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Abstract: One of the most pressing and critical issues in cloud is Power Optimization. Due to the popularity of 

cloud, many computing applications are being hosted in the cloud. Naturally, many Cloud Centers (CCs) are 

experiencing huge power consumption problem, which leads to higher operational cost and environmental hazards 

due to carbon emissions. The two important concepts used to achieve power optimization are: load balancing and 

server consolidation. The first concept aims to achieve fair distribution of computing load on different Physical 

Machine (PM); whereas, the second concept aims to shutdown PMs, which are having limited computational load. 

One of the most popular techniques to achieve load balancing and server consolidation is Virtual Machine (VM) 

migration technique; where, the VMs are packed inside limited PMs; such that, load is fairly balanced among PMs, 

and limited usage PMs are relieved of their computational load and can be shutdown. However, VM migration 

requires excessive cost, and results in excessive computed task wastage. Hence, in this work, a new hybrid scheme 

which does not migrate VMs, and migrates only suitable tasks from overloaded VMs and lightly loaded PMs is 

presented. The proposed hybrid model is compared against contemporary VM migration technique to assess resource 

usage merits. The proposed hybrid model significantly outperforms the contemporary VM migration techniques in 

resource usage efficiency. 
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1. Introduction 

The usage and impact of Cloud Computing is 

exploding contemporarily. The most significant 

advantage of Cloud Computing is on-demand 

service availability; wherein, enterprises can 

demand computing resources--when-needed, where-

needed and duration-needed. Due to this advantage, 

enterprises are relieved from procuring and 

maintaining expensive computational resources. In-

fact, Cloud Computing has provided extensive 

business opportunities in establishing CCs. However, 

due to the wide and ever-growing popularity of 

Cloud Computing, CCs are catering to extremely 

large computational load, which has resulted in 

abnormal power utilization leading to excessive 

costs borne by the CCs.  

In the CC nomenclature, the computational 

devices are called as Physical Machines (PM). Each 

PM, usually has the capability to cater multiple 

users. Hence, to provide resource division, and 

creating the necessary abstraction to the multiple 

users of each PM, the concept of Virtual Machine 

(VM) is utilized. Each user is typically allocated a 

single or group of dedicated VMs. The resource 

division among different VMs hosted in a single PM 

might be mutually exclusive. The concept of 

overloaded PM/VM indicates that, the overloaded 

PM/VM is currently executing computational tasks 

which are beyond its capacity to provide efficient 

execution. In such scenario, all such computational 

tasks have to share meagerly available resources, 

which eventually lead to poor task execution 

efficiency. Similarly, concept of lightly loaded PM 

indicates that, the corresponding PM is hosting 
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computationally light tasks which exhibit way-

below resource usage than the available resources in 

the PM. 

The overloading issue in CCs can result in 

extensive squandering of computational power; 

along with, limiting execution efficiency. To address 

this issue, CCs utilize load sharing mechanism; 

wherein, computational load is distributed to relieve 

overloaded entities. Similarly, the issue of lightly 

loaded PMs can also lead to resource and power 

squandering in CCs. To address this issue, CCs 

identify such lightly loaded PMs, and redistribute 

their computational load to other PMs; so that, such 

PMs can be shutdown, and this mechanism is 

denoted as Server Consolidation (SC). 

1.1 Research issues 

One of the most popular and extensively used 

load balancing and SC technique in CCs is VM 

Migration (VMM). Here, all the available VMs in 

the CC are redistributed into limited number of 

PMs; such that, both load balancing and SC can be 

achieved. Myriad of VMM techniques have been 

proposed in the literature; wherein: approximate 

algorithms, heuristical and meta-heuristic solutions 

have been proposed. However, VMM can result in 

significant performance issues: VMM requires 

significant memory consumption, and can result in 

extensive task execution downtime because of 

stopping the VM for migration; due to VM 

migration, it is possible that, customer activity 

information might be lost; VMM might result in 

significant increase of dirty memory.  

In-order to overcome performance issues seen in 

VMM, VM Task Migration (VMTM) technique was 

presented in [1]. VMTM involves identifying 

overloaded VMs, and migrating the extra tasks--

which are newly submitted and not yet addressed by 

the corresponding VM--from the overloaded VMs to 

other VMs which can host these tasks without 

getting overloaded. However, VMTM has still not 

completely addressed power optimization issue in 

CCs, and many open issues are still prevalent such 

as: the overloaded VM is not subjected to existing 

load reduction by identifying and migrating suitable 

running tasks, and if the running tasks execute for a 

prolonged period, it can result in significant power 

squandering; VMTM has still remained elusive w.r.t. 

SC; VMTM can be extended to address holistic 

power optimization by combining solutions for: 

extra task migration, running task migration and SC.  

The main goal of this work is to present hybrid 

model for holistic power optimization using VMTM 

framework. Compared to the contemporary VMTM 

technique [1], the proposed hybrid model achieves 

multiple merits. Firstly, the proposed hybrid model 

performs runtime task migration along with extra 

task migration to achieve existing load reduction in 

overloaded VMs. The identified runtime tasks are 

selected such that, the tasks are substantially 

consuming computational resources, and have only 

completed limited part of their entire execution 

cycle to ensure that, substantial computational effort 

is not wasted. Secondly, lightly loaded PMs are 

identified, and extra tasks submitted to the 

corresponding VMs are migrated; so that, after the 

execution completion of all the running tasks, the 

PMs can be shutdown. Thirdly, the hybrid model, 

searches for suitable VMTM solutions for both SC 

and VM overloading issue in a single search 

procedure. Thereby, reducing the required 

computational effort when compared to executing 

separate VMTM procedures to resolve SC and VM 

overloading issue. 

1.2 Contributions 

    The following contributions are made in this 

work:  

1. Initially, in the hybrid model, the overloaded 

VMs and lightly loaded PMs are identified through 

respective discriminant functions. Scoring functions 

are designed to indicate the value of a specific task 

migration solution; so that, the most optimal 

solution can be searched. Separate scoring functions 

are designed for: overloaded VM extra task 

migration, overloaded VM existing task migration 

and migrating extra tasks from VMs belonging to 

lightly loaded PMs. However, the optimal task 

migration solution for all the three scoring functions 

is searched through the aid of single hybrid model, 

and by using Particle Swarm Optimization (PSO) 

search solution technique, because the search 

problem is shown to have non-polynomial 

complexity. Hence, the proposed PSO based 

solution executes approximate optimal solution 

search through meta-heuristic fashion and in 

polynomial complexity; also, it provides scope for 

parallelism in-order to accelerate search efficiency.  

