
Received: April 25, 2018 301

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Development and Testing of Message Scheduling Middleware Algorithm with

SOA for Message Traffic Control in IoT Environment

Poonam Gupta1* Kopparti Veera Venkata Satyanarayan1 Dilip Devchand Shah2

1Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India

2Imperial College of Engineering and Research, Pune, Maharashtra, India

* Corresponding author’s Email: poonam77gupta@gmail.com

Abstract: Nowadays, in most of the applications, Internet of Things (IoT) is being used, multiple clients are

indirectly connected to sensing devices through messaging broker and their interaction happens through message

exchanger. Day by day number of clients and sensing devices are increasing and subsequently message traffic

management becoming key research area. In case of overloaded message traffic, IoT broker system faces delayed

messaging and so sensor activation and response gets delayed. With this identified problem, present research focused

on development of new middleware (broker) architecture for IoT which can handle message queue more efficiently.

With changing requirement trends, traditional service-oriented architecture (SOA) model has many architecture

design issue. Traditional SOA does not support multiple protocol request communication. Hence, this paper focuses

on the design of the message scheduling broker for IoT environment with hybrid protocol routing e.g. Extensible

Messaging and Presence Protocol (XMPP), Constrained Application Protocol (CoAP), MQ Telemetry Transport

(MQTT) protocols considered like one request and it is filtered by broker based on their calculated priority.

Additionally, proposed scheduling algorithm uses priority queue model which is considered as a reference messaging

model. Multiple queues model is developed to increase the efficiency of the algorithm. Such middleware provides a

solution for message delay issue with multiple protocol request handling. The system is tested for MQTT, XMPP

and CoAP message protocols with respect to service time and MQTT protocol performance are found more efficient

during IoT sensor test using Apache HIVE testing platform as Apache HIVE is a data warehouse software project for

providing data summarization, query and analysis.

Keywords: Internet of things (IoT), Message scheduling, Service oriented architecture (SOA), IoT broker, Priority

queue, MQ telemetry transport (MQTT), Extensible messaging and presence protocol (XMPP), Constrained

application protocol (CoAP), Quality of service (QoS).

1. Introduction

The purpose of middleware is to deal with

sensor data, manage a sensor request, and provide

short-term information storage while using the

present sensor information [1]. The most crucial one

concern is the protocol’s “interoperability”. The

author designed the ‘negotiation protocol’ that is a

group of policies managing the connection amongst

brokers which is often initiators as well as

contractors dynamically [2]. Determining the most

efficient activity models which enhances the broker

source utilization is necessary. By middleware

message scheduling system can generate the most

effective response delay for the requests attained by

the brokers. Different author classified the IoT

protocols in four major types as: application

protocols, assistance breakthrough protocols,

infrastructure protocols and influential protocols.

However, these kind of protocols need to be

designed jointly to deliver SOA supporting IoT

application.

Core disadvantages of existing systems are: the

need of specific resource, no support for multiple

protocol system, Lack of multi-sensor support for

SOA, Message scheduling of middleware need to be

enhanced for multiple (hybrid) protocol handling.

Received: April 25, 2018 302

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Hence, over the existing systems, the proposed

system provides advantages in terms of the

following functionalities:

SOA-IoT interoperability: The proposed system

developed the new middleware for SOA which

supports IoT systems with multiple sensor support.

Nowadays, various companies require multi-

functionalities like security systems, machine

controls, data center management, energy efficient

scheduling. For such applications, companies

preferring multitasking control system which can be

monitored with central monitoring facility. In

proposed system the auto-sensor systems receive

requests from sensors and activation sensors

responds via SOA with newly developed

middleware.

Multiprotocol support: Many existing IoT

systems are available but prefer support for MQTT

protocol. MQTT protocol is considered an efficient

protocol for IoT systems. SOA supports HTTP,

XMPP etc. Hence, to support MQTT, CoAPIoT

protocols along with HTPP, XMPP protocols

proposed system designed hybrid protocol support

system.

Elimination of EBS: Enterprise Service Bus

(ESB) is mandatory for existing systems to carry

request and responses. Due to EBS, message traffic

management becomes rigid and the possibility of

message delay occurs. To eliminate response delays,

a proposed system developed multiple queues model

(BrokerMessage algorithm) with priority

decentralization concept which is presented as

Hybrid Execution of Messaging in section-5.

