
Received: August 23, 2018 40

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

The Robust Architecture Based Reliability Analysis Framework of Complex

Software System Using In-Degree and Out-Degree

Kaliraj Shanmugaiah 1* Bharathi Ayyaswamy 2

1Anna University, Chennai, India

2Bannari Amman Institute of Technology, Tamilnadu, India

* Corresponding author’s Email: kaliraj.se@gmail.com

Abstract: Nowadays, Software development process has incorporated many techniques, scientific approaches and

advanced tools to develop the highest quality featured software. The size of the software systems also become large

and make the system more complex. So that, it is necessary to ensure the quality of software system before its

delivery. Software reliability is one of the important measurement to predict the quality of software which will be

used to reduce the time, cost and other resources required for the testing process. Here we have proposed one novel

framework to predict the software reliability based on software architecture and path testing by incorporating in-

degree and out-degree concept used in graph theory. This proposed framework will reduce the number of test path in

the system which will be used to reduce the testing time and resources. The applicability of our proposed framework

is validated by using two real time case studies and these results are compared with the prevailing standard reliability

models to assess the prediction accuracy of our proposed framework. The result shows that our proposed framework

is simple to apply in the real time system and prediction accuracy is also acceptable compared to the other models.

Keywords: Architecture quality, Software reliability analysis, Software performance, Software quality prediction.

1. Introduction

All Software Reliability is the probability of

failure-free software operation for a specified period

of time in a specified environment. Early

measurement of software reliability is an important

factor in the software development process. It will

be used to reduce the time, cost and resources

required for the testing process. Additionally,

software engineers and customers will get the

confidence about the software product which is to be

developed.

In the last two decades, many reliability methods

have been proposed to estimate the reliability of

software systems. But with the increasing size and

complexity of software applications, the traditional

software reliability methods are insufficient to

analyse inter-component interactions of modular

software systems.

Typically prevalent reliability models have been

broadly divided into two categories [1 - 4]:

1. Black box models

2. White box models

Some researchers have reported that traditional

black-box models may not be appropriate to assess

the reliability of modular application constructed

from a number of components [2, 3]. To address this

problem, many white-box models have been

proposed to analyse the components and their

internal interactions [5].

The goal of white-box models is to estimate the

reliability based on software structure [7]. Generally

control flow graph is used to represent the Software

structure constructed by some CASE tools [8]. To

enable the use of white box models for reliability

analysis, it is important to estimate the parameters of

transition probability (edge weight) and component

reliability (Node value) in the software architecture

[7]. So it is considered as a directed and weighted

graph. The white-box models contain two major

methods, state based and path based reliability

analysis. In the path based reliability analysis, all the

Received: August 23, 2018 41

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

path from the software system will be identified and

reliability of each path will be estimated by

executing it in a specific number of times [8][4].

Based on all these estimated path reliabilities, final

software system reliability will be predicted. But

the problem here is, if the software system having

more number of testing paths, that is not possible to

test all the paths within a limited amount of time.

That will be an exhaustive testing which is not

practically possible for complex software system.

To address this problem, we already have proposed

one reliability analysis framework based on path

testing, where the actual software system

decomposed into two to three complex paths. The

reliability of these complex paths was taken to

predict the reliability of actual systems. But here, the

path selection was done randomly which might have

led to the different reliability estimation by different

tester. All these issues need to be solved to estimate

the accurate reliability of modular software system.

The summary of above issues are, existing models

failed to analyse the internal component interaction

of the system, testing all the paths of the system will

not be possible practically, within limited time and

resources, random path selection would lead to the

inaccurate estimation of the reliability of system,

number of loops should be confirmed to get

consistent result and the complexity of the

applicability of method need to be reduced to

analyse the reliability. To address these issue and

also to standardize this process, we have proposed

an architecture based robust reliability analysis

framework of complex component based software

system by considering in-degree and out-degree of

each component in this paper [9]. Here, critical

components / modules will be identified from the

system based on in-degree and out-degree values of

each component. A small subsystem will be

designed using these critical components and then

test path from the subsystem will be identified by

applying Kal-chan path selection algorithm. This

approach will be very accurate and will avoid the

exhaustive path testing. Because, based on critical

components core subsystem designed initially. Then

this Kal-chan path selection algorithm will select the

independent path from the system which covers loop

testing also. The reliability of all these selected

testing paths will be estimated by the standard

mathematical equation. Then the minimum and

maximum reliability of each software system will be

estimated, followed by final system reliability will

be predicted. Two real time case studies have been

taken to experiment our proposed framework. The

obtained results are compared with the standard

existing reliability models such as CUORM [10],

LCBRM [11], Chao-Jung [3] and KCW [30] which

have been used as a baseline of evaluating

architecture based reliability models. CUORM

model is based on the modules utilization and their

reliability which was used to analyse reliability. This

model takes only the components used in the

execution time i.e. critical components and other

components are not considered. LCBRM method

focused on the path based reliability estimation

method, where path selection mechanism and

critical node identification is not given consideration.