 

2. The proposed hybrid model is simulated in 

MATLAB, and compared against contemporary 

VMM techniques. The proposed solution 

outperforms contemporary solutions in multiple 

metrics such as: power consumption and task 

execution efficiency. 



Received:  September 23, 2018                                                                                                                                         176 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.18 

 

1.3 Organization of the paper 

This paper is organized as follows: Section 2 

presents the related work in the addressed area; the 

hybrid model is outlined in Section 3; Simulation 

results are presented in Section 4; finally, the work 

is concluded in Section 5. 

2. Related work 

VM migration has been one of the popular load 

balancing techniques in cloud computing. In [2], 

VM migration technique focused on load balancing 

in data centers having multi-rooted tree format. In 

[3], VM migration technique addressed load 

balancing in distributed cloud centers; wherein, 

cloud resources are distributed in different 

geographical location. In [4], rapid migration 

scheme for VM migration was proposed. As 

explained above, even though VM migration 

techniques have demonstrated load balancing 

efficiency, they suffer from expensive cost of 

migration and possible task execution latency delays.         

Task scheduling for load balancing in distributed 

systems--including cloud servers--deal with the 

problem of distributing the submitted task load on 

available computational units; so that, maximum 

utilization of these computational units, and 

substantial reduction in task execution time can be 

achieved. It must be noted that, task scheduling does 

not involve evicting already running tasks, and only 

distributes the newly submitted tasks for efficient 

computation. Also, overloaded VM problem is 

usually not addressed in task scheduling, because 

the task distribution scheme hypothesizes that, 

overloading will usually not occur. 

A novel programming platform for task 

scheduling in cloud was presented in [5]. Genetic 

algorithm based task scheduling techniques for 

cloud was presented in both [6, 7]. Task scheduling 

technique for geographically distributed cloud 

centers was presented in [8]. Survey on different 

load balancing techniques for cloud was presented 

in [9]. Similarly, survey on meta-heuristic 

techniques for load balancing in cloud was 

presented in [10]. In [11], future problems for task 

scheduling in cloud were comprehensively 

presented. Dynamic Collaboration in cloud involves 

collaborative framework through different 

participating cloud service providers, and in [12], 

task scheduling in this new framework was 

presented. In [13] task scheduling technique for IaaS 

based cloud centers was presented. 

Task scheduling technique through user 

requirement modeling for computational grids—

which can also be relevant to cloud--was presented 

in [14]. Similarly, PSO based task scheduling 

technique for computational grids and cloud was 

presented in [15]. Security based task scheduling 

technique for cloud using Swarm scheduling 

approach was presented in [16]. Multi objective task 

scheduling involves achieving multiple goals such 

as: minimizing task latency, reducing power 

consumption etc., and this problem for cloud was 

addressed in [17]. In [18], another multi objective 

task scheduling technique for cloud using genetic 

algorithm was presented. In [19], Honey Bee 

optimization technique for task scheduling in cloud 

was presented. In [20], task scheduling in 

computational grids--which can also be extended to 

cloud--was also achieved through Honey Bee 

optimization technique. Task scheduling technique 

for cloud using Ant Colony optimization framework 

was presented in [21]. In [22], task scheduling for 

cloud using probabilistic modeling was presented. In 

[23], task scheduling technique for cloud using 

specialized bio-inspired algorithm called: Symbiotic 

Organism Search, was presented. Multi objective 

task scheduling technique for cloud using Ant 

Colony optimization framework was presented in 

[24]. Hybrid task scheduling algorithm for cloud 

through merging of two techniques namely: Cuckoo 

search algorithm and Oppositional based learning 

was presented in [25]. In [26], evolutionary genetic 

algorithm framework was utilized to achieve task 

scheduling in cloud. Similarly, fruit fly optimization 

framework was utilized in [27] to design task 

scheduling technique in cloud. 

Even though, task scheduling is effective in load 

balancing for cloud, in some scenarios, the 

estimated resource consumption for a certain task, 

which is used as critical parameter in task 

scheduling techniques, can deviate substantially 

compared to actual resource utilization--which can 

burgeon rapidly. In such scenarios, VMs can easily 

become overloaded, and has to be relived from this 

computational burden. The VM extra task migration 

techniques presented in [1, 28] achieves load 

reduction from overloaded VMs through migrating 

extra tasks. As outlined above, to achieve even 

better load reduction as achieved in [1, 28], some of 

the suitable running tasks in the overloaded VMs 

need to be identified and migrated--along with extra 

tasks. 

Extensive contributions have been made to 

achieve SC through VM migration technique. 

Various techniques for SC in virtualized data center 

has been discussed in [29]. In [30], two VM 

migration techniques namely--Hybrid and Dynamic 

Round Robin(DRR) was presented. Two states were 
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defined in the solution framework called--retiring 

and non-retiring. If a PM contains limited number of 

active VMs which are about to finish their task, then, 

the PM is in retiring state, else, it is in non-retiring 

state. The retiring PMs will not accept new tasks, 

and the active VMs are migrated to suitable PMs. 

Both, Hybrid and DRR exhibit excellent 

performance w.r.t. reducing power consumption in 

CCs.       

Most of the VM migration techniques for SC are 

modeled through Bin Packing Problem (BPP), 

which is NP-complete. An approximation scheme 

based on First Fit Decreasing algorithm was 

proposed [31] to effectively migrate VMs. Each bin 

is considered as a PM, and the highest priority PMs 

are subjected to VM migration.  

The Magnet scheme proposed in [32], performs 

selection of suitable subsets of available PMs which 

can guarantee the expected performance levels. The 

PMs outside the selected subset are shutdown.  

A CC management tool was presented in [33]. 

This tool not only provides continuous monitoring 

facility, it also provides facility to perform live 

migration of VMs.  

In [34], it was emphasized that, VMs can be 

broadly classified as data intensive or CPU intensive 

based on their respective workloads. For this new 

framework, the BPP was modified, and suitable 

approximation schemes were presented.  