QoS Performance: The response time is

considered as a QoS parameter. Minimum response

time is necessary to count any system as an efficient

system. Existing systems solely supports either SOA

or IoT. But, the proposed system supports minimum

response time for sensor activation via new multiple

queue scheduling models. This has been tested for

live sensor system with HIVE server for MQTT,

XMPP, CoAP protocols and discussed in section-5

of this paper.

In summary, this paper presents a systematic study

of recent researches and explains conventional

Service-Oriented architecture (SOA). When

compared with existing literature reviews to design

an efficient system that addresses the most

significant challenges, this paper makes several

distinguished contributions, including

message/protocol request sorting and message

routing. The paper explores various approaches

based on SOA and middleware architecture to

highlight possible solutions for IoT messaging

challenges. Section 2 presents significant literature

review and research gap identification. Section 3

discusses the traditional SOA and limitations of

traditional SOA and existing research methods.

Section 4 provides the middleware messaging

architecture developments for IoT with scheduling

model. Section 5 provides computational experiment

and BrokerMessage algorithm modeling and

performance testing of proposed work. Finally,

Section 6 concludes the paper with the future scope.

2. Identification of research gap

This section summarizes existing methods

developed for service oriented architecture, message

scheduling middleware, protocol study and internet

of things (IoT) implementation. The primary

literature collected about 185 from Springer,

Elsevier, IEEE, Hindawi and ACM databases for

period 2014 to 2017. Out of those, 41 papers

identified as relevant references for SOA and IoT

study. Finally, to identify key research gaps 16

papers are referred. 13 papers are chosen for

functionality comparison as depicted in following

Table 1.

Table 1. Existing research

Sr.

No

Author/Method Used/Remark

1 Author: Qiang, Bao-Hua, et al.[1]

Method Used:Author suggested a SOA

message scheduling design for one protocol

service with the addition of an overall control

queue among service consumers and providers,

the high-priority service scheduling reconciled.

Remark:This technique is made for one

protocol assistance and multiple protocol

assistance techniques ought to be developed.

Additionally, IoT is not examined together with

SOA.

2 Author: Da Xu, Li, Wu He, and Shancang Li[2]

Method Used: Authors analyzed the

architectures and also technology for bringing

in distributed business programs, highlighted

their particular benefits and flaws, and also

acknowledged investigation developments

along with options within this progressively

crucial area.

Remark: The application of middleware in

distributed programs is effectively discussed.

Furthermore, SOA-oriented integration

environment employing Enterprise Service Bus

(ESB) give an ensuring and important platform

for inter-enterprise integration.

3 Author: Calvaresi, Davide, et al.[3]

Received: April 25, 2018 303

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Method Used: Internal broker schedulers,

communication middleware, and negotiation

protocols are recognized as co-factors

suppressing the real-time concurrence. Agents’

communication middleware have been

designed.

Remark: This particular paper offers an

evaluation of this kind of Multi-Agent Systems

(MAS) elements and also paves the trail for

accomplishing the MAS conformity having

rigorous timing restrictions, hence cultivating

trustworthiness and predictability.

4 Author: Asghar et. al.[4]

Method Used: Author recommended the

method to enhance the power conserving in

MQ-service technique. MQTT or MQ Series

elements are utilized to tie up linked approach

various other software applications in order to

operate connected way.

Remark: This kind of application is generally

known as enterprise integration software or

middleware. However, this is often useful for

protocol specific IoT systems.

5 Author: Al-Fuqaha, Ala, et al.[5]

Method Used: Author investigated the

relationship between IoT along with other

promising technologies such as big data

analytics and also cloud and fog computing.

Additionally, the necessity for superior

horizontal integration amongst IoT products

and services is examines.

Remark: Comprehensive service use cases

introduced to demonstrate the fact that diverse

protocols introduced within the paper can assist

collectively to produce preferred IoT services.

6 Author: Happ, Daniel, et al. [6]

Method Used: Author examined the ideal

sustainable throughput and also delay within

practical load circumstances applying traces

through actual sensors. The examined XMPP

methods differ within their blocking

functionality, semantic ensures and encoding.

Remark: This assessment shows that these

dissimilarities can offer a significant effect on

throughput and delay of cloud-based IoT

platforms. Consequently, greater message

scheduling improvement is essential.

