q=I.V.	Mortality, PC
24	PhuVIE2010	Vietnam	>15 years	PS +CF of severe malaria	370	A=I.M	Death, PCT, FCT, AE
25	SattiSUD2002	Sudan	<15 Yrs	PS + CF of severe malaria	38/39	A=I.M., Q=I.V.	Mortality, FCT, PCT Mortality,
26	SeatonPNG1998	Papua New Guinea	>15 years	PS + CF of severe malaria	15/18	A=I.M Q=I.V	Parasite clearance at D28
27	TaylorMAL1998	Malawi	Paediatric,	PS + CF of	83/81	A=I.M., Q=I.V.	Mortality,

Int. J. Pharm. Sci. Drug Res. September-October, 2018, Vol 10, Issue 5 (394-405)

Jeetu Gangil <i>et al.</i>	/ Evaluation of Efficad	y and Safety	of Artemisinin	Derivatives for	Treatment
----------------------------	-------------------------	--------------	----------------	-----------------	-----------

			Age; NS	severe malaria			Parasite clearance at D7, Parasite clearance at D28, FCT, PCT
28	VanhensbroekGAM1996	Gambia	<10 Yrs	PS + CF of severe malaria	288/288	A=I.M., Q=I.V.	AE, Mortality
29	WalkerNIG1993	Nigeria	<5 Yrs	PS + CF of severe malaria	25/29	A=I.M., Q=I.V.	Mortality, FCT, PCT
30	WhiteGAM1992	Gambia	>15 years	PS + CF of severe malaria	21/22	A=I.M, CLQ=I.M	Mortality
31	WinMYA1992	Myanmar	>15 years	PS + CF of severe malaria	NS	A=I.M/I.V Q=I.V	Parasite clearance at D28, Mortality
32	MoyouCAM2001	Cameroon	<10 Yrs	PS + CF of severe malaria	51/51	A=I.M., Q=I.V.	Mortality, FCT, PCT
33	ThumaZAM2000	Zambia	<10 Yrs	PS + CF of severe malaria	48/44	A=I.M., Q=I.V.	Mortality, FCT, PCT

A = Artemisinin derivative, AE = adverse events, CF = clinical features, CRT = coma resolution time, FCT = fever clearance time, im = intramuscular, iv = intravenous, N = number of participants, NS = not specified, PCT = parasite clearance time, PS = peripheral smear showing asexual forms of Plasmodium

MohantyIND2004 [11]; first group of patients received quinine 20 mg/kg as initial dose by the following of 10 mg per kg at every eight hours of span until the patient was responsive to take oral antimalarial though the second group of patients were given artesunate 2.4 mg per kg iv following 1.2 mg per kg at every six hrs of interval by the following of once daily for next 5 days. PhuongVIE1997 [12]; At the time of initial dose artemisinin therapy was administered 40 mg following of 20 mg at every specified period of interval as per WHO guideline with 750 mg mefloquine or Artesunate 3 mg per kg at time of starting dose by the following of 2 mg per kg at every 12 hours of span with 750 mg of mefloquine though Quinine was given 20 mg per kg by the following of 10 mg per kg at every 8 hours till 7 days. ThweMYA1996 [13]; (Artesunate suppositories 800 mg + MQ25 vs Artesunate suppositories 1200 mg + MQ25) Artesunate 800 mg (200 mg was given initially, 12 h, then at 24 h and at 36 h) + MQ 1250 mg (sequential, 750 mg at 48 h, then 500 mg at 60 h) Artesunate 1200 mg (200 mg at starting dose, then at 12 h followed by 24 h, 36 h, 48 h and 60 h) + MQ 1250 mg (sequential, 750 mg at 72 h, 500 mg at 84 h). VinhVIE1992 ^[14]; (Artemisinin suppositories Artemether i.m vs Aretsunate i.m vs Artesunate i.v) Artemisinin suppositories 2800 mg (1200 mg initially, 400 mg at 4 h, at 24 h, at 48 h and 72 h) Artemether 500 mg (200 mg initially, 100 mg at 24 h and at 48 h and 72 h) Artesunate 300 mg (120 mg initially, then 60 mg at 24 h, 48 h and 72 h). AdamAFR2002 [15]; loading dose of intramuscular artemether was administered 3.2 mg per kg at the time of admission following 1.6 mg/kg/day up to 4 days though loading dose of intravenous quinine was given 20 mg per kg in 5% of dextrose solution by the following of 10 mg per kg of quinine in 5% dextrose solution infused up to four hours for specified period of interval i.e. every eight hours for three days by the following oral quinine up to seven AguwaNIG2010 [16]; starting days. dose of intramuscular artemether was administered 3.2 mg per kg at the time of admission following 1.6 mg /kg/day for 2 days through IV or IM quinine was given 20 mg per kg at the period of admission as starting dose by the following of 10 mg per kg at every specified time of interval i.e. eight hours. BunnangTHI1992 [17]; (Artemether i.m 480 vs Artemether i.m 600) Artemether 480: 160 mg on was given intramuscularly on first day, 80 mg on days 2 to 5. Artemether 600: 200 mg was given intramuscularly on day 1, then 100 mg on day 2 to day 5. DanisAFR1996 [18]; Artemether was given intramuscularly vs Quinine was given intravenously) Artemether: < 50 kg, 9.6 mg/kg (1.6 mg/kg initially, 12th h, day 2 to day 5; > 50 kg, 480 mg (80 mg initially, 12 h, days 2 to 5). Quinine: 20 mg/kg, then 10 mg/kg at every 8 h, per oral from day 3 to day 7. HienVIE1996 ^[19]; Artemether and quinine both were given intramuscularly. Artemether was administered 4 mg/kg followed by 2 mg/kg at every 8 h interval whereas quinine was given 20 mg/kg, then 10 mg/kg at every 8hour interval. HudaIND2003 [20]; Loading dose of intramuscular artemether was 1.6 mg per kg twice daily at the time of admission by the following of 1.6 mg/kg/day for 5 days though starting dose of quinine was 20 mg per kg by the following of 10 mg per kg at specified time of intervals i.e. eight hours until patient was responsive to take oral antimalarial. MintaMLI2005 ^[21]; initial dose of intramuscular artemether was given 3.2 mg per kg at the time of admission by the following of 1.6 mg per kg once for four days though initial dose of intravenous quinine was given 20 mg per kg at the time of admission by the following of 10 mg/kg at every specified time of intervals i.e. eight hours followed by oral antimalarial therapy until patient was responsive to take oral antimalarial. KarbwangTHI1992 [22]; Artemether was given intramuscular lyand quinine was given intravenously, Artemether was given 160 mg on first day, 80 mg on day 2 to 7, whereas quinine was given 20 mg/kg on first day, 10 mg/kg at every 8 h till day 7. KarbwangTHI1994 [23]; Artemether 640 and 700 mg was given intramuscularly. Artemether 640 was given 160 mg on first day, 80 mg on day 2 to day 72 and

Int. J. Pharm. Sci. Drug Res. September-October, 2018, Vol 10, Issue 5 (394-405)

