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Abstract: Direction of Arrival (DOA) estimation is the important stage in a smart antenna that estimates the 

direction of impinging signals on an antenna array, and the most high-resolution DOA estimation subspace algorithm 

is Multiple Signal Classification (MUSIC). MUSIC algorithm is best suited for estimating the non-coherent signals 

due to its accuracy and a high degree of resolution. However, its performance degrades in presence of multipath 

propagation that has coherent and closely spaced signals and at low Signal to Noise Ratio. Many researchers 

proposed modifications to the MUSIC algorithm to improve its performance even under multipath, coherent and 

closely spaced signal environment.  This paper focuses on investigating a proposed preprocessing technique, referred 

to as CW-ICA MUSIC that improves the performance of the MUSIC algorithm under above scenario even at low 

SNR.  Simulation results confirm that the proposed preprocessing technique based on Dual Tree Complex Wavelet 

Transform (DTCWT) and Independent Component Analysis (ICA) outperforms the reported modified MUSIC 

algorithms such as Wavelet-MUSIC, and SS-MUSIC. 
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1. Introduction 

Explosive growth of subscribers to wireless 

communication systems demands increased capacity, 

data rate and bandwidth.  As a result, many 

technologies have been proposed to improve the 

capacity of wireless communication systems.  One 

of the promising technologies that have been 

proposed in recent times is Smart Antenna. Smart 

antenna technology is an adaptive array system that 

utilizes various digital signal processing algorithms 

to detect the location of the user by estimation 

direction of arrival of the signal and beamforming 

accordingly [1]. The DOA estimation algorithms 

play a vital role in smart antenna in estimating the 

direction of arrival of impinging signals on antenna 

array, and supporting the beamforming algorithms 

to synthesize the radiation pattern to detect the 

desired signals and nullify the undesired signals.  

Many DOA estimation techniques have been 

proposed in literature. Multiple Signal Classification 

(MUSIC) and Estimation of Signal Parameter via 

Rotational Invariance Techniques (ESPRIT) are the 

most widely adopted classical high resolution 

subspace based algorithms [2, 3]. The basic 

concepts used in subspace algorithms are eigen-

analysis of the correlation matrix. The effectiveness 

of the subspace algorithm is lost when the received 

signals are closely spaced and coherent. These 

algorithms work with high SNR, more antenna 

sensors and a large number of snapshots. In case of 

multipath propagation, the signal becomes coherent 

and closely spaced, results in deterioration of the 

performance of subspace-based DOA estimation 

algorithms [4].  

DOA estimation of multipath reception of 

uncorrelated and coherent signals have been 

presented in [5],  that groups the coherent signals by 

generating the cross term effects between coherent 

groups by exploiting high probability failure of 

DOA estimation for coherent signals. DOA 

estimation has been carried out in the multipath 
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reception of the uncorrelated and coherent signals 

explored by [6] removes cross term effect.  These 

techniques do not perform well for detection of the 

uncorrelated signal for low SNR and less number of 

snapshots. 

The wavelet operator is utilized to enhance the 

performance of MUSIC, and ESPRIT algorithms [7]. 

However, it correctly detects the closely spaced 

signals only under relatively higher and positive 

SNR conditions. Multipath DOA estimation method 

presented in [8] utilizes the combination of complex 

fast independent component analysis and 

compressed sensing. A resolution of 2° is achieved 

for direct and multipath components with relatively 

high SNR of 20dB. 

A complex-value based fast ICA algorithm that 

extracts the features of Gaussian noise from non-

Gaussian signal components is presented in [9]. The 

performance for correlated signal with resolution of 

2° is achieved with SNR of 16dB. DOA estimation 

for uncorrelated and coherent signals presented in 

[10] utilizes ICA and several parameter estimations.  

The results were demonstrated for coherent signals 

with SNR of 10dB. 

The application of blind source separation using 

ICA based DOA estimation has been studied in [11]. 

The independent component analysis and forward-

backward spatial smoothing techniques is used for 

DOA estimation [12]. With SNR of 3dB and 1000 

snapshots were utilized for 5° resolution of coherent 

signal estimation. An improved method is proposed 

in [13] to distinguish between uncorrelated and 

coherent signals. The results are demonstrated for 

SNR of -4dB. 