7 Author: Jiang, Zheng, et al.[7]

Method Used: Author looked into the spatial

degree of freedom of IoT devices dependant on

their particular distribution, after which it

provides the multiuser shared access (MUSA)

that is amongst the standard MUST strategies

to spatial area.

Remark: However, this facilitates simply one

protocol and multiple protocol scheduling

anticipated to promote the improvement of 5G

cellular networks and also needs the productive

assistance for numerous simultaneous short

message devices.

8 Author: Yaqoob, Ibrar, et al.[8]

Method Used: Author researched, highlighted,

and also reported leading analysis

developments produced in IoT architecture

recently. Then author classified and grouped

IoT architectures and formulatedtaxonomy

according to significant variables like purposes,

empowering technology, organizational goals,

architectural prerequisites, network topologies,

and also IoT podium architecture forms.

Remark: Author determined and discussed the

main element prerequisites for upcoming IoT

architectures.

9 Author: Machorro-Cano, Isaac, et al.[9]

Method Used: This book chapter is to provide

the effective use of the IoT in the profession,

explaining its program areas, platforms and

numerous research cases.

Remark: Author introduced a evaluation

analysis of the research cases, along with the

developments and issues of the IoT as outlined

by each and every domain of application.

10 Author: Gil-TakOh et. al.[10]

Method Used: Author recommended a DDS

(Data Distribution Service) dependent CoAP

(Constrained Application Protocol) adaptor so

as to resolve the issue with the DDS

middleware dependent interoperable system

whenever used in combination with additional

availability or resource-constrained devices.

Remark: Utilizing the CoAP adaptor, technique

offered a data transfer assistance where in

preceding studies were to be known as difficult

to access.

11 Author: Kim, Hong Jin, et al.[11]

Method Used: The contribution of author

technique is in discovering solutions that have

not necessarily been discovered by preceding

approaches.

Remark: Author developed a system that

incrementally contributes dimensions to split

up services till all services are determined.

12 Author: Albano, Michele, et al.[12]

Received: April 25, 2018 304

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Method Used: Author applied the QoS Set up

along with the Monitor services, it is employed

to validate and configure QoS within the local

cloud, as well as for on-line monitoring of

QoS.

Remark: Paper explains how a QoS Setup and

also Monitor services are offered within a

Arrowhead-compliant Technique. This

technique cannot be employed for SOA with

IoT systems. Consequently, Hive testing should

be employed for IoT system testing.

13 Author: Hachem et. al.[13]

Method Used: The author used decoupling the

sensing/actuating tasks through the querying

for measurements and also requests for actions.

Remark: As this research limited up to sensing

and actuating tasks through queries, future

development can be in the direction of multiple

protocol handling. Hence, proposed research is

focused to develop multiple protocol handling

and processing of sensor requests.

Determined by literature analyze regarding existing

methods, we recognized the suggested system

design need. As there is no research accomplished in

the region of hybrid protocol controlling middleware

with SOA for the internet of Things (IoT), we

acknowledged this as a significant research gap.

3. Existing service oriented architectures

A service-oriented architecture (SOA) is a type

of software design whereby services are offered for

the other elements by application aspects, through

the transmission protocol using a network. The

essential key points of service-oriented architecture

are independent of clients, products, and services

along with technologies.

3.1 Single-protocol service oriented middleware:

MobIoT

With intension to develop the solution for

research gaps identified in articles [1 - 13] which

directs to develop the key trust area of IoT known as

“multiple protocol sensor support”,proposed work is

compared with MobIoT developed by Hachem et. al.

[13]. Author designed “MobIoT” that explores

probabilistic approaches, according to semantic

knowledge to aid interoperability and accomplish

users’ requests for Thing-based

measurements/actions.

The author also focused on the mobile area of

the IoT where SOA performs a task of middleware.

MobIoT decouples the sensing/actuating tasks

through the querying for measurements and also

requests for actions. In MobIoT middleware, human

interation for raising query is essential. Which in

turn must be removed in future development for

pure sensory systems. MobIoT was built to

transparently provide the functionalities necessary

through the suggested Thing-based SOA.

To handle heterogeneity issues like protocol

assistance, it is common practice to utilize their

particular meta-data, framework details or services.

However, not very much effort was focused in the

direction of supplying information that assessed by

sensors which are at the core of the IoT.

Disadvantages of MobIoT are identified as

follows:

 Human interaction required to input request

 Wireless network required for activation via

mobile which may delay response due to

network traffic.