Artemether 700 mg was given 300 mg first day, 100 mg on day 2 to day 5. KarbwangTHI1995 [24]; Artemether was given intramuscularly 160 mg on first day, 80 mg on day 2 to 72 and quinine was given intravenously 20 mg/kg on first day, 10 mg/kg every 8 hour till day 7. MurphyKEN1996 [25]; starting dose of intramuscular artemether was 3.2 mg per kg by the following of 1.6 mg per kg once daily up to 3 doses by the following of sulfadoxine-pyrimethamine though starting dose of intravenous quinine was 20 mg per kg administered up to four hours by the following of 10 mg per kg at every specified period of intervals i.e. eight hours followed by oral antimalarial therapy until patient was responsive take oral antimalarial by the following of to sulfadoxine-pyrimethamine. OjuawoNIG1998 [26]: starting dose of intramuscular artemether was 3.2 mg per kg at the time of admission by the following of 1.6 mg per kg at every 12 hours of span by the following of 1.6 mg per kg once daily for 48 hours though starting dose of intravenous quinine was 10 mg per kg administered up to two hours following of 10 mg per kg at every specified time of intervals i.e. eight hrs followed by oral antimalarial therapy until patient was responsive to take oral antimalarial for seven days. OlumeseNIG1999 [27]; starting dose of intramuscular artemether was 3.2 mg per kg at the time of admission by the following of 1.6 mg/kg/day for 4 days though starting dose of intravenous quinine given 20 mg per kg administered up to four hours by the following of 10 mg per kg administered up to two hours at every specified time of intervals i.e. eight hours followed by oral antimalarial therapy until patient was responsive to take oral antimalarial for seven days or twenty-one day's administration. OsonugaNIG2009 [28]; starting dose of intramuscular artemether was 1.6 mg per kg twice daily at the time of admission by the following of 1.6 mg /kg/day up to four days though starting dose of intravenous quinine was 10 mg per kg administered up to four hours following of 10 mg per kg at every specified time of intervals i.e. eight hrs followed by oral antimalarial therapy until patient was responsive to take oral antimalarial for seven days. PhuVIE2010 [29]; Intramuscular artemether 3.2 mg/kg loading dose was given followed by 1.6 mg/kg/ day for 2 days. Intramuscular artesunate 2.4 mg/kg loading dose on admission, followed by 1.2 mg/kg/day for 2 days, followed by 2 mg/kg of oral artesunate for seven days. SattiSUD2002 [30]; loading dose of intramuscular artemether was 1.6 mg per kg twice daily following of 1.6 mg per kg per day up to four days though starting dose of intravenous quinine was given 10 mg per kg at every specified time of intervals i.e. eight hours followed by oral antimalarial therapy until patient was responsive to take oral antimalarial. SeatonPNG1998 ^[31]; Artemether intramuscularly was given 9.6 mg/kg (3.2 mg/kg followed by 1.6 mg/kg daily on days 2 to 5)whereas Quinine was given intravenously 20 mg/kg then 10 mg/kg every 8 h for 7 days; then orally after 48 hour if well tolerated. TaylorMAL1998^[32]; starting dose of intramuscular artemether was 3.2 mg per kg at the period of admission following of 1.6 mg per kg per day up to three doses by the following of oral sulfadoxinepyrimethamine when patients are able to take oral antimalarial though starting dose of intravenous quinine was 20 mg per kg administered up to four hours by the following of 10 mg per kg administered up to two hours at every specified time of intervals i.e. eight hours followed by oral antimalarial therapy following oral sulfadoxine-pyrimethamine.

[33]; VanhensbroekGAM1996 starting dose of intramuscular artemether was 3.2 mg per kg at the time of admission by the following of daily doses of 1.6 mg per kg for three days though starting dose of intravenous quinine was given 20 mg per kg by the following of 10 mg per kg at every 12 hours of interval and switched to oral antimalarial when the patient is conscious, quinine for five days by the following of oral dose of 1.25 mg/kg pyrimethamine and 25 mg/kg sulfadoxine. WalkerNIG1993 [34]; starting dose of intramuscular artemether was 3.2 mg per kg at the time of admission by the following of 1.6 mg per kg for four days though initial dose of intravenous quinine was 20 mg per kg administered up to four hrs at the time of admission by the following of 10 mg per kg at every specified time of intervals i.e. eight hrs followed by oral antimalarial therapy. WhiteGAM1992 [35]; Artemether was administered intramuscularly 4 mg/kg on first day, 2 mg/kg daily whereas i.m chloroquine was given 3.5 mg/kg at every 6 hour interval. WinMYA1992 ^[36]; Intramuscular Artemether 600 mg (200 mg, followed by 100 mg at 12 h, then at 24 h, 36 h and 48 h) + MQ 1000 mg at 48 h (sequential, single dose). Artesunate i.v 240 mg (120 mg was given initially, then 60 mg at 12 h, then at 24 h and 48 h) + MQ 1000 mg. Quinine i.v was given 600 mg at every 8 h up to 10 days + Tc (250 mg at 48 h later every 6 h for next 7 days. MoyouCAM2001 [37]; Arteether was administered intramuscular 3.2 mg per kg at the time of admission by the following of 1.6 mg/kg/day up to four days though Quinine 20 mg/kg was administered intravenously starting dose up to 4 hrs by the following of 10 mg per kg at every 8 hours up to six days by the following of oral quinine 10 mg per kg at every specified time of intervals i.e. eight hrs followed by oral antimalarial therapy and recrudescent cases were treated with sulfadoxine-pyrimethamine in this RCT. ThumaZAM2000 [38]; intramuscular artemotil was administered as starting dose of 3.2 mg per kg by the following of daily doses of 1.6 mg per kg though i.v quinine was given 20 mg per kg initial dose in 5% dextrose solution by the following of 10 mg per kg in 5% dextrose solution given at every specified time of intervals i.e. eight hrs followed by oral antimalarial quinine therapy continued for of 7 days.

Primary Outcomes Parasite clearance time

No performed a mota-analysis

We performed a meta-analysis of fourteen RCT (1074 participants) to evaluate mean parasite clearance time ther 2018 Vol 10 Issue 5 (394-405)

in paediatric and adult patients (figure 2) and it was observed 8.5 hours less with artemisinin derivatives (MD -8.50 hours, 95% CI -9.41 to -7.60). Forest plot shows the statistical difference and significant improvement with artemisinin derivatives compared to other antimalarials (*P*<0.00001). **Parasite clearance at D7**

We performed a meta-analysis of seven RCT (1129 participants) to evaluate parasite clearance time in paediatric and adult patients at D7 (figure 3). Artemisinin and its derivatives showed a statistically significant clearance of parasites when compared to quinine. (OR 0.41, 95% CI 0.21, 0.81, random effect model, P=0.01).