Chao-Jung method has done the random path

selection which lead to the accurate estimation of

reliability. This method also have more complexity

to apply in the real time application. KCW

framework is based on path testing. Here the

complete system has been taken as a testing unit,

from which many test paths was derived, which are

used to calculate the system reliability. Here the

number of testing path is too high which might leads

to more resource utilization and time conception.

Also number of loops and branches considered for

the testing here is limited which need to be

improved to get accurate prediction of system

reliability.

This paper has been organized in below manner.

Section 2 covers the motivation of this research

work. In section 3, background of this research area

and existing models classification has been given.

The proposed framework and its explanation has

given in section 4. The section 5, covers the

experiment of this framework using two case studies.

The result analysis and conclusion has been given in

the section 6 and 7 respectively.

2. Motivation

All This work was motivated by the deep

learning of architecture based reliability modelling

[12, 13] and its impact on software development

process to increase the software quality [14]. Based

on our studies, there are very limited reliability

prediction models available for component based

software systems. Most of these existing models

having many assumptions for selecting the test path,

computing the reliability of each path and predicting

the final system reliability [15]. These reasons

motivated us to design the robust framework

without having any assumption to predict the

reliability of component based software system.

This can be applied to component based software

development process and also the traditional

software development process.

Received: August 23, 2018 42

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

3. Background study

The Reliability analysis framework / modelling

was proposed to analyze and predict the reliability

of software systems. These frameworks can be

applied in the different stages of the software

development process based on its assumptions and

applicability. All the present reliability models can

be classified into two categories [1 - 4] i.e. Black

box and White box software reliability models. The

Black box reliability models focus only the

functionality of the software without understanding

its internal arrangement of components and

behaviour [1, 3]. Based on the failure data of the

system, this black box model further classified into

time between failures models [16 - 19], failure count

model [6, 20 - 22], fault Seeding models [23] and

input domain models [24]. The White box reliability

models are used to estimate the reliability by

analyzing the internal structure of coding and

modular interaction of the software system which

can be called as architecture based reliability

analysis modelling [3, 25 - 27]. These architecture

based reliability modeling further classified into

path based [3, 4, 28, 29], state based [10, 30], and

additive models [15, 31, 32]. We have also

published a reliability analysis framework based on

the software architecture and path testing. Many

research are going on in this field to predict the

reliability of complex system. But still none of the

models applicable to the all software system without

assumptions [33].

4. Proposed framework

4.1 Construct the architecture of software system

This reliability prediction framework is based on

the software architecture and the interconnection

between each modules / components. Before

applying this framework to predict the reliability of

software systems, the architecture of the software

system should be prepared. For the traditional

software development, CASE tools can be used to

get the control flow graph of the system [8]. This

control flow graph can be converted into a directed

graph which can represent the software architecture.

For the component based software development,

architecture will be designed by the software

engineers based on the components to be used to

build the complete system. In short, this framework

will be applied to the software architecture to predict

the reliability of software systems. For that,

architecture is essential which can be derived from

the traditional software development steps.

Figure. 1 Proposed reliability analysis framework

4.2 Assume / Estimate the parameters

Transition probability and component reliability

are the two important parameters [3][4] which need

to be available before applying this framework.

Transition probability can be defined as the

probability of navigating from one component to

another. Fig. 1, show the steps included in the

proposed reliability analysis framework of

component based software system. Explanation of

each step of this framework is given below. For

example, in Fig. 2 the architecture of the checkout

process and transition probability is given. The first

node is the product or item selection component,

node 2 is the checkout component, node 3 is the

internet banking, node 4 is the credit/debit card

payment and node five is the Case on delivery

(COD) component. Here, from node 2, the user can

visit any one component either 3 or 4 or 5. For

example, probability of visiting the node 3, from

node 2 has been given higher than the other modules,

which means most of the users are visiting the node

3 after node 2.