 Use of ontology is necessary which means,

predefined criteria/rules need to be fixed and no

random operation executed as per priority.

 No priority scheduler, hence request collision

is possible

 There is no broker system available with

MobIoT, as ‘unknown topology’ concept used.

 Hence to eliminate such demerits, proposed

multi-protocol service-oriented middleware is

developed with BrokerMessage Scheduling to

achieve automatic sensor request/response

without the need for Enterprise Service Bus.

Asper research gaps identified in section-2,

there's a robust requirement for the development of

new middleware technique which can make SOA

much more ideal for IoT systems or large systems.

Consequently, we developed new message queue

algorithm “BrokerMessage” with reference to

priority queue model and is also mentioned in

section 5 of this paper.

4. Computational experiments and

modeling of proposed system

For the development of new SOA messaging

system for the Internet of Things (IoT), for present

research request-response model using MQTT,

XMPP and CoAP protocols are considered. The

application level scenario is, first system (or client)

send the request using any of such protocols which

will be forwarded to middleware broker. (For

example, System will send security alert signal and

the siren will sound. This siren will further forward

request protocol to remote server broker to activate

camera system or video capturing system.) As

Received: April 25, 2018 305

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

heterogeneous client request can arrive at the broker

and every request needs to get the response from the

variety of IoT devices (sensors), hence it is

necessary to develop SOA architecture with multiple

protocol support. So, proposed architecture is

developed to handle such hybrid (multiple)

protocols (Refer Fig. 1 for the flow of execution).

Further, when the number of clients increases,

number of messages (with variable protocol types)

also increases and proportionately leads to huge

traffic at server/broker end. To make protocol

request response model efficient, real-time incoming

messages must be scheduled properly to avoid huge

traffic at server/broker end (Apache JMeter for

performance testing of message scheduling is

discussed in the section-5). In proposed system

messages are divided into number of classes. Each

class has arrival rate 𝜆𝑛 and service rate 𝜇𝑛 where

n=1,2….r. Every class has traffic intensity denoted

by 𝜌𝑛.

𝜌𝑛 =
𝜆𝑛

𝜇𝑛
 (1)

So overall traffic intensity of the system is

denoted by 𝜎𝑛

𝜎𝑛 = ∑ 𝜌𝑖𝜎0 = 0, 𝜎𝑛 = 𝜌 , 𝜌 < 1

𝑛

𝑖=1

 (2)

Every message of each class is represented by

triplet M (P, S, U)where P – Requesting Period, S –

An Average Service Time, U – Maximum

Responding Period

The message for nthtype of device is represented

by 𝑀𝑛(𝑃𝑛, 𝑆𝑛, 𝑈𝑛) where 𝑃𝑛 is requesting period,

𝑆𝑛 is average service time, 𝑈𝑛 is maximum

responding period. Now arrival rate and service rate

for nth device message are represented

by𝜆𝑛, 𝜇𝑛respectively.

 𝜆𝑛 =
1

𝑃𝑛
 (3)

𝜇𝑛 =
1

𝑆𝑛
 (4)

Andtraffic intensity 𝜌𝑛 =
𝜆𝑛

𝜇𝑛
 =

𝑆𝑛

𝑃𝑛

Overall traffic intensity 𝜌 will be

𝜌 = 𝜎𝑟 = ∑
𝜆𝑛

𝜇𝑛

𝑟

𝑛=1

 = ∑
𝑆𝑛

𝑃𝑛

𝑟

𝑛=1

< 1 (5)

Initially 𝑃𝑛 = 𝑈𝑛 for n = {1, 2, ….., r}

If overall traffic intensity is less than one then

requesting period will be increased by
𝑈𝑛

2𝑛 for all

classes n = {1, 2, … , r} and once again traffic

intensity of each type is calculated and all types

ofmessages are rearranged. This procedure is

repeated until we get overall traffic intensity less

than one. The standard waiting amount of time in

the queue for each and every kind of message is

considered as an indication of system effectiveness

[14, 15].

We have realized if the number of messages is

increasing progressively at broker end then using

single queue for scheduling is limiting the efficiency

of system so the scheduling algorithm is modified

for 2-queue and 3-queue algorithms are given below.

We have proposed improvement in earlier

scheduling algorithm[16].We have used M/M/n

queues over M/M/1 [16]queue where we have tested

our system for n=2 and n= 3.