Study of Subgroup Mean SD Total Weight IV, Fixed, 95% Cl IV, Fixed, 95% Cl 1.8.1 Artemether vs Quinne	Experimental Control Mean Difference Mean Difference											
1.8.1 Artemether vs Quinine AdamAFR2002 16 9.2 20 22.4 11.49 21 2.0% -6.40 [-12.76, -0.04] HudalND2003 40.9 8.4 23 51.9 1.2 23 6.9% -11.00 [14.47, -7.53] KarbwangTHI 992 63.3 30 14 61.6 12.6 12 0.3% 1.70 [15.56, 18.96] MurphyKEN1996 39.5 6.2 88 48 52 71 26.4% -850 [10.07, 6.73] OlumeseNIG1999 44.5 26.6 54 42 22.8 49 0.9% -5.00 [12.8, 7.73] SattSUD2002 36 18 38 41 12 39 1.8% -5.00 [12.8, 7.73] WalkerNi01993 39.3 28 25 37.2 21.2 29 0.5% 2.10 [13.2, 15.52] WalkerNiO1993 39.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumazZM2000 63 26.4 38 57 24.1 <t< td=""><td>Study or Subgroup</td><td></td><td></td><td></td><td>Mean</td><td>SD</td><td>Total</td><td>Weight</td><td></td><td>IV, Fixed, 95% CI</td></t<>	Study or Subgroup				Mean	SD	Total	Weight		IV, Fixed, 95% CI		
HudalND2003 40.9 8.4 23 51.9 1.2 23 6.9% -11.00 [14.47, -7.53] KartwangTH1992 63.3 30 14 61.6 12.6 12 0.3% 1.70 [15.56, 18.86] MintaML2005 45.52 19.97 33 61.25 19.97 34 0.9% -15.73 [25.29, -6.17] MurphyKEN1996 39.5 6.2 89 48 5.2 71 26.4% -8.50 [-7.04, 12.04] OsonugaNiG2009 44.5 26.6 54 42 22.8 49 0.9% 2.50 [-7.04, 12.04] OsonugaNiG2009 31.5 14.45 16 46.5 6 16 1.4% -15.00 [-22.67, -7.3] SattiSUD2012 36 18 38 41 12 39 1.8% -5.00 [-1.85, 1.86] TaylorMAL198 32 3.4 83 40 4.8 81 50.7% -8.00 [-9.28, -6.72] WalkerNiG1993 39.3 28 25 37.2 21.2 29 0.5% 2.10 [-11.32, 15.52] Subtotal (95% Cl) 395 375 91.8% -8.28 [-9.22, -7.33] Heterogeneity. Ch ² = 1.7.59, df = 3 (P = 0.04); P = 49% Test for overall effect Z = 17.10 (P < 0.00001) 1.8.2 Arteether vs Quinne MohantyND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongViE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Heterogeneity. Ch ² = 1.10, df = 1 (P = 0.29); P = 9% Test for overall effect Z = 7.64 (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity. Ch ² = 1.10, df = 1 (P = 0.001); P = 62% Test for overall effect Z = 18.35 (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity. Ch ² = 1.3.5 (P < 0.0001)		Quinine										
KarbwangTHI1992 63.3 30 14 61.6 12.6 12 0.3% 1.70 [:15.56, 18.96] MintaML2005 45.52 19.97 33 61.25 19.97 34 0.9% -15.73 [:5.29, -6.73] OlumeseNIG1999 44.5 26.6 54 42 22.8 49 0.9% 2.50 [:7.04, 12.04] OsonugaNIG2009 31.5 14.45 16 46.5 6 16 1.4% -15.00 [:2.67, -7.33] SattiSUD202 36 18 38 41 12 39 1.8% -5.00 [:1.185, 1.86] TaylorMAL1998 32 3.4 83 40 4.8 81 50.7% -8.00 [:9.28, -6.72] WalkerNIG1993 39.3 28 25 37.2 21.2 29 0.5% 2.10 [:11.32, 15.52] Subtotal (95% CI) 395 375 91.8% -8.28 [:9.22, -7.33] Heterogeneity. ChP=17.59, df= 9 ($P = 0.04$); $P = 49\%$ Test for overall effect $Z = 17.10$ ($P < 0.00001$) 1.8.2 Arteether vs Quinine MoyauCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThurmaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity. ChP=1.14, df=1 ($P = 0.23$); $P = 31\%$ Test for overall effect $Z = 0.33$ ($P = 0.74$) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.06] Heterogeneity. ChP=1.10, df=1 ($P = 0.23$); $P = 9\%$ Test for overall effect $Z = 7.64$ ($P < 0.00001$) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity. ChP=3.45.2, df= 13 ($P = 0.001$); $P = 62\%$ Test for overall effect $Z = 18.35$ ($P < 0.00001$) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity. ChP=3.45.2, df= 13 ($P = 0.001$); $P = 62\%$ Test for overall effect $Z = 18.35$ ($P < 0.00001$)	AdamAFR2002	16	9.2	20	22.4	11.49	21	2.0%	-6.40 [-12.76, -0.04]			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	HudaIND2003	40.9	8.4	23	51.9	1.2	23	6.9%	-11.00 [-14.47, -7.53]	+		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	KarbwangTHI1992	63.3	30	14	61.6	12.6	12	0.3%	1.70 [-15.56, 18.96]			
OlumeseNIG1999 44.5 26.6 54 42 22.8 49 0.9% 2.50[-7.04,12.04] OsonugaNIG2009 31.5 14.45 16 46.5 6 16 1.4% -15.00[-22.67,-7.33] SattisUD202 36 18 38 41 12 39 1.8% -5.00[-11.85,1.85] TaylorMAL1998 32 3.4 83 40 4.8 81 50.7% -8.00[-9.28,-6.72] WalkerNIG1993 39.3 28 25 37.2 21.2 29 0.5% 2.10[-11.32,15.52] Subtotal (95% CI) 395 -375 91.8% -8.28 [-9.22,-7.33] Heterogeneity: Chi ² = 17.59, df = 9 (P = 0.04); P = 49% Test for overall effect $Z = 17.10$ (P < 0.00001) 1.8.2 Arteether vs Quinine MoyouCAM2000 53 26.4 38 57 24.1 34 0.6% -4.00[-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); P = 31% Test for overall effect $Z = 0.33$ (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] Phuong/NE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 77 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); P = 9% Test for overall effect $Z = 7.64$ (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.5C (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.62 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.62 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.62 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.62 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 13.62 (P < 0.00001) Total (95% CI) 50 0 50 100 Heterogeneity: Chi ² = 13.62 (P < 0.00001)	MintaMLI2005	45.52	19.97	33	61.25	19.97	34	0.9%	-15.73 [-25.29, -6.17]			
OsonugaNIG2009 31.5 14.45 16 46.5 6 16 1.4% $-15.00[22.67, -7.33]$ SatiSUD2002 36 18 38 41 12 39 1.8% $-5.00[-11.85, 1.85]$ TaylorMAL1998 32 3.4 83 40 4.8 81 50.7% $-8.00[-9.28, 6.72]$ WalkerNIG1993 39.3 28 25 37.2 21.2 29 0.5% 210[-11.32, 15.52] Subtotal (95% CI) 395 375 91.8% $-8.28[-9.22, -7.33]$ Heterogeneity: Chi ² = 17.59, df = 9 (P = 0.04); P = 49% Test for overall effect Z = 17.10 (P < 0.00001) 1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% $5.60[-4.87, 16.07]$ ThumaZM2000 53 26.4 38 57 24.1 34 0.6% $-4.00[-15.67, 7.67]$ Subtotal (95% CI) 81 71 1.4% $1.32[-6.48, 9.11]$ Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); P = 31% Test for overall effect Z = 0.33 (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% $-10.57[-17.09, -4.05]$ PhuongVE1997 47.3 7.2 37 62 10.2 35 4.9% $-14.70[-18.80, -10.60]$ Subtotal (95% CI) 77 75 6.9% $-13.53[-17.00, -10.06]$ Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); P = 9% Test for overall effect Z = 7.64 (P < 0.0001) Total (95% CI) 553 521 100.0% $-8.50[-9.41, -7.60]$ Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); P = 62% Test for overall effect Z = 18.35 (P < 0.0001) Total (95% CI) 553 521 100.0% $-8.50[-9.41, -7.60]$ Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); P = 62% Test for overall effect Z = 18.35 (P < 0.0001)	MurphyKEN1996	39.5	6.2	89	48	5.2	71	26.4%	-8.50 [-10.27, -6.73]	•		
SattiSUD2002 36 18 38 41 12 39 1.8% -5.00 [-11.85, 1.85] TaylorMAL1998 32 3.4 83 40 4.8 81 50.7% -8.00 [-9.28, -6.72] WalkerN(161993 39.3 28 25 37.2 21.2 29 0.5% 2.10 [-11.32, 15.52] Subtotal (95% CI) 395 375 91.8% -8.28 [-9.22, -7.33] Heterogeneity: Chi ² = 17.59, df = 9 (P = 0.04); P = 49% Test for overall effect Z = 17.10 (P < 0.00001) 1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); P = 31% Test for overall effect Z = 0.33 (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 777 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); P = 9% Test for overall effect Z = 7.64 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); P = 62% Test for overall effect Z = 18.35 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); P = 62% Test for overall effect Z = 18.35 (P < 0.00001)	OlumeseNIG1999	44.5	26.6	54	42	22.8	49	0.9%	2.50 [-7.04, 12.04]			
TaylorMAL1998 32 3.4 83 40 4.8 81 50.7% -8.00 [-9.28, -6.72] WalkerNIG1993 39.3 28 25 37.2 21.2 29 0.5% 2.10 [-11.32, 15.52] Subtotal (95% CI) 395 375 91.8% -8.28 [-9.22, -7.33] Heterogeneity: Ch ² = 17.59, df = 9 ($P = 0.04$); $P = 49\%$ Test for overall effect: Z = 17.10 ($P < 0.00001$) 1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Ch ² = 1.44, df = 1 ($P = 0.23$); $P = 31\%$ Test for overall effect: Z = 0.33 ($P = 0.74$) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 777 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Ch ² = 1.10, df = 1 ($P = 0.29$); $P = 9\%$ Test for overall effect: Z = 7.64 ($P < 0.0001$) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Ch ² = 34.52, df = 13 ($P = 0.001$); $P = 62\%$ Test for overall effect: Z = 18.35 ($P < 0.00001$) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Ch ² = 34.52, df = 13 ($P = 0.001$); $P = 62\%$ Test for overall effect: Z = 18.35 ($P < 0.00001$)												
