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Abstract: Digital transmission systems carry information from the source to the receiver using a physical medium 

such as cable, fiber optic or even propagation on a radio channel which isn’t entirely reliable and causes the change 

of data originally emitted. Today the use of error correcting codes for protection and correction becomes an integral 

part in the design of communication systems and computers. In this work, we present a new interesting way to 

accelerate the decoding process of linear codes. The proposed method called Soft Decision Decoder by Hash 

Techniques (SDHT) is based on syndrome-decoding algorithm and hash techniques. The use of this latest allows 

reducing considerably the search time of all possible error patterns of weights less than a fixed threshold. SDHT is 

applicable on many linear codes and exploit the polynomial form to reduce again the run time decoding for cyclic 

codes. SDHT is successfully applied to decode some Bose Ray-Chaudhuri and Hocquenghem (BCH), Quadratic 

Residue (QR) and Extended Quadratic Residue (EQR) codes. The simulation results show that the proposed SDHT 

yield to good error correcting performances with reduced complexity. The comparison between SDHT and many 

competitors shows that it gives better performances in terms of correction rate. The experimental study of the 

decoding steps for the BCH(63,45,7) code shows that the time search of the most likely error pattern is reduced at 

about 26214153% comparing to an exhaustive search of all possible error patterns of weights less than or equal to 4. 

This study proves the huge success of the proposed SDHT decoder. 

Keywords: Error correcting codes, SDHT, Hash techniques, Syndrome decoding. 

 

 

1. Introduction 

Protecting information on computer networks, 

telecommunication systems or data storage is a 

challenge for researchers. Generally, there are two 

solutions to ensure maximum reliability of the 

information exchanged, the first one is the increase 

of the emission power but this solution is very 

expensive. The second one is the addition of 

redundancy to the message to be transmitted or 

saved. Adding redundancy in the data to be 

protected is the principle of errors correcting codes.  

Error correcting codes are used to ensure as 

maximum as possible the detection and correction of 

errors due to the noisy perturbation of data 

transmitted in communication channels or stored in 

digital supports. The decoding of linear codes is in 

general a NP-Hard problem and many decoders are 

developed to detect and correct errors. The 

evaluation of the quality of a decoder is based on its 

performances in terms of Bit Error Rate and its 

temporal complexity.  

In a communication system, before sending a 

message, the encoder create codewords by adding 

redundant information to the user vectors 

information and a decoder try to find the most likely 

transmitted message from the received sequence.  

The quality of a Coding-Decoding system is 

measured by the bit error rate (BER) which it can be 

guaranteed at a given Signal-to-Noise Ratio (SNR), 

by its run time complexity and the hardware 

resources it needs. 

The decoding algorithms can be separated into 

two categories, the first one is hard decision and the 

second one is soft decision. Hard decision 

algorithms work on the binary form of the received 

information and use the Hamming distance to 
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decode, in contrast soft decision algorithms work 

directly on the received symbols and generally they 

use the Euclidian distance as a metric to decide the 

most likely transmitted codeword [1]. 

A linear code of length n and dimension k is 

a linear subspace C with dimension k of the vector 

space n

qF
 
where qF

 
is the finite field with q elements. 

Generally a linear code is denoted by C(n, k, d) 

where d is the minimum distance between all 

distinct vectors of C. These vectors are called 

codewords, they are found using a generator matrix 

G or generator polynomial g. From d we can deduce 

the error correcting capability of a code C denoted 

by t and defined by 𝑡 = ⌊
𝑑−1

2
⌋. We distinguish cyclic 

and non-cyclic codes; a cyclic code is a block code 

in which the cyclic permutation of any codeword 

gives another codeword that belongs to C. 

In this paper, we present a Soft In Hard Out 

decoder, called Soft Decision Decoder by Hash 

Techniques (SDHT) which permits to rapidly 

correct all errors of weight less than or equal to a 

fixed threshold s. The proposed SDHT is based on 

syndrome-decoding algorithm and hash techniques. 

The use of this latest allows reducing considerably 

the search time of all possible error patterns of 

weights less than to a fixed threshold. SDHT is 

applicable on many linear codes and exploit the 

polynomial form to reduce again the run time 

decoding for cyclic codes. SDHT is successfully 

applied to decode some BCH, QR and EQR codes. 

The simulation results show that the proposed 

SDHT yield to good error correcting performances 

with reduced complexity. 