The placement of migrated VMs for SC was 

performed through assigning priority levels to the 

candidate PMs in [35]. The PMs which consume 

low power were given higher priority.  

Non-migratory technique for reduction of power 

consumption in CCs was presented in [36]. Energy 

efficiency model and corresponding heuristics were 

proposed to reduce power consumption in CCs. 

Similar techniques were presented in [37] which 

utilized green computing framework.  

Resource scheduling techniques for SC were 

presented in [38]. Here, a new architectural model 

was presented to calculate energy expenditure for 

different resource scheduling strategies.  

All the described VM migration techniques, 

even though they achieve noticeable performance in 

reducing power consumption, they all suffer from 

excessive down times in completing VM migration, 

and increase in dirty memory as explained before.  

3.  Hybrid model for load balancing and SC 

3.1 Data Overloaded VM identification scheme 

Let, VMy indicate the yth VM, cy indicates the 
number of computing node in VMy,  my indicates 

the memory capacity of VMy, tiy indicates the ith  task 

present inside VMy, ciy is the CPU utilization ratio of 

tiy, if tiy is running on multiple CPUs, then, ciy is the 

sum of CPU utilization ratio for every CPU on 

which tiy is being executed, miy represents the 

memory utilization ratio of tiy and piy represents the 

power consumption of tiy, which is represented in Eq. 

(1) 

 

𝑝𝑖𝑦  = 𝑐𝑖𝑦  ×  𝑚𝑖𝑦                 (1) 

 

The total power consumed  

by all the tasks present in VMy is indicated by the 

variable py and it is represented in Eq. (2) Here, ny 

represents the total number of tasks that are being 

executed in VMy. 

 

 𝒑 𝑦 =
∑ 𝑝𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
     (2) 

 

Two thresholds are defined to detect overloaded 

VMs. The first threshold is defined over CPU 

utilization ratio, which is indicated by Tc. The 

second threshold is defined over power consumption, 

which is indicated by Tp. The VMy is decided as 

overloaded if the value of the function overloaded 

(VMy)=1, otherwise if, overloaded(VMy) = 0, then, 

VMy is decided as not-overloaded. This case is 

represented in Eq. (3) 

 

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑(𝑉𝑀𝑦) =  

{
  
 

  
 

  

1,   𝑖𝑓 𝑇𝑐 ≤ 
∑ 𝑐𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
 

𝑜𝑟
𝑇𝑝 ≤ 𝑝𝑦

 
  

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

              (3) 

3.2 Extra task migration framework 

In this framework, the extra tasks of the 

identified overloaded VMs are subjected to 

migration to other VMs, in-order to relieve the 

overloaded VMs from processing these tasks. 

Consider the scenario where the ith extra task of VMy 

indicated by tiy is considered for migrating to VMz. 

The benefit of this migration scenario is modeled 

through a score function represented in Eq. (4). Here, 

scoreET(tiy,VMz) indicates the benefit score of the 

considered migration; lower the score, better will be 

the migration scenario; exeETiz indicates the 

predicted execution time of tiy-- when tiy is migrated 

to VMz, and this metric is represented in Eq. (5);  

transfer(tiy,VMz) indicates the cost of transferring tiy 

to VMz, and this metric is represented in Eq. (6); the 

size of execution data used by tiy is indicated by diy; 



Received:  September 23, 2018                                                                                                                                         178 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.18 

 

the available bandwidth for transferring data 

between VMy and VMz is indicated by bwyz. 

 

𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑡𝑖𝑦 , 𝑉𝑀𝑧 ) =   𝑒𝑥𝑒𝐸𝑇𝑖𝑧 +  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧)    

       (4) 

 

𝑒𝑥𝑒𝐸𝑇𝑖𝑧 = 
𝑑𝑖𝑦

𝑐𝑧  + 𝑚𝑧
                   (5) 

 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) =
𝑑𝑖𝑦

𝑏𝑤𝑦𝑧
    (6) 

 

After identifying the overloaded VMs, the 

set of extra tasks from these VMs indicated by [ti1y1,  

ti2y2, … tisys ] has to be migrated to suitable VM set. 

Consider a candidate solution indicated by S1, 

having the VM set indicated by [VMz1 , 

VMz2 ,….VMzs ], which can provide feasible migration 

to these extra tasks. Here, tijyj((1 ≤ j ≤ s)) is 

considered for migrating to VMzj, and there is no 

restriction that, the VMs in the set [VMz1 , 

VMz2 ,….VMzs ], have to be distinct. The benefit of 

this migration scenario is modeled through scoring 

function represented in Eq. (7). Here, 

migration_scoreET(S1) represents the migration score. 

 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑆1) =
∑ 𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑡𝑖𝑗 , 𝑉𝑀𝑧𝑗 
𝑠
𝑗=1 )

𝑠
 

                                (7) 
 

Theorem 1. Minimizing the migration score function 

represented in Eq. (7) provides the optimal 

candidate solution for overloaded VMs extra task 

migration problem.  

 Proof. Suppose So is the candidate solution obtained 

by minimizing the migration scoring function, and 

Sr is the optimal candidate solution. Let’s assume: So 

≠ Sr and So > Sr. Since, the migration scoring 

function belongs to the class of monotonically non-

decreasing functions, So cannot be lesser than Sr due 

to the property of such class of functions 

 

Theorem 2. The searching problem to find the best 

candidate solution for the migration scenario 

represented in Eq. (7) has non-polynomial time 

complexity. 

Proof. Consider the number of candidate solutions 

possible for a particular migration scenario; wherein, 

r (r<s) tasks have to be migrated to VMy1, and s-r 

tasks have to be migrated to VMy2. Clearly, the 

number of feasible candidate solutions is given by 

(𝑠
𝑟
). Now, the considered migration scenario is one 

among many possible such scenarios. Hence, the 

complexity of this search problem is > (𝑠
𝑟
), which 

immediately proves the Theorem.          

     
Theorem 1 indicates that, performing optimal 

migration of extra tasks of overloaded VMs can be 

achieved through the minimization of migration 

score function represented in Eq. (7). Theorem 2. 

proves that, searching for the optimal candidate 

solution to migrate extra tasks of overloaded VMs 

requires non-polynomial time complexity. Hence, in 

the scenario where very large number of candidate 

solutions is available, usage of approximate 

algorithms which provide near-optimal solutions in 

polynomial time complexity is justified.        