DOA estimation of two closely spaced 

uncorrelated sources proposed by combining spatial 

sampling and MUSIC algorithm referred to as SS-

MUSIC is reported in [14]. The proposed method 

improves the resolution but the accuracy needs to be 

further improved compared to the reported accuracy 

for the angular separation less than 40.  

DOA estimation algorithms need to be modified 

when the signals are closely spaced and coherent 

with 2 resolution with relatively very low SNR for 

the performance enhancement.  Most of the DOA 

estimation methods designed for non-coherent 

signals or coherent but under high SNR conditions 

[5-14]. The signals are closely spaced due to 

multipath propagation; they usually become 

coherent. The main reason for the degradation of 

performance is because of loss of coherence matrix 

rank. 

In this paper, a novel algorithm referred to as 

CW-ICA MUSIC that utilizes DTCWT and ICA at 

pre-processing (denoising) stage to improve the 

performance of the MUSIC algorithm for the closely 

spaced coherent signals reception. This proposed 

denoising technique improves the received SNR. 

ICA is utilized as thresholding technique for 

removing more significant noisy coefficients after 

forwarding process of DTCWT. The proposed 

method performs better even for moderate number 

of snapshots with few antenna elements, and low 

SNR.  

The organization of paper: Section 2 introduces 

the array signal model of a uniform linear array. 

Section 3 describes the proposed method “CW-ICA 

MUSIC” based on DTCWT and ICA. Section 4 

presents the experimental simulation verification of 

the proposed algorithm, and comparison with basic 

MUSIC, wavelet-based MUSIC, and SS-MUSIC 

algorithms. Finally, Section 5 concludes the article. 

2. Array signal model 

The antenna array is an array composed of 

several antenna elements aligned in a straight line 

with uniform amplitude and spacing on a plane is 

referred to as Uniform Linear Array (ULA) shown 

in Fig. 1.  

Let ULA composed of M isotropic antenna array 

elements with inter-element spacing d, and K far-

field received narrowband signals from different 

directions θ1,…,θK with carrier wavelength λ. It has 

to be M > K, and d is not more than λ/2 of the 

highest frequency. The received noise component of 

M antenna elements is uncorrelated and assumed to 

be additive white Gaussian noise with zero mean of 

variance σ2.  

The array output is calculated by adding the 

individual antenna array elements. The received 

signal at M array elements is given by [1], 

 

       
1

D

m m k k m

k

x t a S t n t


    (1) 

 

Where Sk(t) represents the input signal amplitude 

received at kth signal and nm(t) is the additive 

Gaussian noise. 

 

 

Figure. 1 Antenna array signal model with 'M' elements 
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Received signal in vector form is given by, 

  

      X n A S n N n    (2) 

 

Where,  
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A is the Vandermonde matrix of M×K. The antenna 

array steering vector is,  
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  (3) 

 

Where S(n) is the K×1 signal vector, N(n) is the 

M×1 noise vector, superscripts T represents the 

transpose of a matrix, and k=1, 2,…,K. Thus, DOA 

is estimated by calculating the values of θ from 

given signal samples or snapshots (N) of array 

outputs. Now, the array covariance matrix Rx is 

given by, 

 

      H H

x S NR E X t X t A R A R       (4) 

 

Where, RS = E[s(t) sH(t)] is the source correlation 

matrix, RN = σ2I is the noise correlation matrix with 

noise variance σ2, I act as M×M an identity matrix, 

and H represents the Hermitian or conjugate 

transpose of a matrix. To estimate the array 

covariance matrix at the kth signal of N number of 

snapshots is given by, 

 

1

1ˆ ( ) ( )
N

H

i

R X i X i
N 

     (5) 

 

DOA estimation is carried out with the 

decomposition of an array covariance matrix as per 

the theory of matrix eigen decomposition. The 

source correlation matrix RS must be a non-singular 

matrix, and M > K. The rank of A RS A
H is the full 

rank of K matrix. 