The remainder of this paper is structured as 

follows. In section 2 we present some decoding 

algorithms as related works. In section 3 we present 

the proposed decoding algorithm. In section 4, we 

present the simulation results of the proposed 

decoder and we make a comparison with other ones. 

In the fifth section, we present a comparison of the 

complexity between SDHT and other competitors. 

Finally, a conclusion and possible future directions 

of this research are outlined in section 6. 

2. Related works 

Recently, several method deal the hard decision 

decoders algorithms have been published. Among 

the different methods developed, NESWDA (New 

Efficient Syndrome-Weight Decoding Algorithm) 

presented in [2] used to decode up to five errors for 

a binary systematic Quadratic Residue 

QR(47,24,11) code. This method is based on the 

weight of syndromes and proprieties of cyclic codes; 

for the same code the authors of [3], have developed 

a Cyclic Weight (CW) algorithm for decoding. Also 

for the same code, in [4] the authors have presented 

a table lookup decoding algorithm to decode up to 

five errors. An approach based on the link between 

syndromes and correctable errors pattern is 

developed by using hash techniques [5]; in [6], the 

authors have presented an algebraic decoding 

algorithm to correct all patterns of four or fewer 

errors in the binary QR (41, 21, 9) code. In [7] the 

authors have proved that the extended quadratic 

residue binary codes are the only nontrivial 

extended binary cyclic codes that are invariant under 

the projective special linear group (PSL). In [8] a 

decoding of quadratic residue codes by using 

hashing search to determine error patterns is 

proposed. The authors of [9] introduced the 

Lagrange interpolation formula to calculate the 

needed primary unknown syndrome for the binary 

QR code and proposed hardware architecture to 

implement it; also, they decoded some binary QR 

codes by using the developed Berlekamp-Massey 

(BM) algorithm and Chien search. 

For BCH codes we find a performances and 

comparative study between the BCH(15, 7, 2) and 

BCH(255, 231, 3) codes realized by the authors of 

[10]. In [11], the authors have proposed a 

performances study and a synthesis of some new 

algorithms developed in this field, for Reed 

Solomon (RS), BCH and Low Density Parity Check 

Codes(LDPC). In [12] a deep learning method to 

improve belief propagation algorithm was proposed, 

by attribution of weights to the edges of the Tanner 

graph the authors generalized the standard belief 

propagation algorithm. In [13] the authors have 

presented an iterative hard decision decoding 

algorithm for binary linear block codes over a binary 

symmetric channel (BSC). In [14-17] several hard 

decision decoders based on genetic algorithms (GA) 

are developed, the first one is the HDGA (Hard 

decision Decoder based on Genetic Algorithms) 

[14], the second one is the Bit Flipping decoding 

algorithm (BF) [15, 16] developed initially for 

LDPC codes and generalized after on linear block 

codes, its principle is the verification of many 

orthogonal equations. In [17], a decoder called 

ARDecGA (Artificial Reliabilities based Decoding 

algorithm by Genetic Algorithms) is presented; it 

uses a generalized parity check matrix to compute a 

vector of artificial reliabilities of the binary received 

sequence h and it exploits a genetic algorithm to 

find the maximum likelihood binary word to this 

vector. The algebraic hard decision decoder [18, 19] 

of Berlekamp-Massey is based on compute of 

syndromes and it has an efficient mechanism to 
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localize all corrigible errors, it is applicable on BCH 

codes. Another version of this last decoder is 

adapted for Quadratic residue codes [20]. In [21] we 

have presented two new fast and efficient hard 

decision decoders based on hash techniques for real 

time communication systems. The first one called 

HSDec with temporal complexity very low 

comparing to competitors but requires more memory 

space comparing to the second one whose was 

called HWDec, contrariwise this latest requires 

more run time but low memory space.  

There are also several works that are interested 

in Soft Decision Decoders like the Soft Decoder 

(SD1) applied for BCH codes in Wireless Body 

Area Networks (WBAN) which presented in [22]. It 

is based on test and syndrome computing to find the 

error positions. Another Soft BCH decoder (SD2) 

was presented in [23] to improve hardware 

complexity and better error correcting capability. In 

[24], the authors have presented a Soft In-Hard Out 

(SIHO) version of the MacWilliams’s permutation 

decoding algorithm (McPD) called Soft Permutation 

Decoding Algorithm (SPDA). In [25] authors have 

proposed an iterative decoding version of SPDA. In 

[26], Shim have proposed a forward error correction 

codes in communication channels to facilitate self-

synchronization of digital communication systems. 

In [27] a compact Genetic Algorithms with larger 

tournament (cGA) is used to propose two dual 

domain Soft Decision decoders.  