4.1 Message scheduling algorithm using single

queue reference algorithm:

𝑀𝑛(𝑃𝑛, 𝑆𝑛, 𝑈𝑛) Property of messages for nthclass

i) read (number of classes n);

ii) ρ=0; // ρ is the overall traffic intensity

iii) fori = 1 to n

{

read𝑈𝑖 , 𝑆𝑖;
𝑃𝑖 = 𝑈𝑖;

𝜌𝑖 =
𝑆𝑖

𝑈𝑖
;

ρ = ρ + 𝜌𝑖;

}

iv)while(ρ > 1)

{

// rearrange 𝑀𝑛 in descending order of 𝜌𝑛

 For i = 1 to n

 {

 𝑃𝑖 = 𝑃𝑖 +
𝑈𝑖

2𝑖
;

𝜌𝑖 =
𝑆𝑖

𝑃𝑖
;

𝜌 = 𝜌 + 𝜌𝑖;

 }

}

Received: April 25, 2018 306

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Figure. 1 Hybrid execution of messaging model

4.2 The modified message scheduling algorithm

with two queues:

𝑀𝑛(𝑃𝑛, 𝑆𝑛, 𝑈𝑛) property of messages for

nthclassof first queue

𝑀𝑛1(𝑃𝑛1, 𝑆𝑛1, 𝑈𝑛1) property of messages for

nthclass of second queue

i) read (number of classes n);

ii) ρ =𝜌1 =0; // ρ, 𝜌1 are the overall traffic

intensities of first and second queue

respectively

 iii)fori = 1 to n

{

read𝑈𝑖 , 𝑆𝑖, 𝑈𝑖1, 𝑆𝑖1;
𝑃𝑖 = 𝑈𝑖;

𝑃𝑖1 = 𝑈𝑖1

𝜌𝑖 =
𝑆𝑖

𝑈𝑖
;

𝜌𝑖1 =
𝑆𝑖1

𝑈𝑖1
;

ρ = ρ + 𝜌𝑖;
𝜌1 = 𝜌1 + 𝜌𝑖1;

}

 iv)while (𝜌>1 or 𝜌1> 1)

{

Rearrange 𝑀𝑛, 𝑀𝑛1 in descending order of

𝜌𝑛, 𝜌𝑛1
 Fori = 1 to n/2

 {

𝑃𝑖 = 𝑃𝑖 +
𝑈𝑖

2𝑖
;

𝜌𝑖 =
𝑆𝑖

𝑃𝑖
;

𝜌 = 𝜌 + 𝜌𝑖;

𝑃𝑖1 = 𝑃𝑖1 +
𝑈𝑖1

2𝑖
;

𝜌𝑖1 =
𝑆𝑖1

𝑃𝑖1
;

𝜌1 = 𝜌1 + 𝜌𝑖1;

 }

}

Based on above modeling, system block flow is

identified and integrated for hybrid protocol

messaging. The IoT Pre-processing block identifies

groups of functionalities in a hybrid messaging i. e.

Event-based function, service-based, database

oriented and semantic-driven, and application

dependent.

The present service oriented messaging

architecture with BrokerMessage algorithm for IoT

brings out new SOA messaging architecture for

controlling the complexity of request protocol

messages for multitasking of several types of

application sensors in even more homogeneous

approach.

Umbrella processing block is a heart of

architecture as this block works as a primary broker

and holds all prioritized and sorted request protocols

according to type and priority key-value. Fig. 1

shows hybrid execution of messaging queue. Further,

this process block provides input to Feed Forward

request block where BrokerMessage Algorithm

executes the internal processing. BrokerMessage

Algorithm steps are as follows:

Received: April 25, 2018 307

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

BrokerMessage Algorithm (referred as iBroker

for live testing with Apache HIVE server)

1) Locate sensor request data and store in

arraySensArr[];

2) Store available request types available

in system in array SysReq[];

3) Arrange sensor request protocol in

key-value pair ProtArr[key,val];

4) Identify request type from SysReq[]

and store type of received request in

array ReqType[];
5)if count of ReqType[] != SysReq[];

6)repeat step 4

7) Execute queue ‘Rq’ with FIFO request

strategy and forward to feed forward

processing unit for further processing

8) ifRq != count ReqType[];

9) repeat step 7

10) else wait for next protocol request and

repeat step 3

This algorithm is further tested with HIVE

server for performance evaluation in section 5.