Received: August 23, 2018 43

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Figure. 2 Architecture of checkout process

Usually this parameter will be assumed by

analysing the operational profile of the system and

some analytical based methods also available in the

literature for estimating these values. Component

reliability is the quality of each module in the

system. This can be assumed initially because not all

the components are ready in the beginning of

development. If the components are purchased from

the vendors, then the reliability value might be

available. Our proposed framework is not focusing

on the estimation of these two parameters rather

these two parameters are the input values of our

framework. We have taken two real time case

studies where transition probability and component

reliabilities are already available to validate our

proposed framework. These two case studies have

been used by many models to validate their work

generally.

4.3 Compute In-Degree and Out-Degree of each

component

Once the software architecture is ready with

known transition probabilities and component

reliabilities values, the next core step of the

framework will be applied. Here the software

architecture might have n number of components

and interconnection between them. Since our

approach based on path testing, individual path

needs to be identified for testing. But practically, we

cannot test the entire system and all the paths in the

system for reliability prediction. To reduce the

testing overhead, core part of the system will be

identified for testing, using critical components.

These critical components can be identified by

calculating each and every component in-degree and

out-degree. These in-degree and out-degree concept

which has been used in the graph theory (directed

graph), to find the most linked node in the graph.

Same concept applied here to identify the critical

components of the system. Critical components are

the one which have more connection with other

components. The reliability of these critical

Figure. 3 In-degree and Out-degree of each node

components will affect majorly the software system

reliability. Because most of the testing path might

have this component as a member. Computing in-

degree and out-degree of the components will be

used to identify the critical nodes, so that subsystem

can be designed for testing. Generally, in-degree can

be defined as the number of incoming links from the

other components and out-degree as the number of

outgoing links from one component to the other

components.

4.4 Design of core sub-system using critical

components

Subsystem can be derived from the actual

software system, once the critical components are

identified from the system. This sub-system will be

formed by connecting all the identified critical

nodes with the available links in the system. The

main reason for designing this sub-system using

critical components is, entire system cannot be

tested within the limited time and resources. For that,

the sub-system has been designed to represent the

entire system with the core component which have

more effects on the actual system quality. The

assumption has taken and also proved, i.e. the

reliability of this subsystem will be equal to the

entire system reliability. This sub-system will be

taken as an input for the remaining stages of our

proposed framework

4.5 Identifying the test path from the sub-system

using Kal-Chan Path selection algorithm

For the path selection, many researchers

recommended to select the complex path from the

system. So that, branch and loop structure of the

system will be tested. Many results also proved that

sequence path selection will have a less prediction

accuracy than the branch and loop structured path.

But branch and loop path have involved more

complexity for estimating reliability [3, 28]. By

Received: August 23, 2018 44

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

considering all these statement, this framework is

designed by incorporating the Kal-Chan path

selection algorithm [9] to derive all the test paths.

The speciality of this path selection algorithm is,

selecting path from the start node to the end node,

which have repeated nodes to satisfy the loop testing.

If the test paths are selected based on Kal-Chan

algorithm, then all the loop in the system will be

execute, which is also enough for setting the test

adequacy criteria.

4.6 Reliability estimation of all the test path

Once all the test paths have been derived from

the sub-system using Kal-Chan path selection

algorithm, the reliability of each path will be

estimated by applying standard, proved

mathematical analysis [3].

Ὑὴὸ Ὑ Ὑ
Б ȟ

 ρ

Ὑὴὸis the reliability of test path, k=1,2,3…

Ὑis the reliability of component i, i=1,2,…n

ὲ is the number of component in the sub-system

ὖ ȟ is the transition probability from node j-1 to j.

Here, all the derived test paths will be in a

sequence structure including repeated node. Since it

is in the sequence structure, all the components will

be executed sequentially to calculate the reliability

of the path. Usually, the test path derived using Kal-

Chan algorithm [9] will have only one repeated node

which means one loop (iteration) will be tested if

it’s executed. But we modified the second part of

the Kal-Chan algorithm to allow more than the one

loop (iteration) in the resultant test path. So that

more loops and complex structure will be tested.

This approach will improve the test efficiency and

accuracy of the reliability prediction of the system.

4.7 Find the maximum and minimum reliability of

the sub-system.

ὓὭὲȾὓὥὼȢὙὩὰὭὥὦὭὰὭὸώ Ὑὴὸ ς

After we estimated all the test path reliabilities,

maximum or minimum reliability of this sub-system

can be calculated by multiplying all the estimated

path reliabilities as given in Eq. (2). Multiplication

of all test paths will give the maximum reliability of

sub-system, if it has been designed with high quality

components, otherwise this will give the minimum

reliability of the system. There are two possibilities

here,

1. If the multiplication of estimated test path

reliabilities gives the maximum reliability, then the

minimum reliability of sub-system will be calculated

using Eq. (3).