The Chase-2 decoding algorithm [28] is a 

decoder that uses a list of most likely error patterns. 

The main idea behind this decoder is to use a hard 

decision decoder (HD) in 2t times. The complexity 

of Chase-2 decoder is then of order 2tO(HD), the 

choice of HD impacts considerably the total 

complexity of the decoder. In [29], we have 

presented a soft decision decoding version the 

decoders presented in [21] by using the Chasing 

technique.  

Unlike most competitors, SDHT is applicable to 

cyclic and non-cyclic linear codes, exploits the 

generator polynomial to further reduce the 

complexity of cyclic codes. Has an error correcting 

capability extended, gives better performance 

compared to some known decoders in the field and 

has a reduced time complexity. 

3. The proposed decoding algorithm: Soft 

decision decoder by hash techniques 

(SDHT) 

The syndrome decoding algorithm is used to 

decode linear codes; its main idea is to compute the 

syndrome of a binary word to determine whether an 

alteration has occurred or not, and if yes in which 

positions. A codeword 𝑐(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯+
𝑐𝑛−1𝑥

𝑛−1 is the product of the generator matrix G 

and the vector associated with the message to be 

transmitted 𝑚⃗⃗⃗⃗ = (𝑚0, 𝑚1, . . , 𝑚𝑘−1). When the 

codeword 𝑐  is sended through a noisy channel, the 

receiver receives a sequence 𝑟(𝑥) = 𝑟0 + 𝑟1𝑥 + ⋯+
𝑟𝑛−1𝑥

𝑛−1 that corresponds to the sum of the c(x) 

and an error𝑒(𝑥) = 𝑒0 + 𝑒1𝑥 + ⋯+ 𝑒𝑛−1𝑥
𝑛−1. 

 

𝑟 = 𝑐 + 𝑒                                                 (1) 

 

To verify if there are errors during a 

transmission operation or not we compute the 

syndrome of the received sequence as follows. 

 

𝑆(𝑟 ) = 𝑆(𝑐 ) + 𝑆(𝑒 ) = r.HT                    (2) 

 

With HT is the transpose of a parity check matrix 

of the code. 

According to the value of 𝑆(𝑟 ), two cases are 

treated: 

 If the syndrome is Null, this means that 

most likely, the received sequence corresponds to 

the codeword sent by the transmitter. 

 Otherwise, the received sequence 𝑟 , does 

not correspond to the codeword 𝑐  sent by the 

transmitter; in this case, it is necessary to look for a 

minimal weight error pattern having syndrome equal 

to that of the received sequence. 

The search operation of the error pattern that 

corresponds to the received sequence requires the 

prior storage of all error patterns of weight less than 

or equal to the threshold s (s≥t), in a table whose 

dimension grow in size relatively with s, k and n. To 

alleviate the search of a codeword in the hash table 

(TH) we propose the use of the hash techniques by 

storing each error pattern in the line of number equal 

to the decimal value of its syndrome; and when the 

receiver receives a sequence it accesses directly to 

the error patterns corresponding to the decimal value 

of its syndrome. Precisely, the proposed hash 

function has the following algorithm. 

 

Function hash (SY, POW2) 

𝑚 ← ∑ 𝑃𝑂𝑊2[𝑗]. 𝑆𝑌[𝑛 − 𝑘 − 1 − 𝑗]

𝑛−𝑘−1

𝑗=0

 

   

Return (m) 

End Function 

 

The proposed decoder can correct up to s errors, 

which mean we have to store more than one error 

pattern in each line of TH. The common points 
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between the errors pattern stored in the line number 

m are: 

 Their error number is less than or equal to s 

 They even have a syndrome of hash value equal 

to m=hash(Syndrome(e)) 

Remark: In  general,  there are  some  syndromes 

which don’t correspond  to any corrigible error 

pattern;  in these cases we propose to add the zero 

vector in the corresponding line in the table TH. 

Example: Preparation of TH for BCH(7,4,3) code. 

 Case of s=t 

For example s=t=1. In this case, there are 1 +
∑ 𝐶𝑛

𝑖𝑠
𝑖=1 =8 error patterns. 

Table 1 explains the process used to fill the hash 

table TH for BCH(7,4,3) code in the case where  

s=t=1. Table 2 presents its used version in the 

SDHT algorithm. Then the table TH is as Table 2. 
 