WalkerNIG1993 39.3 28 25 37.2 21.2 29 0.5% $2.10 [-11.32, 15.52]$ Subtotal (95% CI) 395 375 91.8% $-8.28 [-9.22, -7.33]$ Heterogeneity: Chi ² = 17.59, df = 9 (P = 0.04); P = 49% Test for overall effect Z = 17.10 (P < 0.00001)												
Subtotal (95% Cl) 395 375 91.8% -8.28 [-9.22, -7.33] Heterogeneity: Chi ² = 17.59, df = 9 (P = 0.04); l ² = 49% Test for overall effect: $Z = 17.10$ (P < 0.00001) 1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% Cl) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% Test for overall effect: $Z = 0.33$ (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% Cl) 77 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% Test for overall effect: $Z = 7.64$ (P < 0.0001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: $Z = 18.35$ (P < 0.00001) Total (95% Cl) 553 100 -50 0 50 100	,											
Heterogeneity: Chi ^P = 17.59, df = 9 (P = 0.04); I ^P = 49% Test for overall effect Z = 17.10 (P < 0.00001) 1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% Cl) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ^P = 1.44, df = 1 (P = 0.23); I ^P = 31% Test for overall effect Z = 0.33 (P = 0.74) 1.8.3 Artesunate vs Quinine MohantylND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Heterogeneity: Chi ^P = 1.10, df = 1 (P = 0.29); I ^P = 9% Test for overall effect Z = 7.64 (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ^P = 34.52, df = 13 (P = 0.001); I ^P = 62% Test for overall effect Z = 18.35 (P < 0.00001) Total (95% Cl) 553 50 100 Heterogeneity: Chi ^P = 34.52, df = 13 (P = 0.001); I ^P = 62% Test for overall effect Z = 18.35 (P < 0.00001)		39.3	28		37.2	21.2						
Test for overall effect: $Z = 17.10$ (P < 0.00001) 1.8.2 Arteether vs Quinne MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% Cl) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); i ² = 31% Test for overall effect: $Z = 0.33$ (P = 0.74) 1.8.3 Artesunate vs Quinne MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongViE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% Cl) 77 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); i ² = 9% Test for overall effect: $Z = 7.64$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); i ² = 62% Test for overall effect: $Z = 18.35$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); i ² = 62% Test for overall effect: $Z = 18.35$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); i ² = 62% Test for overall effect: $Z = 18.35$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 18.35 (P < 0.00001)							375	91.8%	-8.28 [-9.22, -7.33]	,		
1.8.2 Arteether vs Quinine MoyouCAM2001 46.3 28.5 43 40.7 18.9 37 0.8% 5.60 [-4.87, 16.07] ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00 [-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% 76 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 77 75 6.9% -13.53 [-17.00, -10.06] + Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% 521 100.0% -8.50 [-9.41, -7.60] + Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% 521 100.0% -8.50 [-9.41, -7.60] + Test for overall effect: Z = 18.35 (P < 0.00001)						%						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Test for overall effect:	Z=17.1	0 (P < 0	1.00001)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.9.2 Arteether ve O	uinino										
ThumaZAM2000 53 26.4 38 57 24.1 34 0.6% -4.00[-15.67, 7.67] Subtotal (95% CI) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% Test for overall effect: Z = 0.33 (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 77 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% Test for overall effect: Z = 7.64 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001)			20.5	10	40.7	40.0	07	0.00	5 00 / 4 07 40 07			
Subtotal (95% Cl) 81 71 1.4% 1.32 [-6.48, 9.11] Heterogeneity: Chi ² = 1.44, df = 1 (P = 0.23); l ² = 31% Test for overall effect: $Z = 0.33$ (P = 0.74) 1.8.3 Artesunate vs Quinine MohantyIND2004 41.67 16.78 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% Cl) 77 75 6.9% -13.53 [-17.00, -10.06] + Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% 75 6.9% -13.53 [-17.00, -10.06] + Test for overall effect: Z = 7.64 (P < 0.00001)	,											
Heterogeneity: $Chi^2 = 1.44$, $df = 1$ (P = 0.23); $l^2 = 31\%$ Test for overall effect: Z = 0.33 (P = 0.74) 1.8.3 Artesunate vs Quinne MohantyIND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% Cl) 77 75 6.9% -13.53 [-17.00, -10.06] Heterogeneity: $Chi^2 = 1.10$, $df = 1$ (P = 0.29); $l^2 = 9\%$ Test for overall effect: Z = 7.64 (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: $Chi^2 = 34.52$, $df = 13$ (P = 0.001); $l^2 = 62\%$ Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% Cl) 550 100 Heterogeneity: $Chi^2 = 34.52$, $df = 13$ (P = 0.001); $l^2 = 62\%$ Test for overall effect: Z = 18.35 (P < 0.00001) Total (95% Cl) 50 100 Heterogeneity: $Chi^2 = 34.52$, $df = 13$ (P = 0.001); $l^2 = 62\%$ Test for overall effect: Z = 18.35 (P < 0.00001)		53	26.4		57	24.1						
Test for overall effect: $Z = 0.33$ (P = 0.74) 1.8.3 Artesunate vs Quinne MohantylND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] + Subtotal (95% Cl) 77 75 6.9% -13.53 [-17.00, -10.06] + Heterogeneity: Chi² = 1.10, df = 1 (P = 0.29); l² = 9% 75 521 100.0% -8.50 [-9.41, -7.60] + Heterogeneity: Chi² = 34.52, df = 13 (P = 0.001); l² = 62% 521 100.0% -8.50 [-9.41, -7.60] + Test for overall effect: Z = 18.35 (P < 0.00001)		1 4 4 46	- 1 /P -	-	IZ - 210	e		1.470	1.52 [-0.40, 5.11]	Ť		
1.8.3 Artesunate vs Quinine MohantylND2004 41.67 16.78 40 52.24 12.69 40 1.9% -10.57 [-17.09, -4.05] PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 [-18.80, -10.60] Subtotal (95% CI) 77 75 6.9% -13.53 [-17.00, -10.06] • Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% 75 521 100.0% -8.50 [-9.41, -7.60] • Test for overall effect: Z = 7.64 (P < 0.00001)					- 319	0						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	resciul overall ellect.	Z = 0.55	(F = 0.	(4)								
PhuongVIE1997 47.3 7.2 37 62 10.2 35 4.9% -14.70 $(-18.80, -10.60)$ Subtotal (95% CI) 77 75 6.9% -13.53 $(-17.00, -10.06)$ Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); I ² = 9% 553 521 100.0% -8.50 $(-9.41, -7.60)$ Total (95% CI) 553 521 100.0% -8.50 $(-9.41, -7.60)$ $(-100, -50, 0, 50, 100)$ $(-50, 0, 50, 100)$ Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); I ² = 62% Eavours (experimental) Eavours (control)	1.8.3 Artesunate vs	Quinine										
Subtotal (95% Cl) 77 75 6.9% -13.53 [.17.00, -10.06] Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); ² = 9% 75 6.9% -13.53 [.17.00, -10.06] Test for overall effect: Z = 7.64 (P < 0.00001)	MohantyIND2004	41.67	16.78	40	52.24	12.69	40	1.9%	-10.57 [-17.09, -4.05]			
Heterogeneity: Chi ² = 1.10, df = 1 (P = 0.29); l ² = 9% Test for overall effect: $Z = 7.64$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: $Z = 18.35$ (P < 0.00001) Total (95% Cl) 553 521 100.0% -8.50 [-9.41, -7.60]	PhuongVIE1997	47.3	7.2		62	10.2		4.9%	-14.70 [-18.80, -10.60]	+		
Test for overall effect: Z = 7.64 (P < 0.00001)	Subtotal (95% CI)			77			75	6.9%	-13.53 [-17.00, -10.06]	◆		
Total (95% CI) 553 521 100.0% -8.50 [-9.41, -7.60] Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); i ² = 62% -100 -50 0 50 100 Test for overall effect: Z = 18.35 (P < 0.00001)	Heterogeneity: Chi ² =	1.10, df	= 1 (P =	0.29);	l² = 9%							
Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); I ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Favours [experimental] Eavours [control]	Test for overall effect: Z = 7.64 (P < 0.00001)											
Heterogeneity: Chi ² = 34.52, df = 13 (P = 0.001); l ² = 62% Test for overall effect: Z = 18.35 (P < 0.00001) Favours [experimental] Favours [control]	Total (95% CI)			553			521	100.0%	-8.50 [-9.41, -7.60]	1		
Test for overall effect: Z = 18.35 (P < 0.00001)		34.52. d	lf = 13 (F	P = 0.0	01): I ² =	62%						
Favours respense and a second se												
					-	P = 0.00	08), I ² =	= 86.1%		Favours (experimental) Favours (control)		