3.3 Running task migration framework 

To select the suitable running tasks for migration, 

it is important to select those tasks which have 

completed executing only small portion of their data. 

The task completion ratio of tiy is represented in Eq. 

(4). Here, task_completion (tiy) indicates the task 

completion ratio of tiy, diy is the size of data used by 

tiy and d̂iy indicates the size of data already 

consumed by tiy. 

 

𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑡𝑖𝑦) =  
�̂̂�𝑖𝑦

 𝑑𝑖𝑦
    (8) 

 

The suitable tasks for migration are identified 

through their task completion ratio, CPU utilization 

and consumed power. The selected task should have 

the task completion ratio within the specified 

threshold indicated by To. This case is represented in 

Eq. (5). Since, stopping already executing tasks and 

migrating them into different VMs along with their 

data, reduces the task execution efficiency, so, only 

a single task which provides the maximum benefit in 

load reduction is selected for migration. 

 
task_completion( tiy ) ≤  To                      (9) 

 

The task which has the maximum combined 

value of both CPU utilization ratio and consumed 

power is selected for migration, and this case is 

represented in Eq. (6) 

 

task selected for migration = 𝑚𝑎𝑥𝑡𝑖𝑦 (ciy + piy)  (10) 

  

Suppose that, tiy has to be migrated from VMy 

and VMz is one of the possible VM to which tiy has 

to be migrated. The score of the migration task is 

represented in Eq. (11). The value of the parameters 

exeiz, transfer(tiy, VMz), pz, g(Tcz, tiy) and g(Tpz , tiy) 

are represented in Eqs. (12), (13), (14), and (15) 
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respectively. Here, score(tiy, VMz)  indicates the 

migration score, exeiz indicates the cost of executing 

tiy in VMz, transfer(tiy, VMz) indicates the transfer 

cost of transferring tiy from VMy to VMz, bwyz 

indicates the bandwidth between VMy and VMz and 

p̂z is the power consumed by VMz when task tiy is 

migrated to VMz. The functions g(Tc, tiy) and g(Tp, 

tiy) ensure that, the migration of tiy from VMy to VMz 

does not cause CPU utilization threshold and power 

consumption threshold violations.  

Consider the situation where the set of tasks [ti1y1,  

ti2y2, … tisys ] which need to be migrated. One of the 

candidate solution indicated by S2 is the VM set 

[VMz1 , VMz2 ,….VMzs ], such that, ti1y1 will be 

migrated to VMz1 , ti2y2 will be migrated to VMz2 and 

so on tisys will be migrated to VMzs . There is no 

restriction that, the VMs in the candidate solution set 

should be distinct. The migration score for this 

candidate solution is indicated by 

migration_scoreRT(𝑆2 ) is represented in Eq. (16). 

Here, tijyj → VMzj (1≤ j ≤ s) indicates that the task 

tijyj has already been assigned to VMzj and is being 

executed inside it. The CPU and memory utilization 

ratio of tijyj in VMzj is assumed to be same as 

observed when tijyj was executing inside VMzj. The 

operator ∣ is interpreted as such that. 

 

𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖𝑦 , 𝑉𝑀𝑧 ) = 𝑒𝑥𝑒𝑅𝑇𝑖𝑧  +

 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) + �̂�𝑧 − (𝑔(𝑇𝑐 , 𝑡𝑖𝑦) +  𝑔(𝑇𝑝, 𝑡𝑖𝑦))                  

             (11) 

𝑒𝑥𝑒𝑅𝑇𝑖𝑧 = 
𝑑𝑦

𝑐𝑧  ×𝑐𝑖𝑦 + 𝑚𝑧× 𝑚𝑖𝑦
                                  (12) 

 �̂�𝑧 = 𝑝𝑧 + 
𝑝𝑖𝑦

𝑐𝑧
                             (13) 

 

𝑔(𝑇𝑐 , 𝑡𝑖𝑦)   =

{
 𝑇𝑐 − 

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
  ,         𝑖𝑓 𝑇𝑐 − 

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
   > 0 

−∞,                                   𝑖𝑓  𝑇𝑐 − 
∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
   ≤  0 

          

(14) 

 

 𝑔(𝑇𝑝, 𝑡𝑖𝑦)   =

{
 𝑇𝑝 − (𝑝𝑧 +  

𝑝𝑖𝑦

𝑐𝑧
 )  ,     𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +  

𝑝𝑖𝑦

𝑐𝑧
 )  > 0 

−∞,                                   𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +  
𝑝𝑖𝑦

𝑐𝑧
 )  ≤  0 

            

                                                                              (15) 
 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒(𝑆2) = 𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖1𝑦1, 𝑉𝑀𝑧1|𝑡𝑖2𝑦2 → 

𝑉𝑀𝑧2, 𝑡𝑖3𝑦3 → 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) + 

𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖2𝑦2, 𝑉𝑀𝑧2|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖3𝑦3
→ 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) + 

… . . 𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑡𝑖𝑠𝑦𝑠, 𝑉𝑀𝑧𝑠|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, … . 𝑡𝑖(𝑠−1)𝑦(𝑠−1) → 𝑉𝑀𝑧(𝑠−1))                           (16) 

Theorem 3. Minimizing the migration score 

function represented in Eq. (16) provides the 

optimal candidate solution for overloaded VMs 

running task migration problem.    

Proof. The proof is on the same lines as outlined for 

Theorem 1. 

Theorem 4. The searching problem to find the best 

candidate solution for the migration scenario 

represented in Eq. (16) has non-polynomial time 

complexity.      

Proof. The proof is on the same lines as outlined for 

Theorem 2. 

Theorems 3. and 4. prove that, searching for the 

optimal candidate solution to solve overloaded VMs 

running task problem, requires approximate and 

polynomial time complexity algorithms. 