Table 1. The used process to fill the hash table TH for 

BCH(7,4,3) code 

Line 

number 

Error 

pattern e 

S=Syndrome(e)

=e.HT 

m=hash(S) 

0 0000000 000 0 

1 0000001 001 1 

2 0000010 010 2 

3 0100000 011 3 

4 0000100 100 4 

5 0001000 101 5 

6 1000000 110 6 

7 0010000 111 7 

Table 2. The used form of TH in the SDHT algorithm for 

BCH (7, 4, 3) code, where s=1 

Line number Error pattern e 

0 0000000 

1 0000001 

2 0000010 

3 0100000 

4 0000100 

5 0001000 

6 1000000 

7 0010000 

 

Table 3. The used form of TH in the SDHT algorithm for 

BCH (7, 4, 3) code, where s=2 

Line 

number 
Error pattern e 

0 0000000    

1 0010000 0000110 0100001 1001000 

2 0100000 0001100 1000010 0010001 

3 0000001 0110000 0001010 1000100 

4 1000000 0100010 0011000 0000101 

5 0001000 0100100 0000011 1010000 

6 1100000 0000010 0001001 0010100 

7 0000100 0010010 1000001 0101000 

 

 Case of s≥t:  

For example s=t+1=2. In this case, there are 1 +
∑ 𝐶𝑛

𝑖𝑠
𝑖=1 =29 error patterns. In this case Table 3 

simulates the state of the TH table. 

The SDHT algorithm works as follows: 

 

 

1 Inputs 

 r: non binary word to decode of length n. 

 s: error correction threshold. 

 The parity check matrix H or the generator polynomial h(x) of the dual code.  

 TH: the hash table of 2n-k rows. 

 Lenghts: a table of 2n-k rows and 1 column, wich contains in each position i the number of error 

patterns of weight less than or equal to s for whose the decimal form of the syndrome is equal to i. 

 POW2: the vector of n-k columns that contains in each position i the value of the 2i 

2 Output: The decided codeword c. 

3 Begin 

4 h←the binary version of r 

5 c←h 

6 De←infinity // a big value 

7 Compute the syndrome SY of h. 

8 mhash(SY,POW2)  

9 For i:=1 to Lenghts[m] do 

12 R← h  TH[m][i] 

13 d← Ed(R, r) 
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14 if d<De then 

15 c←R 

16 De←d 

18 End if 

19 End for 

20 End 

 

With the use of the hash function, the search of 

the line that contains all possible error vectors of 

weight less than or equal to s is directly determined 

and the closest codeword to the received sequence 

can be easily found. This idea reduces considerably 

the search time and therefore the decoding process. 

Remarks: 

 The Euclidian distance is the metric 

noted Ed(h, r) between the hard vector h={v1, v2, 

…, vn}, vi∈ [0,1] and the real vector r={r1, r2, 

…, rn} calculated by the following formula: 

𝐸𝑑(ℎ, 𝑟) = ∑ (−1)ℎ𝑖 ∗ 𝑟𝑖
𝑛
𝑖=1  

 The codewords are modulated by a 

BPSK (Binary Phase Shift Keying) modulator 

and transmitted over an AWGN (Additive 

Weight Gaussian Noise) channel. When the 

non-binary vector r received, the demodulator 

prepares a hard version h for r by the follows 

formula. 
 

ℎ𝑖 = {
1, 𝑖𝑓 𝑟𝑖 ≥ 0
0, 𝑖𝑓 𝑟𝑖 < 0

      (i=1, …, n)        (3) 

4. Simulation results and comparison with 

other decoders 

In this section, we give the results of the 

proposed decoder SDHT for some linear codes with 

a comparison with other decoding algorithms over 

the AWGN channel. The error correcting 

performances will be represented in terms of Bit 

Error Rate (BER) in each Signal to Noise Ratio 

(SNR=Eb/N0). Table 4 gives the simulations 

parameters. 

If the data are transmitted without coding in the 

sending step and without correction in the receiving 

step over AWGN channel then the BER reaches the 

value 10-5 at the SNR=9.6 dB. 

 
Table 4. Default simulation parameters. 

Simulation parameters value 

Minimum number of residual bit in 

errors 
200 

Minimum number of transmitted blocks 1000 

 

 

Fig. 1 (a) and (b) represent respectively the 

performances of SDHT for some RQ codes of length 

up to 31 and for some EQR codes of length up to 48 

for different thresholds. It shows that the gain of 

coding is about 4 dB for QR (31, 16, 7), EQR (24, 

12, 8) and EQR (32, 16, 8) codes with the threshold 

s=6. 