Fig. 2: Forest Plot Parasite Clearance time

	Contro	ol	Experim	ental		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.4.1 Artemisinin der	ivatives v	s Quin	ine				
BirkuETH1999	29	30	28	30	6.5%	2.07 [0.18, 24.15]	
PhuongVIE1997	26	35	35	37	12.4%	0.17 [0.03, 0.83]	
Subtotal (95% CI)		65		67	18.9%	0.49 [0.04, 5.71]	
Total events	55		63				
Heterogeneity: Tau² =	•			P = 0.09)	; I² = 65%	6	
Test for overall effect:	Z = 0.57 (I	P = 0.5	7)				
1.4.2 Artesunate vs (Quinine						
PhuongVIE1997	26	35	35	37	12.4%	0.17 [0.03, 0.83]	
Subtotal (95% CI)		35		37	12.4%	0.17 [0.03, 0.83]	
Total events	26		35				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.19 (P = 0.0	3)				
1.4.3 Artemther vs Q	uinine						
HienVIE1996	271	276	279	284	17.1%	0.97 [0.28, 3.39]	
KarbwangTHI1992	8	12	13	14	6.9%	0.15 [0.01, 1.63]	
KarbwangTHI1994	31	50	41	47	21.0%	0.24 [0.09, 0.67]	
OlumeseNIG1999	35	35	43	43		Not estimable	
TaylorMAL1998	69	81	73	83	23.6%	0.79 [0.32, 1.94]	
Subtotal (95% CI)		454		471	68.7%	0.49 [0.22, 1.09]	
Total events	414		449				
Heterogeneity: Tau ² =	•			P = 0.17	; I ² = 40%	6	
Test for overall effect:	Z=1.76 (I	P = 0.0	8)				
Total (95% CI)		554		575	100.0%	0.41 [0.21, 0.81]	◆
Total events	495		547				
Heterogeneity: Tau ² =				P = 0.14)	; I ² = 38%		
Test for overall effect:							Favours [experimental] Favours [control]
Test for subgroup diff	ferences: (Chi ^z = 1	1.44, df = 1	2 (P = 0.	49), l² = 0	1%	· · · · · · · · · · · · · · · · · · ·

Fig. 3: Forest Plot Parasite Clearance at D7

Jeetu Gangil et al. / Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment

	Contr	ol	Experim	ental		Odds Ratio	Odds Ratio
Study or Subgroup	Events		-		Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.5.1 Artemisinin der	ivatives v	s Quin	ine				
BirkuETH1999 Subtotal (95% CI)	29	29 29	26	28 28	7.1% 7.1 %	5.57 [0.26, 121.27] 5.57 [0.26, 121.27]	
Total events	29		26				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z=1.09 (P = 0.2	:7)				
1.5.2 Artesunate vs (Quinine						
WinMYA1992 Subtotal (95% CI)	37	44 44	25	25 25	7.8% 7.8 %	0.10 [0.01, 1.79] 0.10 [0.01, 1.79]	
Total events	37		25				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z=1.57 (P = 0.1	2)				
1.5.3 Artemether vs	Quinine						
OlumeseNIG1999	34	35	42	43	8.3%	0.81 [0.05, 13.43]	
SeatonPNG1998	11	18	10	15	24.4%	0.79 [0.19, 3.29]	
TaylorMAL1998	64	81	72	83	44.4%	0.58 [0.25, 1.32]	
WinMYA1992	37	44	43	43	7.9%	0.06 [0.00, 1.04]	· · · · · · · · · · · · · · · · · · ·
Subtotal (95% CI)		178		184	85.1%	0.55 [0.28, 1.09]	\bullet
Total events	146		167				
Heterogeneity: Tau ² =				= 0.42)	; I² = 0%		
Test for overall effect:	Z=1.71 (P = 0.0	19)				
Total (95% CI)		251		237	100.0%	0.54 [0.23, 1.29]	
Total events	212		218				
Heterogeneity: Tau ² =	0.25; Chi	² = 6.3	8, df = 5 (P	= 0.27)	; I ² = 22%	b	0.01 0.1 1 10 100
Test for overall effect:	Z=1.39 (P = 0.1	7)		-		Favours [Experimental] Favours [Control]
Test for subgroup diff	ferences: (Chi² = :	3.51, df = 2	2 (P = 0.	17), I² = 4	3.1%	Favours (Experimental) Favours (Control)