As per Eq. (4), Rx
H = Rx is the full rank matrix 

with D positive and real number eigen values, 

remaining M-D are zero eigen values. The M 

positive real eigen values (λ1,λ2,…,λM) correspond to 

M eigen vectors (v1,v2,…,vM). The Rx is Hermite 

matrix, and its eigen values are orthogonal to each 

other equal to σ2 and are the minimum eigen values 

of the matrix Rx. This eigen decomposition property 

used in DOA estimation by using subspace-based 

methods.  

3. Proposed method for DOA estimation 

using CW-ICA MUSIC algorithm 

The multipath signal has a signal of interest and 

several non-signal of interest components, which are 

coherent to each other and closely spaced. In turn, it 

will combine with the signal of interest and degrade 

the rank of signal subspace matrix. Resulting 

estimated performance will decline and may fail for 

existing DOA estimation techniques such as MUSIC 

to find the direction of multipath signal and source 

signal. 

Many methods are proposed by researcher for 

DOA estimation of multipath signals to pre-process 

the coherent signal to achieve incoherence [8], such 

as Forward Spatial Smoothing, Forward and 

backward spatial smoothing, Modified Spatial 

Smoothing, Toeplitz Algorithm, and Subspace 

fitting Algorithm. However, incoherence capacity 

obtained by the expense of loss array aperture, 

required larger value of SNR, a number of snapshots 

and generates large estimation error. 

Fig. 2 shows the flowchart of the proposed DOA 

estimation algorithm referred to as CW-ICA MUSIC 

based on DTCWT and ICA.  The DTCWT and ICA 

are acting as denoising and thresholding stage 

respectively. The denoised signal is processed by the 

MUSIC algorithm to estimate the DOAs of received 

signals.  

Firstly, initialized the M (number of antenna 

elements), N (number of snapshots), SNR then array 

steering vector is calculated. The array steering 

vector is converted into wavelet coefficients using 

DTCWT analysis (forward) decomposition filter. 

The decomposition signal consists of detail and 

approximate signal coefficients. The decomposition 

process of signal creates significantly correlated 

complex wavelet coefficients in the neighboring 

region [18]. All the detail and approximation signal 

coefficients are thresholded by using ICA. The ICA 

process described in detailed in Fig. 4 to remove the 

nearby correlated wavelet coefficients. Now, the 

denoised forward signal is used to reconstruct the 

denoised signal ReX through synthesis (inverse) 

filter. This denoised signal ReX processed by using 

the MUSIC algorithm to estimate the DOA of 

signals.  
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Figure. 2 Flowchart of the proposed method 

3.1 Dual tree complex wavelet transform 

DTCWT is Dual Tree Complex Wavelet 

Transform is an alternative to Discrete Wavelet 

Transform (DWT) which does not support shift-

invariance and directional selectivity for M-

dimensional signals [15]. Shift-invariance property 

is essential in the process of closely spaced coherent 

signals detection because of direction information 

embedded with the large coefficient plane in the 

form of magnitude and phase relationship. 

DTCWT consists of two trees of wavelet filters 

which produce real part and imaginary part of the 

complex wavelet.  DTCWT can rely on the 

observation with a real and approximate DWT by 

enhancing the sampling rate by twice at every level 

of the tree which can achieve approximate shift 

invariance. It accomplishes signal decomposition at 

analysis part, and reconstruction at synthesis part 

mainly through two parallel real and approximate 

wavelets (h tree and g tree). The trees consist of two 

filters namely: Low Pass Filters (h0 and g0), and 

High Pass Filters (h1 and g1). The parallel real 

wavelet filter banks are designed to get a complex 

signal, i.e., real and imaginary coefficients. These 

parallel trees form the Hilbert transform pair 

approximately to each other, and implementation is 

carried out by using two mother wavelets [15]. Fig. 

3 shows the one level DTCWT analysis 

(decomposition) and synthesis (reconstruction) tree. 

The odd/even filter bank and Q-shift (quarter 

 
Figure. 3 Analysis and synthesis process of a one-

level dual tree complex wavelet transform 

 

sample) filter bank are the two types of filter banks 

proposed by [15]. Odd/even filter bank exist some 

problems. Q-shift filter bank structure used in this 

implementation for denoising, and even filter 

lengths used after level one with no longer strictly 

linear phase [15].  