Fig. 2 (a) and (b) represent the performances of 

SDHT for some BCH codes of length up to 63 for 

different thresholds. It shows that the gain of coding 

is more than 4 dB for BCH (31, 16, 7) with s=7, 

about 3 dB for BCH (63, 57, 3) with s=4 and about 

4 dB BCH (63, 51, 5) with s=5. 

 

 
(a) 

 
(b) 

Figure.1 Performances of SDHT for: (a) QR codes of 

length up to 31 and (b) EQR codes of length up to 48 
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(a) 

 
(b) 

Figure.2 Performances of SDHT for some BCH codes of 

length: (a) 31 and (b) 63 
 

Fig. 3 (a) and (b) represent the performances of 

SDHT for some BCH codes of length 127, 255 and 

511 for different thresholds. It shows that the gain is 

about 3 dB for BCH (127, 113, 5) with s=3. 

From these figures, we deduce that we find very 

good results with the increase of s. For example for 

the BCH(63,51,5) with s=5 the gain is about 0.2 dB 

comparing to the same code with s=4 and for the 

BCH(63,45,7) with s=4 the gain is more than 0.3 dB 

comparing to the same code with s=4.  

Fig. 4 (a) presents a comparison of the performances 

of the proposed decoder SDHT, SD1[22], OSD-

1[30], Maini [32], DDGA [33] and S2W2Dec [34] 

decoders for BCH(63, 51, 5) code, this figure shows 

that our decoder passes absolutely the competitor 

SD1 and it has the same performances comparing to 

other decoders. In Fig. 4(b) we present, a 

comparison of the performances of the proposed 

decoder SDHT and a soft decoder called SPDA[24] 

for the EQR (24,12,8), this figure shows that our 

decoder passes relatively the SPDA for this code. 

 
(a) 

 
(b) 

Figure.3 Performances of SDHT: (a) for some BCH 

codes of length 127 and (b) for some BCH codes of 

length 255 and 511 
 

In Fig. 5 (a) we present a comparison of the 

performances of SDHT, Chase-HSDec [29], Chase-

PD and SPDA for the EQR(32,16, 8) code. It shows 

that the proposed SDHT passes remarkably the 

concurrent. 

Fig. 5 (b) presents a comparison of the 

performances of SDHT and cGAD [27] for the 

BCH(63, 45, 7) code. This figure shows that our 

decoder passes absolutely the cGAD decoder. 

In Fig. 6, we present a comparison of the 

performances of the proposed SDHT, Chase-HSDec, 

Maini, OSD-1 and DDGA for BCH(31, 26, 3) and 

BCH(31, 21, 5) code.  This figure shows that the 

proposed SDHT passes remarkably Chase-HSDec 

and it has the same performances comparing to 

Maini, OSD-1 and DDGA decoders.  

In Fig. 7, we present a comparison of the 

performances of the proposed SDHT, Chase-HSDec, 

Maini, OSD-1 and Aut-DAG [35] for BCH(31, 16, 

7).  This figure shows that the proposed SDHT 
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passes remarkably Chase-HSDec and it has the same 

performances comparing to Maini, OSD-1 and Aut-

DAG decoders. 

 

 
(a) 

 
(b) 

Figure.4 Comparison of the performances of the proposed 

SDHT with (a) SD1, Maini, OSD-1, DDGA and 

S2W2Dec for BCH(63,51,5) code; (b) SPDA for 

EQR(24,12,8) code. 
 

 
(a) 

 
(b) 

Figure.5 Comparison of the performances of the proposed 

SDHT with, (a) Soft-PD, Chase-PD, Chase-HSDec for 

EQR (32,16,8) code; (b) cGAD for BCH(63,45,7) code. 
 

 
(a) 

 
(b) 

Figure.6 Comparison of the performances of the proposed 

SDHT, Chase-HSDec, Maini, OSD-1 and DDGA (a) for 

BCH(31, 26, 3); (b) for BCH(31,21,5) code 
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Figure.7 Comparison of the performances of the proposed 

SDHT, Chase-HSDec, Maini, OSD-1 and Aut-DAG for 

BCH(31, 16, 7) code. 

5. Study of complexities  

For linear codes, the complexity of coding is 

O(n.k); for cyclic codes, the use of the generator 

polynomial in encoding yield to alleviate the 

complexity to O(log(n).log(n-k)) [14]. We note that 

in this paper we use the systematic encoding for 

which the syndrome of a received word h is equal to 

the sum of its parity digits and the parity check 

digits recomputed by re-encoding the information 

part of h [36]. So, the complexity of syndrome 

computation is O(log(n).log(n-k)+n-k) for cyclic 

codes and O(n.k+n-k) for non-cyclic codes. 