3.4 Task migration framework for SC 

The first step in SC is to identify suitable PMs 

which can be considered for shutting down. Let, 

PMk indicate the kth PM in the CC, num(PMk) 

indicate the number of active VMs in PMk.  Each 

PM is defined with a corresponding threshold 

indicated by SD(PMk), which indicates the required 

minimum number of VMs running in the PM to 

prevent it from shutting down. This case is 

represented in Eq. (17). Here, shutdown(PMk) = 1 

indicates that, PMk should be shutdown, and 

shutdown(PMk) = 0 indicates that, PMk should be 

kept active.      
 
𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛(𝑃𝑀𝑘) =

               {
   1, 𝑖𝑓 num(PMk) <  SD(PMk)
   0,                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                   (17)  

 

Let, 𝑆�̂� indicate the set of PMs which are eligible to 

be shutdown, and 𝑉�̂� indicate the set of active VMs 

hosted inside those PMs ∈ 𝑆�̂� . The extra or new 

tasks which are submitted to 𝑉�̂� will be migrated to 

other suitable PMs. Once, the running tasks 𝑉�̂� 

finish their execution, all the PMs 𝑆�̂�  can be 

shutdown. 

Let, tiy indicate the ith  extra task submitted to 

VMy ϵ 𝑉�̂�  , and suppose it can be migrated to VMz 

which is hosted in that PM ∉  𝑆�̂�. The migration of 

tiy also requires the migration of data associated with 

tiy. The merit of this migration is analyzed through a 

scoring function represented in Eq. (18). Here, 

scoreSC(tiy, VMz) indicates the score of migration 

strategy which migrates tiy from VMy to VMz, 

exeSCiz indicates the estimated execution time of tiy 

inside VMz,  which is represented in Eq.  (19).   
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𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑡𝑖𝑦 , 𝑉𝑀𝑧 ) =  𝑒𝑥𝑒𝑆𝐶𝑖𝑧  +  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧)                                                               

                                                            (18) 

𝑒𝑥𝑒𝑆𝐶𝑖𝑧 = 
𝑑𝑖𝑦

𝑐𝑧  + 𝑚𝑧
                                                  (19) 

The extra task migration is performed batch-

wise, rather than on a single task in-order to reduce 

computational overheads. All the extra tasks 

submitted to 𝑉�̂� are batched together for migration. 

Consider the scenario, where the batch of extra tasks 

[ti1y1…..ti2y2, … tisys ] submitted to 𝑉�̂� need to be 

migrated. Suppose, [VMz1,VMz2,…….VMzs] is a 

candidate solution for the required migration of 

tasks, wherein, tijyj (1 ≤ j ≤ s) is considered to be 

migrated from VMyj to VMzj, and this candidate 

solution is denoted as S3. Also, there is no restriction 

that, the VMs in the candidate solution should be 

distinct. The score of this migration scheme 

indicated by migration_scoreSC(S3) is represented 

in Eq. (20). 

 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑆3) =
∑ 𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑡𝑖𝑗 , 𝑉𝑀𝑧𝑗 
𝑠
𝑗=1 )

𝑠
 

(20) 

 
Theorem 5. Minimizing the migration score function 

represented in Eq.(20) provides the optimal 

candidate solution for SC problem involving VM 

task migration.  

Proof. The proof is on the same lines as outlined for 

Theorem 1.  

 

Theorem 6. The searching problem to find the best 

candidate solution for the migration scenario 

represented in Eq. (20) has non-polynomial time 

complexity.      

Proof. The proof is on the same lines as outlined for 

Theorem 2. 

Theorems 5 and 6 prove that, searching for the 

optimal candidate solution to solve SC problem 

through VM task migration, requires approximate 

and polynomial time complexity algorithms. 

3.5 Hybrid model 

The main goal of the hybrid model is to achieve 

holistic power optimization through combining all 

the three frameworks namely: extra task migration 

framework, running task migration framework and 

task migration framework for SC. The problem 

instance of the hybrid model is to migrate all the 

tasks selected for each of the three frameworks. 

Each candidate solution for the hybrid model is 

represented through the Candidate Solution Vector 

(CSV) represented in Eq. (21). Here, S represents a 

specific CSV; S1, S2 and S3 represent a specific 

candidate solutions for extra task migration 

framework, running task migration framework and 

task migration framework for SC respectively.   

 

𝑆 = [𝑆1, 𝑆2, 𝑆3]
𝑇                                              (21)  

 

The merit of the CSV S is analyzed through the 

scoring function indicated by 

hybrid_migration_score(S) represented in Eq. (22).  

 
  ℎ𝑦𝑏𝑟𝑖𝑑_𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒(𝑆) =
 𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝐸𝑇(𝑆1) +  𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑅𝑇(𝑆2)  + 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒𝑆𝐶(𝑆3) 
                                          (22) 

 

Theorem 7. Minimizing the migration score function 

represented in Eq.(22) provides the optimal 

candidate solution for hybrid model problem.  

Proof. Since, the migration score function is a linear 

combination of individual migration score functions 

of three different frameworks represented in Eq. (7), 

(16) and (20), and it is also monotonically non-

decreasing function, it will reach its minimum value 

when the individual score functions reach their 

minimal value. Since, the minimum value of 

individual migration score functions correspond to 

optimal candidate solutions for their respective 

frameworks--according to Theorems 1,2 and 3, the 

Theorem immediately follows.   

   

Theorem 8. The searching problem to find the best 

candidate solution for the migration scenario 

represented in Eq. (22) has non-polynomial time 

complexity.      

Proof. According to Theorems 2,4 and 6, the 

searching problem corresponding to Eq. (7), (16) 

and (20) have non-polynomial time complexity. 

Since, the migration score function represented in 

Eq. (22) is a linear combination of individual 

migration score functions of three different 

frameworks represented in Eq. (7), (16) and (20), 

the Theorem immediately follows.   

The Theorem 7 indicates that, the problem of 

finding the optimal CSV for the hybrid model 

problem represented in Eq. (22) corresponds to 

minimizing the migration score function represented 

in Eq. (22). The Theorem 8 indicates that, finding 

the optimal solution to the hybrid model problem 

requires non-polynomial time complexity. Hence, 

approximate algorithms running in polynomial time 

complexity need to be designed. 
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3.6 Solution search 

The PSO technique is utilized for finding 

optimal/sub-optimal solution to the hybrid model 

problem represented in Eq. (22). PSO technique is a 

meta-heuristic technique [1] which provides an 

approximate solution -- in polynomial time 

complexity -- to optimization problems, and it is 

inspired by the social behavior of birds. The search 

for optimal solution is carried out by group of 

particles; wherein, each particle has an exclusive 

zone in the candidate solution space, and union of 

all particle zones is equal to the candidate solution 

space. Each point in the candidate solution space 

represents a candidate solution vector. The particles 

are continuously moving in their corresponding 

candidate solution space to identify the optimal 

solution, and are involved in continuous 

communication for exchanging their locally 

discovered best solution, which in-turn decides the 

corresponding velocity of the particle for navigation. 