Fig. 4: Forest Plot Parasite Clearance at D28

	Exp	eriment	al	Mean Difference						
Study or Subgroup	Mean		Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI	
1.9.1 Artesunate vs (Quininne	•								
MohantyIND2004	43.55	20.12	40	62.23	16.99	40	4.4%	-18.68 [-26.84, -10.52]	- - -	
PhuongVIE1997	48	21.4	37	60	21.1	35	3.0%	-12.00 [-21.82, -2.18]		
Subtotal (95% CI)			77			75	7.4%	-15.95 [-22.23, -9.67]	◆	
Heterogeneity: Chi ² =	1.05, df	= 1 (P =	0.31);	l² = 5%						
Test for overall effect:	Z= 4.98	(P < 0.0	00001)							
1.9.2 Artemether vs	Quininne	e								
AdamAFR2002	30.5	20.9	20	18	8.1	18	3.0%	12.50 [2.61, 22.39]		
HudaIND2003	44.5	7.7	23	45.9	7.2	23	15.6%	-1.40 [-5.71, 2.91]	+	
KarbwangTHI1992	64.3	27.8	14	94	34.7	12	0.5%	-29.70 [-54.14, -5.26]		
MintaMLI2005	45.5	19.97	33	61.2	19.9	34	3.2%	-15.70 [-25.25, -6.15]		
MurphyKEN1996	32	16.7	89	32	24.9	71	6.4%	0.00 [-6.75, 6.75]	-	
OjuawoNIG1998	34.7	12.7	18	53.3	16.6	19	3.2%	-18.60 [-28.09, -9.11]		
OlumeseNIG1999	44.6	26.6	54	51.3	25.6	49	2.9%	-6.70 [-16.79, 3.39]		
SattiSUD2002	31	13	38	36	18	39	5.9%	-5.00 [-12.00, 2.00]		
TaylorMAL1998	31	8.1	83	45	8	81	47.8%	-14.00 [-16.46, -11.54]		
WalkerNIG1993	46.7	20	25	57.8	27.3	29	1.8%	-11.10 [-23.76, 1.56]		
Subtotal (95% CI)			397			375	90.2%	-9.39 [-11.18, -7.59]	•	
Heterogeneity: Chi ² =	62.69, d	lf = 9 (P	< 0.000	001); l² :	= 86%					
Test for overall effect:	Z=10.2	26 (P < 0	.00001)						
1.9.3 Arteether vs Qu	Jininne									
MoyouCAM2001	42.2	34.9	39	45	26.7	36	1.5%	-2.80 [-16.80, 11.20]	—	
ThumaZAM2000	50	48.6	36	33	19.9	35	1.0%	17.00 [-0.19, 34.19]	-	
Subtotal (95% CI)			75			71	2.5%	5.10 [-5.76, 15.95]	◆	
Heterogeneity: Chi ² =				l² = 67%	6					
Test for overall effect: Z = 0.92 (P = 0.36)										
Total (95% CI)			549			521	100.0%	-9.51 [-11.22, -7.81]	•	
Heterogeneity: Chi ² =	77.82, d	lf = 13 (F	° < 0.00	0001); P	²= 83%				-100 -50 0 50 100	
Test for overall effect:	Z=10.9	15 (P < 0	.00001)					Favours [experimental] Favours [control]	
Test for subgroup diff	erences	: Chi ² =	11.02,	df = 2 (F	P = 0.00	4), ² =	81.8%		r avours texperimentalj - Pavours (controlj	

Fig. 5: Forest Plot Fever Clearance Time

Parasite clearance at D28

Parasite clearance at 28th day was reported in 5RCT studies (488 participants) to evaluate parasite clearance time in paediatric and adult patients at D28. Failures were observed in the quinine group in the artesunate study that reported this outcome. Overall artemisinin derivatives have shown 1. 84 times more parasite clearance at D28 than quinine group (Odds ratio 0.54,

95% CI 0.23, 1.29, random effect model, *P*=0.17) (Figure 4).

Fever Clearance Time

Total fourteen RCT studies reported mean FCT with a statistically significant reduction of about nine hrs with artesunate derivatives overall (MD -9.51 hours, 95% CI -11.22 to -7.81; fourteen trials, 1070 participants, P<0.00001 (Figure 5).

Secondary Outcomes Mortality

We evaluated total twenty-five clinical trials for mortality outcomes in Artemisinin derivatives compared with quinine. Forest plot meta-analysis (figure 6) confirmed that artemisinin or its derivatives showed a statistically significant mortality reduction as compared with quinine. There was an overall difference (OR 0.77, 95% CI 0.67 to 0.89; 27 trials, 8396 participants) P=0.0002 shown in all-cause mortality in artesunate derivatives as compared with quinine.

Adverse Events

We evaluated seven trials (5582 participants) for the adverse events outcome in the artemisinin derivatives compared with quinine. Forest plot meta-analysis (figure 7) confirmed that artemisinin or its derivatives showed a statistically significant reduction in the adverse events as compared with quinine. There was an overall difference (RR 0.73, 95% CI 0.62 to 0.87) P=0.003 which is shown in adverse events of artesunate derivatives as compared with quinine.