The main steps of the SDHT algorithm are: 

 Syndrome computation whose cost is 

O(log(n).log (n-k) + n-k) for the cyclic 

codes and O(n.k + n-k) for non-cyclic codes 

this value is limited by O(n2). 

 Hash function computation whose cost is of 

order O(n-k). 

 A repetitive structure "for" which iterates C 

(C is the maximum length of TH rows) 

times, each time realizes: 

 The addition of two vectors of size n; so 

an operation of cost n. 

 The Euclidian distance computation 

between two vectors of size n; so a cost 

operation n also. So the cost of the 

repetitive structure "for" is O(2nC) 

Then the complexity of SDHT for cyclic codes is 

O(log(n).log (n-k) + 2.n-2.k+2nC) and O(n2+2nC) 

for non-cyclic codes. 

Table 5 presents the complexities of soft 

decoders Chase-HSDec[29], OSD-m (for an integer 

m) [30], Maini[32], DDGA[33], Aut-DAG[35], 

 

Table 5. Complexity of SDHT and other competitors. 

Algorithm Complexity 

Chase-HSDec(cyclic 

codes) O(2t(log(n).log(n-k)+3n-2k)) 

Chase-HSDec (linear not 

cyclic codes) O(2tn2) 

SDHT (cyclic codes) O(log(n).log(n-k)+2n-2k+2nC) 

SDHT (linear not cyclic 

codes) O(n2+2nC) 

OSD-m (cyclic or linear) O(nm+1) 

Maini (cyclic or linear) O(Ni.Ng(k.n +log(Ni))) 

DDGA(cyclic or linear) O(Ni.Ng(k.(n − k) + log(Ni))) 

Aut-DAG (cyclic) O(Ni.Ng(log(n).log(n − k))) 

Aut-DAG (linear and not 

cyclic) O(Ni.Ng.k.n)) 

S2W2Dec(PHR-

SPDA)( cyclic) 
O(M.n2 + P.log(n).log(n-k)) 

S2W2Dec(PHR-

SPDA)( linear and not 

cyclic) 

O(M.n2 + P.n.(n-k)) 

 

S2W2Dec[34] and SDHT. From this table, we can 

deduce that the SDHT has a reduced complexity 

comparing to their competitors and applicable on 

any linear block codes. Ni is the population size, Ng 

is the number of generations, m is the order of OSD 

decoder, t is the error correcting capability, P is the 

number of permutations used in the SPDA decoder 

and M is the number of dual codewords used in 

PHR (Partial Hartmann-Rudolf) decoder. 

The comparison of complexities of SDHT and 

their competitors given in Table 5 proves clearly 

that it is a fastest decoder.  

In order to show experimentally the high reduction 

of complexity in SDHT algorithm, we have studied 

it for the BCH(63,45, 7) code. For this case, the hash 

table TH contains 218=262144 lines (syndromes), 

the number of error patterns of weights less than or 

equal to 4 is 637393. The experimental study of the 

decoding steps of this code showed that the number 

of error patterns per line in TH varies between 0 and 

16, which gives an average value equal to 2.4314 

per line. Therefore, for decoding step instead of 

testing the all 637393 errors patterns, it is sufficient 

to use only very few number of error patterns 

specified by the hash function and stored in the 

corresponding line of TH. For this code, the time 

search of the most likely error pattern is reduced at 

about 26214153% comparing to exhaustive search 

off all possible errors of weights less than or equal 

to 4. 
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6. Conclusion and perspectives  

In this article, we have presented a new efficient 

soft decision decoder SDHT based on the syndrome 

computing and exploits the hash techniques to 

accelerate the correction of a received data in 

telecommunication and storage systems. The 

simulation results of SDHT applied on BCH, RQ 

and EQR codes of different lengths show that it 

guarantees better performances in terms of BER in 

comparison with some previous known decoders; in 

addition, the theoretical and experimental study of 

complexity clearly shows its high speed compared 

to competitors. We also note that our decoder is 

applicable on any linear block code for which the 

error patterns can be stored in memory. The 

obtained results will encourage us to generalize this 

decoder for other families of codes like the polar 

codes, LDPC, … 

References 

[1] G.C. Clark and J.B. Cain, “Error-Correction 

Coding for Digital Communications”, first 

edition, Springer, New York, 1981.  