Let noisy input signal x(t) is derived after 

antenna array, ψh(t) represents real / even and ψg(t) 

represents imaginary / odd two wavelets with 

scaling functions are ϕh(t) and ϕg(t) respectively. The 

complex wavelet signal ψc(t) becomes an analytic 

signal which forms Hilbert transform pair, and it is 

given by [15, 19]:  

 

     c h gt t i t      (6) 

 

Now, real-part of wavelet coefficients and 

scaling coefficients of the tree be calculated by 

using the following formula [19]: 
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Where d denotes the decomposition level (d = 1, 2, 

3…D), and D represents the maximum value of the 

decomposition level. Similarly, for imaginary-part 

of wavelet coefficients and scaling coefficient of the 

tree calculated by using the following formula [19]: 
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With Eq. (6) and Eq. (7), the following are the 

complex wavelet coefficient and complex scaling 

coefficient of the tree denoted as: 
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  (9) 

 

After the decomposition of the signal, the detail 

(wavelet) coefficients and scaling (approximation) 

coefficients are taken into ICA to remove the lower 

order coefficients and to improve the performance 

of denoising techniques. 

Afterward, the denoised forward signal Dfn is 

extracted to get the complex wavelet coefficients 

and scaling coefficient by using inverse wavelet 

transform (reconstruction process) to obtain detail 

and approximation signal [19]. The detail signals are 

obtained using the reconstruction process, 
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  (10) 

 

Similarly, the approximation signals are obtained 

using the reconstruction process, 
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The reconstructed denoised signal ReX calculated by 

summing the detail and approximation signals, 

 

   Re , 1,2, ,D dX AS t DS t d D     (12) 

3.2 Independent component analysis algorithm 

Independent Component Analysis (ICA) is 

perhaps the most widely used method for 

performing blind source separation, and it is based 

on the assumption that the source signals are 

statistically independent [16, 17]. This characteristic 

is used by ICA to estimate the signal of interest from 

the multipath signals.  

As the standard wavelet transform, the DTCWT 

also generates correlated wavelet coefficients with 

their nearby region during decomposition of the 

signal at the wavelet transform [18]. If the wavelet 

coefficient has a large magnitude will possibly have  

 
Figure. 4 Independent component analysis process 

 

significant magnitude complex wavelet coefficients 

in the neighboring area. These neighboring 

coefficients acted as correlated wavelet coefficients 

and removed by using the ICA process [8, 16-17] 

described in Fig. 4. 

The preprocessing using centering and whiting 

operation is carried out to increase the convergence 

rate. If M sensors are used to receive the N unknown 

mutually statically independent source signals, the 

mixed received signal vector is expressed as, 

 

   X t A S t     (13) 

 

To estimate the signal of interest, i.e., source 

signal from the mixed signal, the output of ICA 

expressed as,  

 

      Y t W X t W A S t       (14) 

         Y t W A S t I S t S t        (15) 

 

Where ICA output Y(t) is the estimation of unknown 

source signals S(t), W is the de-mixing or weighted 

matrix, and I is the Identity matrix. If any unknown 

source signal is multiplied with the identity matrix, 

the resultant is source signal from the observed 

mixed signal. It can be obtained based on the 

properties of the identity matrix in which diagonal 

elements are 1 in each row.  

Choose initial weighted matrix w = 1, and 

update W with the derived iterative formula of the 

de-mixing matrix W for k independent components 

is as follows:  
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Renormalize by using 
1
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k
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



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Where w is the raw value of the de-mixing matrix W,  

f (.) is the 1st order derivative, and f’ (.) is the 2nd 

order derivative of nonlinear function F (.). Iterate w 

using Eq. (16) for converges to obtain the weight 

vector of de-mixing matrix W for all independent 

components k = [w1 w2…wn] x.   