ὓὭὲȢὙὩὰὭὥὦὭὰὭὸώ Ὑ σ

 2. If the multiplication of estimated test path

reliabilities gives the minimum reliability, then the

maximum reliability of sub-system will be

calculated using Eq. (4).

ὓὥὼȢὙὩὰὭὥὦὭὰὭὸώ Ὑ τ

ὲ is the number of component in the software

(not a sub-system)

Ὑ ȟὙ is the least and highest reliability of the

component in the software system respectively

ὨὭίὯὯ, is the sum of transition probabilities from

node k to Ὑ έὶ Ὑ k=1,2,3,… n

Sometime, there is a possibility that,

Ὑ έὶ Ὑ node cannot be reached from some

node ὲ . In that situation, ὨὭίὯὯ cannot be

calculated and then ὲshould be removed from the

process of calculating minimum or maximum

reliability of sub-system.

4.8 Prediction of actual software system reliability

First, the sub-system reliability will be estimated

based on the estimated minimum and maximum

reliability. The average of minimum and maximum

reliability will give the sub-system reliability as

given in Eq. (5).

2ÓÕÂȤÓÙÓÔÅÍ
2ÍÉÎ2ÍÁØ

ς
 υ

This estimated reliability will be used to

approximate the actual system reliability.

5. Experiments and explanation

Two real time case studies have been taken to

validate our proposed framework. The first one is

ATM bank system case study with ten components

[34] and the second one is a large scale switching

system which was developed at Bell laps. Fig. 4 is

Received: August 23, 2018 45

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

the component level structure of the ATM case

study. The transition probabilities and component

reliabilities of this ATM structure have been

assigned based on the research reported by Chao-

Jung Hsu [3].

Figure. 4 ATM Case study

Figure. 5 Large scale switching system

In Fig. 5, large scale switching system

component based structure is given [10]. This

component based architecture and its parameters

have been confirmed by the Gohhale [35] and

Goseva [36] respectively. These two case studies are

treated as a complex software system which have

been acting as a baseline to validate architecture

based software reliability analysis framework.

Further, our proposed framework reliability

prediction accuracy will be assessed by comparing

the result with the standard reliability prediction

frameworks such as CUORM [10], LCBRM [11],

Chao-Jung Hsu [3] and KCW [4].

5.1 In-Degree, Out-Degree and critical components

In-degree and Out-degree concept has been used

in the graph theory to identify the most crucial node

in the directed graph. This approach has been

applied here to select the critical component of

software architecture.

All the components of two case studies, in-

degree, out-degree and total edges is given in the

Tables 1 and 2 respectively.

Table 1. ATM case study, components In-Degree and

Out-Degree

Component
In-

Degree

Out-

Degree

Total

Edges

No.of

Components

Connected

1 0 1 1 1

2 2 2 4 4

3 2 3 5 4

4 1 3 4 4

5 6 4 10 7

6 1 1 2 1

7 1 1 2 2

8 1 2 3 2

9 1 1 2 2

10 3 0 3 3

Table 2. Large scale switching system, components

In-degree and Out-degree

Component
In-

Degree

Out-

Degree

Total

Edges

No.of

Components

Connected

1 0 3 3 3

2 2 2 4 4

3 3 1 4 4

4 2 2 4 4

5 3 2 5 5

6 1 4 5 5

7 2 2 4 4

8 3 2 5 5

9 2 2 4 4

10 2 0 2 2

Received: August 23, 2018 46

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Based on this table value critical components are

identified from two case studies. More than 50% of

nodes need to be selected to form the sub-system,

for that Component C2, C3, C4, C5, C7, C10, I.e.,

six nodes has been selected from case study 1. Here

starting and ending components of a software

system should be selected irrespective of

considering total edges to form the sub-system.

But C1 has not been selected here as a critical

node due to the following reason,

¶ C2 has been selected as a critical node

¶ C1 having only one link which is only

connected to the C2

So that, according to the theory C1 and C2 can

be combined as a single node.

From case study 2, components C1, C3, C5, C6,

C8, C10, has been considered as a critical node to

form the sub-system.