5. Result and discussion

The aim of proposed system development is to

increase the interopretability of MQTT, XMPP and

CoAP protocols which is discussed in previous

sections. To show the how efficiency of system is

increased by increasing interoperability amongst

protocols, proposed systems are compared with

article/ reference [13] and comparison is shown in

Fig. 10.

Also, proposed system can handle multiple

protocol requests at a time which was not possible in

existing research [13]. The proposed architecture is

very advantageous in terms of IoT application where

many sensors used, Cloud of Things (CoT) is being

used (which include requests from diversified

communication protocols) because of hybrid

protocol communication is developed.

Hence, effectiveness of proposed research is

wide in terms of successful and efficient

communication where multiple protocols

communication occurs. In fact, using proposed

system many IoT applications can be combined to

provide a generalized solution. As an end product,

user can provide requirements of application and

vendor can add or remove IoT (sensor) facility for

client without any need of architecture level or

protocol specific modification. In short, proposed

system is a single solution for all types of IoT

application irrespective of protocol types.

We have compared the results of proposed

system with the references [16, 13, 17] on various

aspects and comparisons are shown in Figs. 8, 10

and Table 2, respectively.

 For illustration, we considered case of fire alert

security system along with proposed architecture

and results were compared with reference to project

specified in reference [17]. For very high profile

building like parliament building or

laboratories/documentation library etc. For

confidential data protection, it is always necessary to

provide automatic security contingency plan where

unauthorized manual interference must be negligible

[18]. Hence, we suggested a fully automated system

where automation server managed at the remotely

accessed central location.

In our security system, the security alert sends

signals to all sensors along with the remotely

managed server to activate SOA middleware

processing. As soon as fire alarm triggers the

request, request protocol sent to the server. Further,

Umbrella Processing Unit (UPU) receives signals

from requested protocol(s). Here, Umbrella

Processing Unit works as a primary broker and

verifies the type of incoming data protocol. Further,

it logically stores all received data protocols

according to the order as it received. In this process,

priorities are set as per the severity of application-

level issues. Consider the event where alert is

activated for a smoke detector. As it is necessary to

retrive data about the reason for the fire which

further needs another system to identify whether the

fire is because of the electrical short circuit or due to

the burning of the material. If the fire is due to short

circuit, the sensor should not trigger signal for water

shower and must trigger signal to chemical fog [19].

If the fire is due to burning of material, then

onesensor must keep eye on water level of the tank.

Again, if water tank gets empty then sensor must

send a request for main water storage plant to drain

water to working water tank. Also, sensors that

capture the images or records the video must send

all image/video data to the server. So, the system

becomes complicated with all sensory network and

various types of request protocols.

Present research protocols (i.e. MQTT, XMPP,

CoAP) tested using HIVE [12] as a third party

evaluation tool, as the scope of present work is

limited to middleware framework development, we

used third-party sensor network for testing. Though

Apache HIVE server uses MQTT as a primary

protocol [20], proposed research used protocol

piping concept to test XMPP and CoAP protocols as

a part of hybrid protocol execution. For result

Received: April 25, 2018 308

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Figure. 2 Testing of MQTT protocol

Figure. 3 Testing of XMPP protocol

Figure. 4 Testing of CoAP protocol

comparison and testing purpose, we embedded

iBroker (Algorithm) and framework (depicted in Fig.

1) for online testing of iBroker request routing and

results were compared against the existing work

referred from article/reference [17]. Out of 12 sensor

networks, we considered sensors compatible for

MQTT, XMPP and CoAP protocols for testing

purpose. For MQTT-Sensor-D4, XMPP-Sensor-D1

and CoAP-Sensor-D6 are processed.

The connection created using port 8000 with

iBroker.MQTT.uk.host and initiated clientID-client-

1 as shown in Figs. 2 - 4. The QoS index is assumed

1 and connection session will remain alive for 60

seconds.

We enabled Secure Sockets Layer (SSL) to

make protocol transfer more secure with clean

session which enable to make buffer free of data.

Lastly, retain option keeps records of sensor

execution. Further, protocol success message will be

displayed after successful connection with the host.

Fig. 2 represents MQTT protocol; Fig. 3 shows the

connection for XMPP whereas Fig. 4 shows CoAP

connection success.