3.3 MUSIC algorithm 

The MUSIC algorithm proposed by Schmidt is a 

high-resolution Multiple Signal Classification 

techniques based on exploiting the eigen structure of 

the input array covariance matrix [2]. Space spanned 

by eigen vectors of array covariance matrix is 

divided into the principal eigen subspace (signal 

subspace) and the non-principal eigen subspace 

(noise subspace). The array steering vectors 

conforming to the source signals are orthogonal to 

the noise subspace. As the noise subspace is 

orthogonal to the signal subspace, these steering 

vectors are contained in the signal subspace. It 

should be noted that the noise subspace is spanned 

by the eigen vectors associated with the smaller 

eigenvalues of the correlation matrix, and the signal 

subspace is spanned by the eigen vectors associated 

with its larger eigen values [3]. From the elementary 

discussion in array signal model, this implies that 

M-D of the eigen values of Rx is equal to the noise 

variance σ2. Then sort the eigenvalues of Rx in 

decreasing order such that λ0 is the largest eigen 

value and λM-1 is the smallest eigen value. Therefore, 

 
2

0 1 1M n         (17) 

 

The autocorrelation matrix Rx is estimated from 

a finite data samples when all the eigen value 

corresponding to the noise power will not be 

identical. Instead, it will appear as a closely spaced 

cluster with the variance of spread decreasing as the 

number of samples used to obtain an estimate of Rx 

is increased. Once the multiplicity factor K of the 

smallest eigenvalue is determined, an estimated of 

the number of signals can be obtained as,  

 

D̂ M K     (18) 

The eigen vector associated with a particular eigen 

value λi is the vector qi such that,  

 

 x i iR I q M K      (19) 

 

For eigen vector associated with the M-D smallest 

eigenvalue, we have 
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  0H
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Since A has full rank matrix and RS is non-singular 

vector, this implies that 

 

0H

iA q     (22) 

 

Therefore, the eigen vectors associated with M-D 

smallest eigen values are orthogonal to the D 

steering vectors that make up A, 

 

      0 1 1  , ,   , , = 0   D D Ma a q q      (23) 

 

We can estimate the steering vectors linked with 

the received signals by evaluating the steering 

vectors orthogonal to the eigen vectors associated 

with the eigenvalue of Rx that is approximately equal 

to σn
2. The steering vectors corresponding to DOA 

lie in the signal subspace and are hence orthogonal 

to noise subspace. By searching through all possible 

array steering vectors to find those which are 

perpendicular to space spanned by the non-principal 

eigen vectors, the DOAs can be determined. 

 

 1 1, , ,n D D Mv q q q    (24) 

 

As steering vectors consist of source signal 

which is orthogonal to the noise subspace eigen 

vectors, aH(θ)Vn Vn
Ha(θ)=0 for θ corresponding to 

the DOA of a multipath component. Therefore, 

DOAs can be estimated by locating the peak of a 

MUSIC spatial spectrum given by, 

 

 
   

1
MUSIC H H

n n

P
a V V a


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Orthogonality between a(θ) and Vn will 

minimize the denominator and hence will give rise 

to peaks in the MUSIC spectrum defined in Eq. (25). 

The number of largest peaks in the MUSIC 

spectrum correspond to the DOA of the signals 

impinging on the array. 
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3.4 Summary of DOA estimation using CW-ICA 

MUSIC algorithm 

1. The output of M antenna element array is 

calculated using Eq. (1). 

2. Forward wavelet transform of received antenna 

array signal is obtained using DTCWT. This 

decomposition process generates coefficients 

using Eq. (9). 

3. ICA based thresholding is applied to these 

coefficients as described in Fig. 4. Weight 

vector w is iteratively calculated using Eq. (16) 

to obtain de-mixing matrix W. 

4. Denoised signal ReX is generated using inverse 

DTCWT of de-mixing matrix W to obtain array 

covariance matrix Rx. This reconstruction 

process generates denoised signal using Eq. (12).  

5. Eigen analysis of array covariance matrix to 

obtain DOA of uncorrelated, closely spaced, and 

coherent signal using Eq. (25) is carried out. 

4. Results and discussions 

In this section, simulation results on closely 

spaced coherent signals are presented to demonstrate 

the potential advantages of the proposed CW-ICA 

MUSIC algorithm compared to that of Wavelet-

based MUSIC [7], and classical MUSIC [2] 

algorithms respectively. The proposed technique is 

also compared with latest DOA estimation SS-

MUSIC [14] technique in terms of the probability of 

resolution with SNR and angular separation (δθ). 