5.2 Sub-system design and test path selection

Figure. 6 Sub-system case study 1

Figure. 7 Sub-system case study 2

The sub-system of ATM Bank System (Case

Study 1) and Large Scale Switching System (Case

Study 2) are shown in Figs. 6 and 7. These sub-

system is designed with the critical components

which was identified in the previous step. All these

critical nodes are connected with the links available

in the actual software system. As per our research,

these sub-systems are representing the respective

actual software system. These sub-system will be

taken for the reliability estimation process. As we

stated before, the reliability of these sub-system will

be equal to the respective actual software system.

There is no need of testing entire system to predict

the reliability, testing this sub-system will be

adequate to predict the actual software system

reliability. This approach will be used to reduce the

testing overhead, time and resources required for

testing. This approach will also give the accurate

prediction of reliability compared to the other

standard baseline models [3, 4, 10, 11].

Next, test path will be identified using Kal-Chan

path selection algorithm [9]. According to the Kal-

Chan path selection algorithm, there will be two

phases involved in the path selection process. These

two phases will be a, path selection from source

node to the intermediate node and intermediate node

to the destination node. So, before starting this

process, intermediate node should be identified from

both the sub-system. Here, we have considered C5

and C8 are an intermediate node of the sub-systems

of ATM Bank System and Large Scale Switching

System respectively. As per Kal-Chan algorithm, C5

and C8 have been considered as an intermediate

node, since it has the more connection with other

components. In the first phase of Kal-Chan

algorithm, all the nodes in the sub-system will be

acting as a source node, except intermediate and last

node of sub-system. The path between source nodes

to intermediate node will be derived in the first

phase of the algorithm. In the second phase, path

between an intermediate node to the destination

node will be derived. Usually in the path selection

process, visited node will not be visited again. But

here, we have modified the second phase of the

algorithm alone to allow the visited node to be

visited again. Anyhow, this modification will be

allowed for only one node. This changes have been

made in the algorithm to test more than one loop

(iteration) of the system for the effective testing.

Finally, these two paths will be combined to form

the test path.

In the ATM Case study, C2, C3, C4, C7 will be

a source node and the path derived from source node

to the intermediate is given in Fig. 8, similarly

Intermediate node to last node is given in Fig. 9.

Received: August 23, 2018 47

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Figure. 8 ATM subsystem. Source to intermediate path

Figure. 9 ATM subsystem, Intermediate to last node path

Table 3. Test Path of ATM Sub-system

Test path Path Structure

Path 1 (Tp1) C2->C3->C4->C5->C3->C5->C10

Path 2 (Tp2) C3->C4->C5->C3->C5->C10

Path 3 (Tp3) C4->C5->C3->C5->C10

Path 4 (Tp4) C7-> C5->C3->C5->C10

Figure. 10 Test path of case study 2 - sub-system

The final testing path of ATM sub-system after

combining these two structures is given in Table 3.

Similarly, for case study 2 (Large scale

switching system) subsystem, final derived test path

is given in Fig. 10.

5.3 Test paths reliability estimation and system

reliability prediction

Once the test paths have been derived from two

case studies, the reliability of each test path will be

estimated using the Eq. (1). Then the maximum and

minimum reliability of each sub-system will be

estimated using Eqs. (2) and (3). These reliabilities

will be used to calculate the sub-system reliability

by averaging the minimum and maximum reliability

as shown in Eq. (5), followed by the actual software

system reliability will be approximated based on the

results obtained.

Table 4. Case study 1 sub-system. Test path reliability,

maximum & minimum reliability and final reliability

Test

path

Estimated

Path

Reliability

Max.

Reliability

Min.

Reliability

Final

Reliability

Tp1 0.905

0.7092 0.2437 0.4764
Tp2 0.932

Tp3 0.912

Tp4 0.922

Table 5. Case study 2 sub-system. Test path reliability,

maximum & minimum reliability and final reliability

Test

path

Estimated

Path

Reliability

Max.

Reliability

Min.

Reliability

Final

Reliability

Tp1 0.992

0.9075 0.7778 0.8426 Tp2 0.951

Tp3 0.962

The estimated path reliability of two case studies

are given in the Tables 4 and 5.

This final reliability will be taken as a complete

system reliability. Further the accuracy of our

proposed framework result will be assessed by

comparing with the standard reliability models

CUORM, LCBRM, Chao-Jung and KCW which

have been used by many researchers in this field.

The discussion and comparison of our result are

given in the below section.

6 Result and discussion

Our proposed framework based on path testing

experimented by two case studies [35, 37] and the

result has been obtained. This result shows that, our

proposed framework has a high correlation to the

standard existing models and the actual software

reliability. The comparison of proposed framework

to the CUORM, LCBRM, Chao-Jung and KCW

framework have been given in Table 6 and Fig. 11.