[2] Z. Yani, B. Xiaomin, Y. Zhihua, and W. 

Xusheng, “Decoding of the Five-Error-

Correcting Binary Quadratic Residue Codes”, 

American Journal of Mathematical and 

Computer Modeling, Vol.2, No.1, pp. 6-12, 

2017. 

[3] T. Lin, H. Lee., H. Chang, and T. Truong, “A 

cyclic weight algorithm of decoding the (47, 24, 

11) quadratic residue code”, Information 

Sciences, Vol. 197, pp. 215–222, 2012. 

[4] T. Lin, H. Lee, H. Chang, S. Chu, and T. 

Truong, “High speed decoding of the binary 

(47, 24, 11) quadratic residue code”, 

Information Sciences, Vol. 180, pp. 4060–4068, 

2010. 

[5] C.F. Huang, W.R. Cheng, and C. Yu, “A Novel 

Approach to the Quadratic Residue Code”, In: 

Proc. of International Conference on Intelligent 

Information Hiding and Multimedia Signal 

Processing, pp. 187-194, 2017. 

[6] T. Lin, T. Truong, H. Lee, and H. Chang, 

“Algebraic decoding of the (41, 21, 9) 

Quadratic Residue code”, Information Sciences, 

Vol. 179, pp. 3451–3459, 2009. 

[7] C. Ding, H. Liu, and D.T. Tonchev, “All binary 

linear codes that are invariant under PSL2 (n)”, 

IEEE Transactions on Information Theory, Vol. 

64, No. 8, pp. 5769-5775, 2017. 

[8] Y. Chen, C. Huang, and J. Chang, “Decoding 

of binary quadratic residue codes with hash 

table”, IET Communications, Vol. 10, No. 1, pp. 

122–130, 2016. 

[9] M. Jing, Y. Chang, J. Chen, Z. Chen, and J.  

Chang, “A new decoder for binary quadratic 

residue code with irreducible generator 

polynomial”, In: Proc. of IEEE 2008 Asia 

Pacific Conference on Circuits and Systems, 

2008.  

[10] M. Elghayyaty, A. Hadjoudja, O. Mouhib, A. 

El Habti, and M. Chakir, “Performance Study 

of BCH Error Correcting Codes Using the Bit 

Error Rate Term BER”, International Journal 

of Engineering Research and Application, Vol. 

7, No. 2, pp.52-54, 2017. 

[11] A. El idrissi, R. El gouri, A. Lichioui, and H. 

Laamari, “Performance study and synthesis of 

new Error Correcting Codes RS, BCH and 

LDPC Using the Bit Error Rate (BER) and 

Field-Programmable Gate Array (FPGA)”, 

International Journal of Computer Science and 

Network Security, Vol. 16, No. 5, 2016. 

[12] E. Nachmani, Y. Béery, and D. Burshtein, 

“Learning to Decode Linear Codes Using Deep 

Learning”, In Proc. of IEEE 2016 Fifty-fourth 

Annual Allerton Conference, 2016. 

[13] M. Esmaeili, A. Alampour, and T. Gulliver, 

“Decoding Binary Linear Block Codes Using 

Local Search”, In Proc. of IEEE Transactions 

on Communications, Vol. 61, No. 6, 2013. 

[14] A. Azouaoui, I. Chana, and M. Belkasmi, 

“Efficient Information Set Decoding Based on 

Genetic Algorithms”, International Journal of 

Communications Network and System Sciences, 

Vol. 5, No. 7, 2012. 

[15] R. G. Gallager, “Low-Density Parity-Check 

Codes”, IRE Transactions on Information 

Theory, Vol. 8, No. 1, pp. 21–28, 1962. 

[16] R.H. Morelos-Zaragoza, The Art of Error 

Correcting Coding, Second Edition, John 

Wiley and Sons, 2006. 

[17] S. Nouh, A. El khatabi, and M. Belkasmi, 

“Majority voting procedure allowing soft 

decision decoding of linear block codes on 

binary channels”, International Journal of 

Communications, Network and System Sciences, 

Vol. 5, No. 9, 2012. 

[18] E. R. Berlekamp, Algebraic Coding Theory, rev. 

ed., Aegean Park Press, Laguna Hills, 1984. 

[19] J. L. Massey, “Shift-register synthesis and BCH 

decoding”, IEEE 1969 Transaction on 

Information Theory, Vol. IT-15, No. 1, pp. 

122–127, 1969. 