The particles continue their search until acceptable 

solution is obtained.   

The PSO utilizes multiple search particles, 

which are collectively involved in discovering near 

optimal candidate solution for optimization problem.   

Here r search particles are assumed. The current 

position of the ith particle at iteration t be �⃗�𝑖(t). The 

position for the next iteration is indicated by �⃗�𝑖(t+1), 

which is calculated as represented in Eq. (23) 

Here,  �⃗⃗⃗�𝑖(t+1) indicates the velocity of the ith particle 

for t + 1 iteration, and it is calculated as represented 

in Eq. (24). Here, 𝐷1 and 𝐷2 indicate the degree of 

particle attraction towards individual and group 

success respectively, �⃗�gbest  and   �⃗�pbesti    indicate the 

global best solution obtained by all the particles  

until the current iteration respectively, W indicates a 

control variable, and r1,r2 ∈ [0, 1] are the random 

factors. 

 

   �⃗�𝑖(t+1)= �⃗�𝑖(t) + �⃗⃗�𝑖(t+1)                               (23) 
 

�⃗⃗�𝑖(𝑡 + 1) = 𝑊�⃗⃗�𝑖(𝑡) + 𝐷1𝑟1 ( �⃗� pbesti - �⃗� i(t))+𝐷2𝑟2 ( �⃗� gbest  -

�⃗�𝑖(t))                                                                  (24)    
 

The proposed PSO based VM task migration 

technique for load balancing is outlined in 

Algorithm 1. Here, initialize_PSO(P) divides the 

candidate solution space among the r search 

particles indicated by 𝑃 = [𝑝1, 𝑝2, ……𝑝𝑟]  and 

assigns each particle to some arbitrary positions in 

their corresponding candidate solution space. Each 

particle calculates its candidate solution for the 

corresponding current position through 

compute_score(�⃗� i(t)), which utilizes Eq. (23) and 

Eq. (24). The values for �⃗� gbest  and   �⃗� pbesti    are 

calculated through local_best(scorei) and 

global_best(P,  �⃗� pbesti ) respectively. The particles 

continue to search until the acceptable solution is 

found, and which is calculated through 

acceptable(�⃗�gbest).      

 

Algorithm 1 PSO Algorithm for VM task 

migration 

 

𝑃 = [𝑝1, 𝑝2, ……𝑝𝑟] 
initialize_PSO (P) 

flag = 0  

t = 0 

While flag = = 0 do 

t = t + 1  

For i=1 to r do  

scorei= compute_score (�⃗⃗⃗� i(t)) 

                          �⃗�pbesti    = local_best(scorei) 

                          �⃗�gbest  =  global_best(P, �⃗�pbesti) 

If acceptable(�⃗�gbest) then 

flag = 1 

end if 

end for 

t = t + 1 

end while  

3.7 Architectural model 

The architectural model for implementing the 

hybrid model is illustrated in Fig. 1. Here, VM 

Meta-data component provides all the VM specific 

meta-data required for the hybrid model in the entire 

CC; Overloaded VM Selection  component is 

responsible for identifying the overloaded VMs; 

similarly, Lightly Loaded PM Selection component 

is responsible for identifying the lightly loaded PMs; 

VM Extra Task Selection component is responsible 

for identifying the extra tasks from overloaded 

VMs; VM Running Task Selection component is 

responsible for identifying the running tasks from 

overloaded VMs for migration; PM Extra Task 

Selection is responsible for identifying extra tasks 

from the VMs running inside lightly loaded PMs; 

Hybrid Scoring component is responsible for 

implementing the proposed hybrid scoring function 

by using the selected tasks from its lower 

components; Solution Search component is 

responsible for searching the optimal/sub-optimal 

solution for the hybrid model through the utilized 
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Figure. 1 Architectural model 

 

PSO technique; Task Migration component is 

responsible for migrating the tasks to the intended 

VMs. 

4. Results and discussions  

4.1 Simulation setup 

The proposed hybrid model is simulated in 

MATLAB. The simulation parameter settings are 

presented in Table 1. In-order to exploit parallelism, 

each PSO particle is assumed to be running on an 

exclusive computing node. For the ease of reference, 

the proposed hybrid model is denoted as HM. 

HM is compared against contemporary VMM 

techniques presented in [2] and [3], which are -- for 

the ease of reference -- denoted as VM_M_1 and 

VM_M_2 respectively. Both VM_M_1 and 

VM_M_2, utilize the Bin Packing Framework 

(BPF) for migrating VMs. Here, BPF considers each 

Bin as a PM with certain resource capacity; each 

item is considered as a VM. The task is to pack the 

available items in minimum Bins possible. Naturally, 

BPF provides load distribution and SC by allotting 

the available VMs in limited number of PMs. In this 

simulation study, VMM was initiated as soon as any 

VM crossed the two thresholds: Tc and Tp. It must 

be noted that, obtaining optimal solution for BPF is 

NP-hard. Hence, VM_M_1 and VM_M_2 utilize 

their customized approximation algorithms.  

Totally five performance metrics are defined and 

utilized for analyzing simulation results. The first 

metric is denoted as APUR, and which is 

represented in Eq. (25). Here, APUR indicates the 

average power utilization ratio inside the CC after 

execution of either: HM, VM_M_1 or VM_M_2. 

This metric is calculated by considering all the VMs 

in the CC.  

 

𝐴𝑃𝑈𝑅  = 
∑ 𝑃𝑦𝑉𝑀𝑦  ∈𝐶𝐶 ,  

|𝐶𝐶|
                                            (25) 

 

The second metric is indicated as AVEXE, and 

which is represented in Eq. (26). Here, AVEXE 

indicates the average task execution time by 

considering all the running and extra tasks 

corresponding to every VM in the CC. This metric is 

calculated after the execution of either: HM, 

VM_M_1 or VM_M_2. 