Table 6. A proposed framework estimated reliability

comparison with other models

Reliability Models

Reliability

Value

Case Study 1

Reliability

Value

Case Study

2

Proposed Model 0.4764 0.8426

CUORM

Reliability
0.556 0.829

LCBRM Reliability 0.448 0.827

Chao-Jung

Reliability
0.428 0.846

KCW Framework 0.458 0.828

Actual Software

Reliability
0.441 0.826

Received: August 23, 2018 48

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Table 7. Accuracy of proposed framework compared with other models using RE

Real

Time

Example

RE with

Actual

Reliability

RE with

CUORM

RE with

LCBRM

RE with

Chao-

Jung

RE with

KCW

Case

Study 1
0.0802 0.1431 0.0633 0.1130 0.0401

Case

Study 2
0.0200 0.0164 0.0188 0.0040 0.0176

Mean of RE (Case Study 1)

0.0879

Mean of RE (Case Study 2)

0.0153

Table 8. Relative error and mean RE of all the existing model

To compare the accuracy of our proposed

framework with the actual software reliability and

the other existing models, the relative error [37, 38]

can be used which is defined as,

2%
Ὑ -Ὑ

Ὑ
 έὶ

Ὑ

Ὑ
 ρ φ

Ὑ is the actual software reliability / existing

model reliability for comparison.

Ὑ is the estimated reliability of the proposed

framework.

Relative Error of the proposed framework,

compared with actual software reliability and other

existing model which is given in Table 7 and Fig. 12.

Figure. 11 Proposed framework reliability of case study 1

and 2, compared with existing models

 Relative Error of CUORM

RE with Actual

Reliability

RE with

Proposed

Framework

RE with

LCBRM

RE with Chao-

Jung

RE with KCW

Framework
Mean of RE

Case Study 1 0.2607 0.1670 0.2410 0.2990 0.2139 0.2363

Case Study 2 0.0036 0.0161 0.0024 0.0200 0.0012 0.0086

 Relative Error of LCBRM

RE with Actual

Reliability

RE with

Proposed

Framework

RE with

CUORM

RE with Chao-

Jung

RE with KCW

Framework
Mean of RE

Case Study 1 0.0158 0.0596 0.1942 0.0467 0.0218 0.0676

Case Study 2 0.0012 0.0185 0.0024 0.0224 0.0012 0.0091

 Relative Error of Chao-Jung

RE with Actual

Reliability

RE with

Proposed

Framework

RE with

CUORM

RE with

LCBRM

RE with KCW

Framework
Mean of RE

Case Study 1 0.0294 0.1015 0.2302 0.0446 0.0655 0.0942

Case Study 2 0.0242 0.0040 0.0205 0.0229 0.0217 0.0186

 Relative Error of KCW Framework

RE with Actual

Reliability

RE with

Proposed

Framework

RE with

CUORM

RE with

LCBRM

RE with Chao-

Jung
Mean of RE

Case Study 1 0.0385 0.0386 0.1762 0.0223 0.0700 0.0691

Case Study 2 0.0024 0.0173 0.0012 0.0012 0.0212 0.0086

Received: August 23, 2018 49

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Figure. 12 Proposed framework RE comparison with

other models (Case Study 1 & 2)

Table 9. Comparison of mean of relative error (RE)

Reliability Models
Mean of RE
(Case Study 1)

Mean of RE
(Case Study

2)

Proposed Model 0.0879 0.0153

CUORM Reliability 0.2363 0.0086

LCBRM Reliability 0.0676 0.0091

Chao-Jung

Reliability
0.0942 0.0186

KCW Framework 0.0691 0.0086

Similarly, Relative Error (RE) and the mean of

Relative Error has been calculated for the existing

models and the result is shown in Table 8. Then, the

mean of all the models Relative Error is compared

in Table 9 against the proposed framework. The

result shows that, our proposed framework having

more and acceptable accuracy compared to the other

standard models, and can also be applied to predict

the reliability of software system effectively.

7 Conclusion

General issues in the prevalent architecture

based software reliability analysis methods are less

test coverage, random path selection, complexity in

solving mathematical equation, and more number of

testing path selection and its applicability in the real

software system. All these issues are addressed by

the proposed framework.

Our proposed reliability analysis framework is

based on graph theory, which can be used

extensively in the critical and complex component

based software system to predict the reliability in the

early phase of software development process.