[20] Y.H. Chen, T.K. Truong, Y. Chang, C.D. Lee, 

and S.H. Chen, “Algebraic decoding of 

quadratic residue codes using Berlekamp-

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ming-Haw%20Jing.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yaotsu%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jian-Hong%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zih-Heng%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jia-Hao%20Chang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jia-Hao%20Chang.QT.&newsearch=true
http://en.wikipedia.org/wiki/James_Massey


Received:  August 6, 2018                                                                                                                                                 103 

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019           DOI: 10.22266/ijies2019.0228.10 

 

Massey algorithm”, Journal of Information 

Science and Engineering, Vol. 23, No. 1, pp. 

127–145, 2007. 

[21] M.S. El Kasmi Alaoui, S. Nouh, and A. Marzak, 

“Two new fast and efficient hard decision 

decoders based on Hash techniques for real 

time communication systems”, In: Proc. of the 

Second International conference on Real Time 

Intelligent Systems, 2017. 

[22] B. Jung, T. Kim, and H. Lee, “Low-Complexity 

Non-Iterative Soft-Decision BCH Decoder 

Architecture for WBAN Applications”, Journal 

of Semiconductor Technology and Science, Vol. 

16, No. 4, 2016. 

[23] Y. Lin, H. Chang, and C. Lee, “Improved High 

Code-Rate Soft BCH Decoder Architectures 

with One Extra Error Compensation”, IEEE 

Transactions on Very Large Scale Integration 

Systems, Vol. 21, No. 11, 2013. 

[24] M. Askali, S. Nouh, and M. Belkasmi, “A Soft 

decision version of the Permutation decoding 

algorithm”, In: Proc. of NTCCCS 12 workshop, 

2012.  

[25] M. Askali, F. Ayoub, I. Chana, and M. 

Belkasmi, “Iterative Soft Permutation Decoding 

of Product Codes”, Computer and Information 

Science, Vol. 9, No. 1, 2016. 

[26] Y.G. Shim, “Forward Error Correction Codes 

in Communication Channels”, International 

Journal of Control and Automation, Vol. 10, 

No. 4, pp. 131–144, 2017. 

[27] A. Berkani, M. Azouaoui, M. Belkasmi, and B. 

Aylaj, “Improved Decoding of linear Block 

Codes using compact Genetic Algorithms with 

larger tournament size”, International Journal 

of Computer Science Issues, Vol. 14, No. 1, 

2017. 

[28] D. Chase, “A class of algorithms for decoding 

block codes with channel measurement 

information”, IEEE Transaction on Information 

Theory, Vol. 18, pp. 170–181, 1972. 

[29] M.S. El Kasmi Alaoui, S. Nouh, and A. Marzak, 

“A low complexity soft decision decoder for 

linear block codes”, In: Proc. of the First 

International Conference on Intelligent 

Computing in Data Sciences, 2017. 

[30] M.P.C. Fossorier and S. lin, “Soft decision 

decoding of linear block codes based on 

ordered statistics”, IEEE Transaction on 

Information Theory, Vol. 184, pp. 1379–1396, 

1995. 

[31] C. R. Hartmann and L. D. Rudolph, “An 

optimal symbol by symbol decoding rule for 

linear codes”, IEEE Transaction on 

Information Theory, Vol. 22, pp. 514–517, 

1976. 

[32] H. Maini, K. Mehrotra, C. Mohan, and S. 

Ranka, “Soft decision decoding of linear block 

codes using genetic algorithms”, In: Proc. of 

IEEE International Symposium on Information 

Theory, 1994. 

[33] A. Azouaoui, M. Belkasmi, and A. Farchan, 

“Efficient Dual Domain Decoding of Linear 

Block Codes Using Genetic Algorithms”, 

Hindawi Publishing Corporation, Journal of 

Electrical and Computer Engineering, Vol. 

2012, Article ID 503834, 2012. 

[34] S. Nouh and B. Aylaj, “Efficient Serial 

Concatenation of Symbol By Symbol and Word 

by Word decoders”, International Journal of 

Innovative Computing, Information and 

Control, Vol. 14, No. 5, 2018. 

[35] F. El Bouanani, H. Berbia1, M. Belkasmi, and 

H. Benazza, “Comparaison des décodeurs de 

Chase, l’OSD et ceux basés sur les algorithmes 

génétiques”, In: Proc. of Colloque GRETSI, 

2007. 

[36] S. Lin and D.J. Costello, Error Control Coding 

Fundamentals and Applications, Prentice-Hall, 

Inc, 1983. 

 