Received: April 25, 2018 309

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Figure 5:Publishing of subscriber data using iBroker host

Figure 6:Response to iBroker request protocol priority pool and sensor execution testing

Further with reference to Fig. 5, to test iBroker,

‘testtopic/1’ will publish message for successful

execution with Quality of service (QoS) as a ‘1’.

Here assume ‘testtopic/1’ is an initial process for

umbrella processing block for initial execution of

input sensor. This will transfer the protocol

credentials which are received from actual sensors.

After successful connection with the host and

publish command, the server will handle request via

Transmission Control Protocol(TCP) port 1886 with

iBroker.host.uk and web socket port 8000. Web

socket port works as a pipeline. So, client

connection port must be identical as web socket port

(to maintain the communication synchronization).

As shown in Fig. 6, incoming messages always ‘in

processing’ status as a continual check for client

data after successful connection.

The outgoing message box shows the list of

‘sensorID’ which was processed by ‘BrokerMessage’

algorithm for each client request. Subscription

shows the sequence of sensor request protocol

received from ‘publish’ command by the client.

Retained Message shows success or failure message

from sensors. If end action sensor fails, Retained

Message will show sensorID with a failure notice.

Bytes read/written kept hidden to secure data and

can be visible by encryption to system administer

only. As for present middleware testing, we

considered only single client as ‘client-1’ and

username ‘ScholarTest’, there can be multiple

clients to connect to the server. Based on developed

messaging algorithm, system tests are carried out.

Systems are compared for its efficiency and

throughput.

As shown in Table 2, Test number 1 to 4 are

tested as a standalone algorithm test for message

queues and test number 5 to 7 are tested as

application level live server tests (Refer Fig. 2 - 4).

Also, live server status is checked for other modified

message scheduling algorithm with multi queues to

observe messaging traffic impact on efficiency and

throughput. The executed test proved that message

scheduling algorithm (i.e. BrokerMessage

Algorithm) using multiple queues are more efficient

with expected throughput as compared to message

Received: April 25, 2018 310

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Table 2. Experimental and algorithm performance comparisons for 656 message request compared with results from

existing system for message queue and protocols [17]

Test No Message Scheduling Type Existing system

[17]

Efficiency

1 Message scheduling without priority queue algorithm test-msgsch 72.43% 79.4%

2 Message scheduling algorithm using single priority queue reference

model algorithm test -msgschb

90.56% 92.1%

3 Message scheduling algorithm using two queues algorithm test -

msgschb2

- 94.9%

4 Message scheduling algorithm using three queues algorithm test -

msgsch3

- 94.7%

5 Message scheduling algorithm using three queues-MQTT Live Test 92.16% 95.7%

6 Message scheduling algorithm using three queues-XMPP Live Test 79.7% 84.4%

7 Message scheduling algorithm using three queues-CoAP Live Test 78.5% 82.4%

Figure. 7 Comparison of reference algorithm with

(msgsch) and without (msgschb) priority queue

algorithms

Figure. 8 Comparison of Single [16], Two &Three

priority queue algorithms

scheduling without priority queue [16], message

scheduling algorithm using single priority queue

reference model algorithm and message scheduling

algorithm using two queues algorithm (Refer Table

2).

Figure. 9 Comparison of live server test of MQTT,

XMPP and CoAP message protocols w. r. t. service time

The test results for variations shown in Table 2

are shown in the graphs given above.

As shown in Fig. 7, reference algorithm i.e.

M/M/1 queue [16] with priority queue and without

priority queue is compared. Graph shows that with

priority queue is powerful as priority message

execution gives quick messaging results while queue

without priority queue waits for message response

and causes more delay.

Similarly, as depicted in Fig. 8, reference

algorithm i.e. M/M/1[16], M/M/2 and M/M/3

message queues with priority queue are compared.

Graph shows that algorithm with three priority

queues gives quick messaging results. But, in case

of IoT hybrid protocol messaging, we also need to

use BrokerMessage algorithm as discussed in

section-4 of this paper.