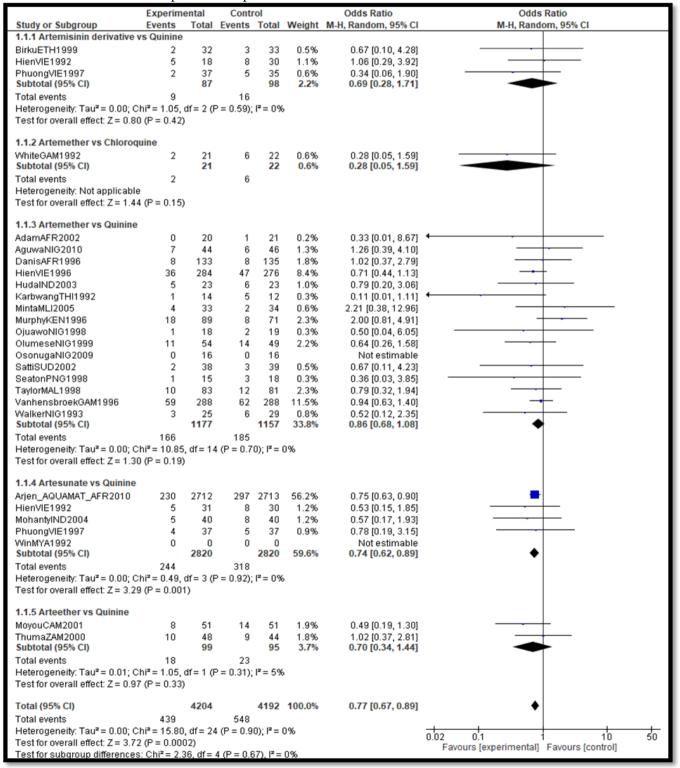


Fig. 6: Forest Plot Mortality

Jeetu Gangil et al. / Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment

	Experime	ental	Contr	ol		Risk Ratio	Risk Ratio
Study or Subgroup	Events		Events		Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.11.1 QT Prolongation MintaMLI2005	0	33	1	34	0.6%	0.34 [0.01, 8.13]	
MurphyKEN1996 Subtotal (95% CI)	20	82 115	5	80 114	1.9% 2.4%	3.90 [1.54, 9.89] 3.10 [1.33, 7.19]	
Total events	20		6		2.474	5.10 [1.55, 1.15]	
Heterogeneity: Chi ² = 2.09, Test for overall effect: Z = 2			²= 52%				
	.05 (* = 0.0	,03)					
1.11.2 Skin reaction VanhensbroekGAM1996	2	288	17	288	6.4%	0.12 [0.03, 0.50]	
Subtotal (95% CI)		288		288	6.4%	0.12 [0.03, 0.50]	
Total events Heterogeneity: Not applica	2 ble		17				
Test for overall effect: Z = 2	.88 (P = 0.0	004)					
1.11.3 Abcess							
HienVIE1996 VanhensbroekGAM1996	1 1	284 288	5 5	276 288	1.9% 1.9%	0.19 [0.02, 1.65] 0.20 [0.02, 1.70]	
Subtotal (95% CI)		572		564	3.8%	0.20 [0.04, 0.90]	
Total events Heterogeneity: Chi ² = 0.00,	2 . df = 1 (P =	0.99); P	10 = 0%				
Test for overall effect: Z = 2							
1.11.4 Urticarial Rash							
VanhensbroekGAM1996 Subtotal (95% CI)	0	288 288	1	288 288	0.6% 0.6%	0.33 [0.01, 8.15] 0.33 [0.01, 8.15]	
Total events	0	200	1	200		0.00 [0.01,010]	
Heterogeneity: Not applical Test for overall effect: Z = 0		50)					
		-					
1.11.5 Supraventricular Ta WalkerNIG1993	achycardia 0	25	2	29	0.9%	0.23 [0.01, 4.59]	
Subtotal (95% CI)		25		29	0.9%	0.23 [0.01, 4.59]	
Total events Heterogeneity: Not applica	0 ble		2				
Test for overall effect: Z = 0		34)					
1.11.6 Prutitus							
MintaMLI2005 Subtotal (95% CI)	0	33 33	2	34 34	0.9%	0.21 [0.01, 4.13] 0.21 [0.01, 4.13]	
Total events	0		2				
Heterogeneity: Not applica Test for overall effect: Z = 1		30)					
		-,					
1.11.7 Urinary tract infecti WalkerNIG1993	1	25	2	29	0.7%	0.58 [0.06, 6.02]	
Subtotal (95% CI)		25	2	29	0.7%	0.58 [0.06, 6.02]	
Total events Heterogeneity: Not applica	1 ble		2				
Test for overall effect: Z = 0	.46 (P = 0.6	65)					
1.11.8 Induration							
SeatonPNG1998 Subtotal (95% CI)	6	15 15	0	18 18	0.2%	15.44 [0.94, 253.49] 15.44 [0.94, 253.49]	
Total events	6		0				
Heterogeneity: Not applica Test for overall effect: Z = 1)6)					
1.11.9 Leg discomfort							
HienVIE1996	5	284	7	276	2.7%	0.69 [0.22, 2.16]	
Subtotal (95% CI) Total events	5	284	7	276	2.7%	0.69 [0.22, 2.16]	
Heterogeneity: Not applica	ble						
Test for overall effect: Z = 0	1.63 (P = 0.5	53)					
1.11.10 Chest Infection	~ •	001	~	070	24.00	1 00 10 00 1 50	
HienVIE1996 Subtotal (95% CI)	64	284 284	57	276 276	21.6% 21.6%	1.09 [0.80, 1.50] 1.09 [0.80, 1.50]	
Total events Heterogeneity: Not applica	64 ble		57				
Test for overall effect: Z = 0		59)					
1.11.11 GI Bleeding							
HienVIE1996	34	284	43		16.3%	0.77 [0.51, 1.17]	
Subtotal (95% CI) Total events	34	284	43	276	16.3%	0.77 [0.51, 1.17]	
Heterogeneity: Not applica	ble	22					
Test for overall effect: Z = 1	.23 (P = 0.2	(2)					
1.11.12 Hypoglycaemia AdamAFR2002	0	20	2	21	0.9%	0.21 [0.01, 4.11]	
HienVIE1996	31	284	70	276	26.6%	0.43 [0.29, 0.64]	
VanhensbroekGAM1996 Subtotal (95% CI)	29	288 592	43	288 585	16.1% 43.6%	0.67 [0.43, 1.05] 0.52 [0.39, 0.69]	▲
Total events	60		115				•
Heterogeneity: Chi ² = 2.60, Test for overall effect: Z = 4			f= 23%				
		-		2777	100.0*	0 73 10 63 0 073	
Total (95% CI) Total events	194	2805	262	2111	100.0%	0.73 [0.62, 0.87]	•
Heterogeneity: Chi ² = 41.84 Test for overall effect: Z = 3			02); I² = 6	64%			0.01 0.1 1 10 100
Test for subgroup difference			if = 11 (P	< 0.00	01) <u>, l² = 7</u>	1.1%	Favours [experimental] Favours [control]
a 7: Forest Plot Adverse l							

Fig. 7: Forest Plot Adverse Events

DISCUSSION

Malaria is one of the most prevalent diseases which have affects millions of people and around 40% of the population in the world are at risk for this infection. The prevalence of death from *Plasmodium falciparum* is higher in the developing countries. ^[39] This systematic review and meta-analysis is done in the continuation of our research work of which was evaluated for efficacy and safety of antimalarial drug regimen in paediatric population. ^[40] Approach sharing the comparative outcome analysis of Artemisinin derivatives (intervention) and other antimalarials (comparison) in the paediatric and adult population. Clinical outcomes such as mortality, FCT, PCT, parasite clearance at D7, parasite clearance at D28 and adverse events were evaluated. This meta-analysis showed benefit with artemisinin drugs in comparison with quinine in management of severe malaria.

The most important outcome is the meta-analysis of mortality confirms that patients with artemisinin derivatives have a better survival chance than patients treated with guinine. We observed artemisinin, or its derivatives showed a statistically significant mortality reduction as compared to quinine (Odds ratio 0.77, 95% CI 0.67 to 0.89; 27 trials, 8396 participants) P=0.0002. Evaluation of fever clearance time of fourteen RCT studies reported mean FCT with a statistically significant reduction of nine hrs with artesunate derivatives overall (MD -9.51 hours, 95% CI -11.22 to -7.81; fourteen trials, 1070 participants) P<0.00001. Studies conducted by Phuong et al (1997) showed PCT were significantly faster in artemisinin derivatives treated patients compared to those who received quinine (P<0.0001). [12]

Artemisinin derivatives also shorten the parasite clearance time by around 8.5 hours when compared to quinine. We evaluated seven trials (5582 participants) for the adverse events outcome in the artemisinin derivatives compared with quinine. Forest plot metaanalysis confirmed that artemisinin or its derivatives showed a statistically significant reduction in the adverse events as compared to quinine (RR 0.73, 95% CI 0.62 to 0.87) P=0.003. An overall comparable effect was found with artemisinin derivatives across all evaluated outcomes.

Since artemisinin and its derivatives have showed better outcomes, they earn a significant place in the treatment of malaria due to their efficacy and lack of major adverse effects. ^[1] In conclusion, this metaanalysis showed stronger evidence for artemisinin and it derivatives on treatment outcomes of severe malaria population.

REFERENCES

- Van Agtmael M. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication.Trends Pharmacol Sci. 1999; 20(5):199-205.
- 2. Trampuz A, Jereb M, Muzlovic I, Prabhu RM. Clinical review: Severe malaria. Critical care. 2003; 7(4):315.