 

𝐴𝑉𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒𝐸𝑇𝑖𝑧𝑡𝑖 ∈ 𝐶𝐶 

|𝐶𝐶|
                                (26) 
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Table 1. Simulation parameter settings 

Simulation 

Parameter 

Values 

Number of VMs 

considered 

Varied between 1000- 5000 

Number of  computing 

nodes/CPUs in each 

VM 

Varied between 5 to 20 

 

Main memory capacity 

for each VM 

Varied  4GB/ 8GB/16GB  

Number of tasks 

executing  in each VM 

Varied between 10 to 50 tasks  

Bandwidth between 

any 2 VMs 

Varied between 100mbps to 

500mbps 

CPU utilization ratio 

for any task 

Varied between 0.02 to 0.8 

 

Memory utilization of 

each task 

Varied between 0.02 to 0.8 

 

Number of PSO search 

particles 

Varied between 5 – 25 

 

Number of Computing 

nodes allotted for each 

PSO particle 

1 

Threshold Tc 0.7 

Threshold Tp 0.6 

Size of task data Varied between 1GB to 10GB 

Threshold To Varied between 0.05 – 0.25 

Number of VMs 

present  in each PM 

indicated by tvm(PMk) 

Varied between 0 to 200 

(randomized) 

nvm(PMk) 0.5 × tvm(PMk) 
Number of extra tasks 

for a VM during Ie 

Poisson distributed with  λ = 5 

min SD(PMk) Varied between [5-25] 

Power consumed by 

each VM 

Varied between 0 to 

1(normalized) 

   

𝐴𝑉𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒𝐸𝑇𝑖𝑧𝑡𝑖 ∈ 𝐶𝐶 

|𝐶𝐶|
                                (26) 

 

The third metric is indicated as ARUR, and 

which is represented in Eq. (27). Here, ARUR 

indicates the average resource utilization ratio inside 

the CC after execution of either: HM, VM_M_1 or 

VM_M_2. This metric is calculated by considering 

all the VMs in the CC. The metric  𝐶𝑃𝑈𝑦, which is 

represented in Eq. (28), indicates the average CPU 

utilization in 𝑉𝑀𝑦 , and it is calculated by 

considering the CPU utilization ratio of every task 

running inside 𝑉𝑀𝑦 .  
 

𝐴𝑅𝑈𝑅  = 
∑ 𝐶𝑃𝑈𝑦𝑉𝑀𝑦  ∈𝐶𝐶 ,  

|𝐶𝐶|
                         (27) 

  

              𝐶𝑃𝑈𝑦 =
∑ 𝑐𝑗𝑦𝑗

𝑐𝑦
                                         (28) 

 

The fourth metric is indicated as TCOST, and which 

is represented in Eq. (29). Here, TCOST represents 

the total data transfer cost incurred after execution 

of either: HM, VM_M_1 or VM_M_2. This metric 

is calculated by considering every task in the CC 

which was subjected to migration.  Here, 𝑈(𝑑𝑖𝑦) =

0  if 𝑡𝑖𝑦  is not involved in migration; otherwise, 

𝑈(𝑑𝑖𝑦) = 1.  

 

𝑇𝐶𝑂𝑆𝑇 = ∑ ∑ 𝑑𝑖𝑦𝑈(𝑑𝑖𝑦)𝑖𝑦                       (29) 

 

The fifth metric is indicated as ATPT, and which is 

represented in Eq. (30) and Eq. (31). Here, ATPT 

represents the average throughput of the CC, in-

terms of task executions completed per hour, after 

execution of either: HM, VM_M_1 or VM_M_2. 

Every task in the CC is considered for calculating 

this metric. Here, maxz (𝑒𝑥𝑒𝑅𝑇𝑧𝑦)  indicates the 

execution time of 𝑡𝑧𝑦 , which has the highest 

execution latency in 𝑉𝑀𝑦 . Also, 𝑒𝑥𝑒𝑅𝑇𝑧𝑦  is 

expressed in-terms of hours.     
 

𝐴𝑇𝑃𝑇 =
∑ 𝑇𝑃𝑇(𝑉𝑀𝑦)𝑦

|𝐶𝐶|
                     (30) 

 

𝑇𝑃𝑇(𝑉𝑀𝑦) =
𝑛𝑦

maxz (𝑒𝑥𝑒𝑅𝑇𝑧𝑦)
               (31) 

4.2 Simulation Results 

The first experiment analyzes the performance 

of HM, VM_M_1 and VM_M_2 w.r.t. APUR. The 

first experiment has three different cases. In the first 

case, the number of VMs in the CC is varied. In the 

second and third case, Tc and Tp are varied 

respectively. The result of first, second and third 

case is illustrated in Fig. 2, 3 and Fig. 4 respectively. 

It is clear that, HM outperforms the other two 

techniques, because VMM techniques try to pack all 

the VMs in limited or minimal PMs, which leads to 

higher APUR; whereas, HM relieves the overloaded 

VMs and redistributes the tasks to other non-

overloaded VMs, ensuring that, there is no decrease 

in the number of PMs. Hence, HM exhibits better 

APUR.  

In the first experiment, the performance of HM 

improves with the increase in number of VMs, 

because with increase in number of VMs, tendency 

to produce more overloaded VMs also increase. 

Hence, some of the overloaded VMs might have 

more running tasks that consume more resources, 

and their eviction creates more resource release. 

However, there is little correlation with performance 

of VMM techniques and number of VMs, because 

BPF solution is uncorrelated with APUR and 
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number of VMs. The performance of HM improves 

with reduction of Tp and Tc, because at lower values 

of these parameters more number of overloaded 

VMs come into consideration, which further 

improves APUR, because of more load 

redistribution. However, lower values of these 

parameters can trigger frequent load balancing 

procedures leading to over-all inefficiency in CC 

functioning. The performance of VMM techniques 

regarding Tp and Tc again remain uncorrelated for 

the same reasons explained above.             

The second experiment analyzes the 

performance of HM, VM_M_1 and VM_M_2 w.r.t. 