This framework used the in-degree and out-out-

degree of each module or component to reduce the

size of software system for testing. The number of

paths for testing have been reduced due to this sub-

system design which would help the tester to reduce

the effort and time to be spent for testing phase. Kal-

chan path selection algorithm was used to identify

the test path from the sub-system. The derived paths

using this algorithm were effective, since it has the

repeated node in the path which was helpful to test

the loop structure of sub-system. This model

experimented with two case studies and the

accuracy of our framework compared with standard

models which have been used as a baseline for

evaluating models. The relative error of each model

and its mean value of relative error is calculated to

prove the accuracy of our model. The result shows

that, our proposed method giving acceptable

accuracy compared to the other models and this can

be applied to real time software system. Solving the

mathematical equation of proposed method is also

simple. During the sub-system design, there may be

the possibility to design the two more sub-systems,

if there is a more critical node in the system. That

part needs more attention since it affects the system

reliability prediction accuracy. The study of all the

critical nodes and the sub-system design will be

done and will be checked with different case studies

in the future.

References

[1] K. Cai, C. Wen, and M. Zhang, "A critical

review on software reliability modeling",

Reliability Engineering & System Safety, Vol.

32, No. 3, pp. 357-371, 1991.

[2] S. Gokhale, "Architecture-Based Software

Reliability Analysis: Overview and Limitations",

IEEE Transactions on Dependable and Secure

Computing, Vol. 4, No. 1, pp. 32-40, 2007.

[3] C. Hsu and C. Huang, "An Adaptive Reliability

Analysis Using Path Testing for Complex

Component-Based Software Systems", IEEE

Transactions on Reliability, Vol. 60, No. 1, pp.

158-170, 2011.

[4] S. Kaliraj, N. Chandru, and W. Amitabh, "A

Reliability Analysis Framework of Component

Based Software System Using Kal-Chan Path

Selection Algorithm", International Review on

Computers and Software, Vol. 8, No. 2, pp. 605-

612, 2013.

[5] S. Yuanjie, X. Yang, X. Wang, C. Huang, and A.

Kavs, "An architecture-based reliability

estimation framework through component

composition mechanisms", In: Proc. of the 2nd

International Conference on Computer

Engineering and Technology, Vol. 2, pp. V2-

165, 2010.

[6] Shooman and L. Martin, "Software reliability-

Measurement and models", In: Proc. of the

Received: August 23, 2018 50

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

Annual International Symposium on Reliability

and Maintainability, pp. 485-491, 1975.

[7] D. Wang, H. Ning, and Y. Ming, "Reliability

analysis of component-based software based on

relationships of components", In: Proc. of the

IEEE International Conference on Web Services,

pp. 814-815, 2008.

[8] H. Chao-Jung and C. Huang, "Integrating path

testing with software reliability estimation using

control flow graph", In: Proc. of the 4th IEEE

International Conference on Management of

Innovation and Technology, pp. 1234-1239,

2008.

[9] S. Kaliraj and N. Chandru, "Introducing path

selection algorithm in reliability analysis of

component based software system", In: Proc. of

the 6th International Conference on Quality,

Reliability, Infocom Technology and Industrial

technology management, Vol. 6, 2012.

[10] R. Cheung, "A User-Oriented Software

Reliability Model", IEEE Transactions on

Software Engineering, Vol. 6, No. 2, pp. 118-

125, 1980.

[11] J. Lo, C. Huang, I. Chen, S. Kuo, and M. Lyu,

"Reliability assessment and sensitivity analysis

of software reliability growth modeling based

on software module structure", Journal of

Systems and Software, Vol. 76, No. 1, pp. 3-13,

2005.

[12] W. Wang, D. Pan, and M. Chen, "Architecture-

based software reliability modeling", Journal of

Systems and Software, Vol. 79, No. 1, pp. 132-

146, 2006.

[13] C. Zhang, Y. Ma, X. Wang and R. Wang,

"Software Architecture Modelin,g and

Reliability Evaluation Based on Petri Net," In:

Proc. of the 2017 International Conference on

Dependable Systems and Their Applications, pp.

51-56, 2017.

[14] S. Kaliraj, N. Premkumar, and A. Bharathi,

"The Novel Life Cycle Model for Component

Based Software System Based on Architecture

Quality Using KCW Framework", International

Journal of Information Technology and

Computer Science, Vol. 6, No. 9, pp. 74-79,

2014.

[15] K. Goseva-Popstojanova and K. Trivedi,

"Architecture based software reliability", In:

Proc. of the International Conference on

Applied Stochastic System Modeling, 2000.