The simulations have been carried out with Matlab 

R2014a.  A uniform linear array of 12 antenna 

elements with the distance between antenna 

elements in the array is 0.5λ is considered. Input 

signals are assumed to be of same power with 1000 

snapshots.  

4.1 Spatial resolution analysis 

The performance of proposed DOA estimation 

technique is evaluated considering two closely 

spaced coherent signals with DOA of [200, 22°] are 

impinging on antenna array. The SNR is set to be 

20dB (very high). The evaluated spatial power 

spectrum is shown in Fig. 5. 

From Fig. 5, we can conclude that the proposed 

technique CW-ICA music clearly resolves two 

closely spaced coherent signals. The proposed 

algorithm has accurate resolution and sharper peaks 

compared to wavelet MUSIC. The basic MUSIC 

algorithm fails to detect these two signal 

components. The wavelet-based MUSIC algorithm 

cannot distinguish their exact direction and has an  

 
Figure. 5 Spatial spectrum for high SNR (20dB)  

 

 
Figure. 6 Spatial spectrum for low SNR (0dB) 

 

inferior resolution for two closely spaced coherent 

sources due to lack of shift-invariance property [15].   

SNR is set to 0dB (low), and rest of parameters 

unchanged. The results are depicted in Fig. 6. It 

shows that, for low SNR, the closely spaced 

coherent sources are appropriately resolved with 

relatively good resolution using the proposed 

approach. Basic MUSIC and wavelet MUSIC 

algorithms cannot distinguish the desired signals 

because of more noisy components in the received 

signal vectors. 

SNR is further reduced to -2dB (very low), and 

the rest of parameters are unchanged. The results are 

depicted in Fig. 7. 

Fig. 7 shows that for a very low SNR, the 

closely spaced coherent signals are resolved by the 

proposed approach. The proposed method performs 

remarkably even for low SNR and closely spaced 

signals since the preprocessing stage counteracts on 

largely correlated noisy coefficients. The 

preprocessing stage enhances the SNR of received 

signal and generates full rank of array covariance 

matrix. 

10 12 14 16 18 20 22 24 26 28 30
-60

-50

-40

-30

-20

-10

0

DOA degrees

P
s
e
u
d
o
s
p
e
c
tr

u
m

 P
( 

) 
d
B

 

 

MUSIC

Wavelet MUSIC

CW-ICA MUSIC

10 12 14 16 18 20 22 24 26 28 30
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

DOA degrees

P
s
e
u
d
o
s
p
e
c
tr

u
m

 P
( 

) 
d
B

 

 

MUSIC

Wavelet MUSIC

CW-ICA MUSIC



Received:  October 18, 2018                                                                                                                                              307 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.29 

 

 
Figure. 7 Spatial spectrum for very low SNR (-2dB) 

 

Performance of the proposed approach is 

reevaluated considering another two sets of closely 

spaced coherent signals with direction of arrival 

angles,  [20°, 23°] and [30°, 34°]. SNR is set to 0dB 

(low), and rest of parameters unchanged. The DOA 

estimation results are depicted in Fig. 8. It is 

confirmed that the proposed CW-ICA MUSIC 

algorithm detects two sets of closely spaced 

coherent signals with relatively low SNR also.  

4.2 Effect of SNR on DOA estimation error 

The results depicted in Fig. 9 shows the Root 

Means Square Error (RMSE) plotted against SNR. 

SNR is varied from -8dB to +8dB, and DOA 

estimated errors are obtained using 500 Monte Carlo 

simulation trails. Basic MUSIC algorithm is not 

considered in the error analysis since it does not deal 

with coherent signals. As the SNR goes on 

increasing, the error from the two algorithms 

gradually decreases to a lower value. At SNR = 0dB, 

proposed CW-ICA MUSIC algorithm has 0.1 

RMSE compared 0.14 for wavelet based MUSIC. 

4.3 Effect of snapshots on DOA estimation error 

The results depicted in Fig. 10 show the RMSE 

plotted against a number of snapshots. SNR is set to 

-2dB, and a number of snapshots are varied from 

100 to 1000. The DOA estimated errors are obtained 

using 500 Monto Carlo simulation trails. For the 

lower value of the snapshots, the proposed algorithm 

exhibits a low value of RMSE compared to that of 

wavelet-based MUSIC algorithm. The proposed 

CW-ICA MUSIC algorithm has 0.08 RMSE 

compared to 0.13 for wavelet based MUSIC when 

the number of snapshots is set to be 500.  It indicates 

that the proposed method performs well even under 

poor enviornment conditions, for a  low SNR, less 

number of snapshots and  with moderate antenna 

elements.   