AVEXE. The same three cases used in first 

experiment are also used here. The result of first, 

second and third case is illustrated in Fig. 5, Fig. 6 

and Fig. 7 respectively. The VMM techniques 

migrate all the existing and extra tasks of every VM. 

Due to this scenario, many computationally 

intensive tasks have to be re-executed, which 

increase AVEXE. However, HM only migrates a 

single and resource expensive task, which reduces 

substantial re-execution latency compared to VMM 

techniques. Hence, HM outperforms other VMM 

techniques w.r.t. AVEXE metric. HM exhibits 

decreasing performance with the increase of number 

of VMs, because with more number of VMs, more 

overloaded VMs have to be treated. Thus, more 

number of tasks get migrated which adds to the 

existing computational burden of VMs to which 

tasks have been migrated. Similar reason can be 

attributed for the performance of VMM techniques.   

 

 
Figure. 2 No. of VMs vs APUR 

 

The performance of HM worsens with lower 

values of Tp and Tc, because at lower values of these 

parameters more number of VMs will be considered 

as overloaded. Due to this scenario, more number of 

running tasks will be migrated and re-executed. 

However, the performance of VMM techniques 

remain uncorrelated with Tp and Tc for the same 

reasons explained above. 

 

 
Figure. 3 Tp vs APUR 

 

 

 
Figure. 4 Tc vs APUR 

 

 

 
Figure. 5 No of VMs vs AVEXE 
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Figure. 6 Tp  vs  AVEXE 

 

 

 
Figure. 7 Tc  vs  AVEXE 

 

 
Figure. 8 No. of VMs vs ARUR 

 

The third experiment analyzes the relative 

performance of HM, VM_M_1 and VM_M_2 WRT 

ARUR, when the number of VMs in the CC is 

varied. The analysis result of this experiment is 

illustrated in Fig. 8. Clearly, HM relatively 

outperforms other techniques. The reasoning for the 

observed performance of all the three techniques is 

identical to the reasoning presented for the first case 

of first experiment. 

The fourth experiment analyzes the relative 

performance of HM, VM_M_1 and VM_M_2 WRT 

TCOST, when the number of VMs in the CC is 

varied. The analysis result of this experiment is 

illustrated in Fig. 9. Again, HM provides the best 

results. Since, VM_M_1 and VM_M_2 migrate all 

the VMs in CC, to achieve their goals, all the tasks 

in CC also get migrated. Hence, TCOST of these 

VMM techniques is high. The performance of HM 

decreases slightly as the number of VMs in CC is 

increased. This performance decrease is due to the 

fact that, more number of overloaded VMs can get 

created, when the number of VMs in CC gets 

increased. Hence, with more number of overloaded 

VMs, more number of tasks are migrated, which 

leads to slight increase in TCOST.  By using this 

same reasoning, performance curve exhibited by 

other two techniques can be described.    

 

 
Figure. 9 No. of VMs vs TCOST 

 

 

 
Figure. 10 No. of VMs vs ATPT 
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Table 2. Comparative performance data analysis 1 
Experimen

t No 

Max_PD(HM,VM

_M_1) % 

Min_PD(HM,VM_

M_1) % 

1 (Case 1) 31 8 

1 (Case 2) 38 22 

1 (Case 3) 38 16 

2 (Case 1) 77 70 

2 (Case 2) 78 40 

2 (Case 3) 73 34 

3   35 23 

4 76 70 

5 64 58 

           
Table 3. Comparative performance data analysis 2 

Experiment 

No 

Max_PD(HM,VM

_M_2) % 

Min_PD(HM,VM

_M_2) % 

1 (Case 1) 30 3 

1 (Case 2) 37 21 

1 (Case 3) 40 14 

2 (Case 1) 80 72 

2 (Case 2) 82 30 

2 (Case 3) 70 37 

3   37 21 

4 79 65 

5 66 56 

 

The fifth experiment analyzes the relative 

performance of HM, VM_M_1 and VM_M_2 WRT 

ATPT, when the number of VMs in CC is varied. 

The analysis result of this experiment is illustrated 

in Fig. 10. Again, HM provides the best 

performance in-terms of ATPT. As already 

described in first experiment, the VMM techniques 

tend to pack more number of tasks in each VM, 

when compared to HM. Hence, ATPT performance 

of VMM techniques is poor due to more resource 

contention. The performance of all the three 

techniques slightly decreases with the number of 

VMs, because, as already explained in first case of 

second experiment, more number of VMs leads to 

more task migrations, which in-turn leads to higher 

resource contention. 

The comparative performance data analysis 

study between HM and the considered VMM 

techniques, is outlined through Tables 2 and 3. Here, 

Max_PD(HM,VM_M_1) and 

Min_PD(HM,VM_M_1) indicate the maximum  and 

minimum percentage performance improvement of 

HM over VM_M_1 respectively, by considering the 

metric corresponding to the specific experiment.  

Similarly, Max_PD(HM,VM_M_2) and 

Min_PD(HM,VM_M_2) indicate the maximum  and 

minimum percentage performance improvement of 

HM over VM_M_2  respectively, by considering the 

metric corresponding to the specific experiment. 

From this presented analysis study, it is clear that, 

HM provides substantial performance improvement 

over considered VMM techniques, in all the 

considered performance metrics.      

5. Conclusion  

In this work, the necessity of utilizing hybrid 

model for VMTM technique was described; along 

with, the limitations of VMM and VM extra task 

migration techniques. The proposed hybrid model 

utilized three components: extra task migration 

component, runtime task migration component and 

SC component; thus, achieving holistic power 

optimization. The simulation results of the proposed 

hybrid model were compared against contemporary 

VMM techniques, and the hybrid model 

substantially outperformed the contemporary VMM 

techniques in: power optimization, CPU resource 

utilization, communication cost, throughput and task 

execution time. Specifically, the proposed hybrid 

model provides nearly 30% better benefits according 

to considered performance metrics against 

contemporary VMM techniques. 

In future, the merits of applying VM task 

migration schemes for Distributed Cloud Center in 

which, the CC is distributed in different 

geographical locations need to be analyzed. Task 

migration in this new setting faces multiple 

challenges, because migrating tasks to different 

locations in the cloud center can result in 

performance limitation due to large geographical 

distances. 
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