[16] Z. Jelinski and P. Moranda, "Software

reliability research", Statistical computer

performance evaluation, pp. 465-484, 1972.

[17] G. Schick and R. Wolverton, "Assessment of

software reliability", In: Proc. of Vorträge der

jahrestagung 1972 dgor/papers of the annual

meeting, pp. 395-422, 1973.

[18] P. Moranda, "Prediction of software reliability

during debugging", In: Proc. of the Annual

Reliability Maintenance Symposium, 1975.

[19] B. Littlewood and J. Verrall, "A Bayesian

Reliability Growth Model for Computer

Software", Applied Statistics, Vol. 22, No. 3, pp.

332-346, 1973.

[20] A. Goel and K. Okumoto, "Time-Dependent

Error-Detection Rate Model for Software

Reliability and Other Performance Measures",

IEEE Transactions on Reliability, Vol. 28, No.

3, pp. 206-211, 1979.

[21] J. Musa, "A theory of software reliability and

its application", IEEE Transactions on Software

Engineering, Vol. 1, No. 3, pp. 312-327, 1975.

[22] J. Musa and K. Okumoto, "A logarithmic

Poisson execution time model for software

reliability measurement", In: Proc. of the 7th

international conference on Software

engineering, pp. 230-238, 1984.

[23] H. Mills, "On the statistical validation of

computer programs", IBM Federal Systems

Division Report, 1972.

[24] C. Ramamoorthy and F. Bastani, "Software

Reliability—Status and Perspectives", IEEE

Transactions on Software Engineering, Vol. 8,

No. 4, pp. 354-371, 1982.

[25] G. Katerina and M. Hamill, "Architecture-

based software reliability: Why only a few

parameters matter?", In: Proc. of the 31st

Annual International Computer Software and

Applications Conference, Vol. 1, pp. 423-430,

2007.

[26] S. Gokhale and K. Trivedi, "Reliability

prediction and sensitivity analysis based on

software architecture", In: Proc. of the 13th

International Symposium on Software

Reliability Engineering, pp. 64-75, 2003.

[27] K. Goševa-Popstojanova and K. Trivedi,

"Architecture-based approach to reliability

assessment of software systems", Performance

Evaluation, Vol. 45, No. 2-3, pp. 179-204, 2001.

[28] S. Krishnamurthy and A. Mathur, "On the

estimation of reliability of a software system

using reliabilities of its components", In: Proc.

of the Eighth International Symposium on

Software Reliability Engineering, pp. 146-155,

1997.

[29] M. Shooman, "Structural models for software

reliability prediction", In: Proc. of the 2nd

international conference on Software

engineering, pp. 268-280, 1976.

Received: August 23, 2018 51

International Journal of Intelligent Engineering and Systems, Vol.12, No.1, 2019 DOI: 10.22266/ijies2019.0228.05

[30] S. Gokhale, W. Wong, K. Trivedi, and J.

Horgan, "An analytical approach to

architecture-based software reliability

prediction", In: Proc. of the IEEE International

Symposium on Computer Performance and

Dependability, pp. 13-22, 1998.

[31] W. Everett, "Software component reliability

analysis", In: Proc. of the IEEE Symposium on

Application-Specific Systems and Software

Engineering and Technology, pp. 204-211,

1999.

[32] M. Xie and C. Wohlin, "An additive reliability

model for the analysis of modular software

failure data", In: Proc. of the Sixth International

Symposium on Software Reliability Engineering,

pp. 188-194, 1995

[33] M. Lyu, Handbook of software reliability

engineering. New York: McGraw-Hill, 1996.

[34] W. Wang, Y. Wu, and M. Chen, "An

architecture-based software reliability model",

In: Proc. of the International Symposium on

Dependable Computing, pp. 143-150, 1999.

[35] S. Gokhale and M. R.-T. Lyu, "A simulation

approach to structure-based software reliability

analysis", IEEE Transactions on Software

Engineering, Vol. 31, No. 8, pp. 643-656, 2005.

[36] K. Goseva-Popstojanova and S. Kamavaram,

"Assessing uncertainty in reliability of

component-based software systems", In: Proc.

of the 14th International Symposium on

Software Reliability Engineering, pp. 307-320,

2003

[37] J. Musa, Software reliability: measurement,

prediction, application. New York: McGraw-

Hill Book Co. song gang, 1987.

[38] C. Huang and C. Lin, "Software Reliability

Analysis by Considering Fault Dependency and

Debugging Time Lag", IEEE Transactions on

Reliability, Vol. 55, No. 3, pp. 436-450, 2006.