- 3. World Malaria Report 2016 [Internet]. World Health Organization. 2018 [cited 30 June 2018]. Available from: http://www.who.int/malaria/publications/world-malariareport-2016/report/en/
- Dondorp A, Nosten F, Stepniewska K, Day N, White N; South East Asian Quinine Artesunate Malaria Trial (SEAQUAMAT) group. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. The Lancet. 2005; 366(9487):717-725.
- 5. Rosenthal PJ. Artesunate for the treatment of severe falciparum malaria. N Engl J Med. 2008; 358(17):1829-36.
- Dondorp AM, Fanello CI, Hendriksen L, Gomes E, Seni A, Chhaganlal K, *et al.* Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet .2010; 376: 1647–57.
- Birku Y, Makonnen E, Bjorkman A. Comparison of rectal artemisinin with intravenous quinine in the treatment of severe malaria in Ethiopia. East Afr Med J. 1999; 76(3):154–9.
- Hien TT, Phu NH, Mai NT, *et al.* An open randomized comparison of intravenous and intramuscular artesunate in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1992; 86(6):584–5.
- 9. Hien TT, Arnold K, Vinh H, *et al*. Comparison of artemisinin suppositories with intravenous artesunate and intravenous quinine in the treatment of cerebral malaria. Trans R Soc Trop Med Hyg. 1992; 86(6):582–3.
- Looareesuwan S, Wilairatana P, Molunto W, et al. A comparative clinical trial of sequential treatments of severe malaria with artesunate suppository followed by mefloquine in Thailand. Am J Trop Med Hyg. 1997; 57(3):348–53.
- 11. Mohanty AK, Rath BK, Mohanty R, Samal AK, Mishra K. Randomized control trial of quinine and artesunate in complicated malaria. Indian J Pediatr. 2004; 71: 291-295.
- 12. Phuong CXT, Bethell DB, Phuong PT, Mai TTT, Thuy TTN, Ha NTT, *et al.* Comparison of artemisinin suppositories, intramuscular artesunate and intravenous quinine for the treatment of severe childhood malaria. Trans R Soc Trop Med Hyg. 1997; 91: 335-342.
- 13. Thwe Y, Than M, Phay S, Oo AZ, Soe AY. Artesunate suppository-mefloquine tablets (Plasmotrim, Rectocaps, Mefloquine, Lactab) in the treatment of severe falciparum malaria. Jpn J Trop Med Hyg. 1996; 24(1):25–32.
- 14. Ha V, Nguyen NH, Tran TB, Bui MC, Nguyen HP, Tran TH, et al. Severe and complicated malaria treated with artemisinin, artesunate or artemether in Viet Nam. Trans R Soc Trop Med Hyg. 1997; 91(4):465–7.
- 15. Adam I, Idris HM, Mohamed-Ali AA, Aelbasit, Elbashir MI. Comparison of intramuscular artemether and intravenous quinine in the treatment of Sudanese children with severe falciparum malaria. East Afr Med J. 2002; 79 (12):621–5.
- 16. Aguwa CN, Ukwe CV, Adibe MO. A comparative study of quinine and artemether in the treatment of severe malaria in Nigerian children. Trop J Pharm Res. 2010; 9(1):11–7.
- 17. Bunnag D, Karbwang J, Harinasuta T. Artemether in the treatment of multiple drug resistant falciparum malaria. Southeast Asian J TropMed Public Health. 1992; 23(4):762–7.
- 18. Danis M, Chandenier J, Doumbo O, *et al.* Results obtained with i.m. artemether versus i.v. quinine in the treatment of severe malaria in a multi-centre study in Africa. Jpn J Trop Med Hyg. 1996; 24(1):93–6.
- 19. Hien TT, Day NP, Nguyen HP, *et al.* A controlled trial of artemether or quinine in Vietnamese adults with severe falciparum malaria. N Engl J Med. 1996; 335(2):76–83.
- Huda SN, Shahab T, Ali SM, Afzal K, Khan HM. A comparative clinical trial of artemether and quinine in children with severe malaria. Indian Pediatr. 2003; 40: 939-945.
- 21. Karbwang J, Sukontason K, Rimchala W, *et al.* Preliminary report: a comparative clinical trial of artemether and quinine in severe falciparum malaria. Southeast Asian J Trop Med Public Health. 1992; 23(4):768–72.

Jeetu Gangil et al. / Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment

- Karbwang J, Na-Bangchang K, WattanakoonY, Thanavibul A, Harinasuta T. Artemether 5 versus 7 day regimen for severe falciparum malaria. Southeast Asian J Trop Med Public Health. 1994; 25(4):702–6.
- 23. Karbwang J, Tin T, Rimchala W, *et al.* Comparison of artemether and quinine in the treatment of severe falciparum malaria in south-east Thailand. Trans R Soc Trop Med Hyg. 1995; 89(6):668–71.
- 24. Minta D, Sissoko M, Sidibe I, Dolo A, Poudiougou B, Dembele M, *et al*. Efficacy and safety of artemether in the treatment of severe and complicated malaria in Mali. Mali Médical. 2005; 20(1-2):28–32.
- 25. Murphy S, English M, Waruriu C, Mwangi I, Amoukoye E, Crawley J, *et al.* An open randomised trial of artemether versus quinine in the treatment of cerebral malaria in African children. Trans R Soc Trop Med Hyg. 1996; 90: 298-301.
- 26. Ojuawo A, Adegboye AR, Oyewalw O. Clinical response and parasite clearance in childhood cerebral malaria: A comparison between intramuscular artemether and intravenous quinine. East Afr Med J. 1998; 75: 450-452.
- 27. Olumese PE, Bjorkman A, Gbadegesin RA, Adeyemo AA, Walker O. Comparative efficacy of intramuscular artemether and intravenous quinine in Nigerian children with cerebral malaria. Acta Tropica. 1999; 73: 231-236.
- Osonuga OA, Osonuga AA, Osonuga IO, Osonuga A. Comparison of Coma Resolution Time in the Course of Treating Children with Severe Falciparum Malaria with Quinine and Artemether. World Journal of Medical Sciences. 2011; 6(2):42–45.
- 29. Phu NH, Tuan PQ, Day N, Mai NT, Chau TT, Chuong LV, *et al*. Randomized controlled trial of artesunate or artemether in Vietnamese adults with severe falciparum malaria. Malar J. 2010; 9:97.
- 30. Satti GM, Elhassan SH, Ibrahim SA. The efficacy of artemether versus quinine in the treatment of cerebral malaria. J Egypt Soc Parasitol. 2002; 32(2):611–23.
- Seaton RA, Trevett AJ, Wembri JP, Nwokolo N, Naraqi S, Black J, Laurenson IF, Kevau I, Saweri A, Lalloo D, Warrell DA. Randomised comparison of intramuscular artemether

and intravenous quinine in adult Melanesian patients with severe or complicated falciparum malaria in Papua New Guinea. Ann Trop Med Parasitol. 1998;92(2):133–9

- Taylor TE, Wills BA, Courval JM, Molyneux ME. Intramuscular artemether vs intravenous quinine: An open, randomized trial in Malawian children with cerebral malaria. Trop Med Int Health. 1998; 3: 3–8.
- Van Hensbroek MB, Onyiorah E, Jaffar S. A trial of artemether or quinine in children with cerebral malaria. N Engl J Med .1996; 335: 69-75.
- 34. Walker O, Salako LA, Omukhodion SI, Sowunmi A. An open randomized comparative study of intramuscular artemether and intravenous quinine in cerebral malaria in children. Trans R Soc Trop Med Hyg. 1993; 87(5):564–6.
- White NJ. The treatment of malaria. N Engl J Med. 1996; 335:800–806.
- 36. Win Kyaw, Marlar Than, Ye Thwe. Comparison of combinations of parenteral artemisinin derivatives plus oral mefloquine with intravenous quinine plus oral tetracycline for treating cerebral malaria. Bull World Health Organization. 1992; 70(6):777–82.
- Moyou-Somo R, Tietche F, Ondoa M, Kouemeni LE, Ekoe T, Mbonda E, *et al.* Clinical trial of beta arteether versus quinine for the treatment of cerebral malaria in children in Yaounde, Cameroon. Am J Trop Med Hyg .2001; 64: 229-232.
- 38. Thuma PE, Bhat GJ, Mabeza GF, Osborne C, Biemba G, Shakankale GM, *et al.* A randomized controlled trial of artemotil (beta-arteether) in Zambian children with cerebral malaria. Am J Trop Med Hyg. 2000; 62: 524-529.
- Tayyab Ansari M, Saeed Saify Z, Sultana N, Ahmad I, Saeed-Ul-Hassan S, Tariq I, Khanum M. Malaria and artemisinin derivatives: an updated review. Mini rev med chem. 2013; 13(13):1879-902.
- Gangil J, Chakraborty BS. Evaluation of Efficacy and Safety of Artemisinin Derivatives Comparison with Quinine in Paediatric Population for Treatment of Severe Malaria: A Meta-Analysis Approach. Int. J. Pharm. Sci. Drug Res. 2018; 10(2): 85-94.

HOW TO CITE THIS ARTICLE: Gangil J, Chakraborty BS. Evaluation of Efficacy and Safety of Artemisinin Derivatives for Treatment of Severe Malaria: A Meta-Analysis Approach. Int. J. Pharm. Sci. Drug Res. 2018; 10(5): 394-405. **DOI:** 10.25004/IJPSDR.2018.100506