 

 
Figure. 8 Spatial spectrum for two set of signals 

 

 
Figure. 9 RMSE vs. SNR  

 

 
Figure. 10 RMSE vs. number of snapshots  
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4.4 Effect of SNR and angular separation on 

probability of resolution 

In this section, the DOA estimation performance 

of the proposed CW-ICA MUSIC method is 

compared with the latest method SS-MUSIC [14] to 

resolve closely spaced sources in terms of 

probability of resolution detection. The criterion for 

the probability of resolution is the ability to resolve 

closely spaced sources, and the two sources are said 

to be resolved in a given run expressed as [6], 

 

   1 1 2 2 1 2 2E T E T T T            (26) 

 

Where Tθ1, Tθ2 are the true DOAs and the Eθ1, Eθ2 

are the estimated DOAs. The probability of 

resolution detection is calculated using the above 

criteria with the help of repeated 100 trials of Monte 

Carlo simulations with varying noise conditions. 

The results depicted in Fig. 11 shows the probability 

of resolution versus SNR for estimating two closely 

spaced uncorrelated sources with an agular 

separation of 2°. A number of snapshots is set to be 

100, and SNR is varied from -30dB to +30dB. At 

low SNR conditions (0 to 5dB), the proposed 

method is observed to be performing better than SS-

MUSIC. At SNR of 5dB, the proposed method 

resolved the closely spaced signals with probability 

of resolution of 0.92, and SS-MUSIC resolved with 

probability of resolution of 0.19 only.  The proposed 

method works better than SS-MUSIC because of 

utilization of denoising stage with complex wavelet 

combined with ICA approach for thresholding the 

similar type of noisy coefficients in the neighboring 

region before DOA estimation.   

To further evaluate the performance of the 

proposed method to resolve two closely spaced non-

coherent sources, probability of resolution 

performance tested under different angular 

separation (δθ) as illustrated in Fig. 12. The SNR is 

set to be 7dB, and the angular separation between 

two closely spaced non-coherent sources is varied 

from 0.5 to 5. 

From Fig. 12, it is observed that, for a low 

angular separation, the performance of the proposed 

method is far better than SS-MUSIC. The angular 

separation from 2.5°, the proposed CW-ICA 

MUSIC method achieves probability of resolution of 

1.00 indicates a 100% detection rate, while SS-

MUSIC obtains at 4.5°. Also, 0.9 probability of 

resolution is achieved for angular separation of 2° 

compared to 0.3 of SS-MUSIC. Thus, the proposed 

method improves not only the resolution but also 

estimation accuracy compared to SS-MUSIC.    

 
Figure. 11 Probability of resolution vs. SNR 

 

 
Figure. 12 Probability of resolution vs. angular 

separation  

5. Conclusions 

In this paper, DOA estimation for closely spaced 

coherent signal using Dual-tree complex wavelet 

transform and independent component analysis is 

investigated. A novel DOA estimation technique 

CW-ICA MUSIC is proposed. It includes a 

denoising stage before applying the signals to 

conventional DOA estimation algorithm. The 

simulation results exhibit the effectiveness of the 

proposed techniques compared to wavelet based 

MUSIC and SS-MUSIC. The proposed technique 

performs better even at low SNR, minimum number 

of antenna elements. This approach resolves the two 

closely spaced and coherent signals. A 2° resolution 

is achieved with proposed algorithm for a low SNR 

of -2dB. Also, signals with angular separation of 2° 

are resolved successfully with 0.99 probability of 

resolution compared to probability of resolution of 

0.3 with SS-MUSIC. Simulation results show that 

DTCWT-ICA based approach outperforms other 
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techniques in multipath DOA estimation under low 

SNR, and closely spaced coherent signals scenarios. 

Investigations can be further extended to reduce 

RMSE for lower SNR by adopting population-based 

optimization algorithms.  
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