As per comparison done for message queue,

various types of protocols, further application level

comparison carried out. Hence, proposed

architecture Hybrid Execution of Messaging Model

0

100

200

300

400

500

2 3 4 5 6 7 8

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Messages

Msgsch

Msgschb

0

20

40

60

80

100

120

2 3 4 5 6 7 8 9 10

N
u

m
b

e
r

o
f

C
yc

le
s

Number of Messages

Msgschb

Msgschb2

Msgschb3

0

50

100

150

200

250

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
5

6

N
u

m
b

e
r

o
f

cy
cl

e
s

Number of Messages

CoAP

XMPP

MQTT

Received: April 25, 2018 311

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Figure. 10 Comparison of BrokerMessage, MobIoT [13]

and Traditional SOA message per cycles

with execution of proposed BrokerMessage

algorithm compared with existing MobIoT and

Traditional SOA architecture [13] to analyze the

application level efficiency of proposed system. The

comparison is shown in Fig. 10.

From the comparison chart, BrokerMessage

algorithm i.e. Hybrid Execution of Messaging

Model performance is better for message delivery

than that of MobIoT model and traditional SOA [13].

Based on graphical result discussed, we

implemented BrokerMessage algorithm and system

tested on live server to get response for MQTT,

XMPP and CoAP messaging protocols. And MQTT

has proven as a best suited lightweight protocol

(Refer Fig. 10) with new middleware broker

architecture. Further, as a performance test

algorithm is tested for throughput analysis.

Throughput is analyzed by loading application with

multiple use requests at a time. So, it is necessary to

know multi message handling efficiency of

middleware for IoT sensor requests.

To evaluate communication efficiency of

proposed BrokerMessage algorithm, performance

testing is conducted using ‘Apache JMeter’.

Performance testing is a kind of testing meant to

look for the responsiveness, trustworthiness,

throughput, interoperability, and scalability of a

system and/or application within certain workload.

The aim of this test is to analyze the impact of

network traffic. For this test, we randomly generated

656 message requests (considered as 656 samples of

ApacheJMeter). The request/response is identified in

millisecond (ms) units. The system protocol must

achieve minimum time to distinguish system as an

efficient system. The Apache JMeter test output is

shown in Fig. 12.

Figure. 11 ApacheJMeter test screen showing throughput

for multiple message queue for MQTT

As per Table 2, MQTT gives 95.7% efficiency

so, MQTT protocol is tested for throughput by

sending 656 messages to IoT device using JMeter.

This test provided throughput of 1,312.625/minute

with an average of 629 and median is 598. The

deviation is comparatively less as 305. Hence,

MQTT with BrokerMessage as a middleware

algorithm is best for IoT device messaging.

6. Conclusion

The paper presented a solution to

‘interoperability of protocols’ which is one of the

major limitations of SOA for IoT device

communication protocols. The message scheduling

broker algorithm ‘BrokerMessage’ is developed for

IoT environment where hybrid protocol routing is

required. XMPP, CoAP, MQTT protocols

considered as a one request and filtered using

‘Hybrid Execution of Messaging Model’ which uses

BrokerMessage algorithm to handle multiple

protocol requests. Additionally, this works as a

scheduling algorithm and uses priority queue model.

Multiple queues model is developed to increase the

efficiency of the BrokerMessage algorithm. Such

middleware provides a solution for message delay

issue with multiple protocols request handling. The

system performance is tested using Apache JMeter

for MQTT, XMPP and CoAP message protocols

with respect to service time and MQTT protocol

performance are found more efficient during IoT

sensor test. Also, as an application test, system is

tested using live server HIVE platform. Due to the

proposed BrokerMessage algorithm, protocol

communication/messaging overhead is reduced. As

Received: April 25, 2018 312

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

a comparative analysis, MQTT [17] is the best-

suited solution if executed with the BrokerMessage

algorithm. Performance comparison among

BrokerMessage model, MobIoT and traditional SOA

[13] revealed that, BrokerMessage algorithm

provides better performance in terms of multiple

protocol support for IoT as well as message service

time. Hence, with proposed research it now possible

to use a single IoT architecture for all applications

without worry about types of protocol. Further as a

future work, implementation of this solution with

development of plugin model is intended to build

the generalized solution for any IoT middleware

irrespective of the type of protocol.

References

[1] B. H. Qiang, Z. J. Jia, P. Wang, S. Wang, and Y.

F. Wang, "JMS Scheduling Model Design and

Implementation Based on Priority Control in

the SOA System", In: Proc. of International

Conference on Information System and

Artificial Intelligence, pp. 214-218, 2016.

[2] L. D. Xu, W. He, and S. Li, "Internet of Things

in Industries: A Survey", IEEE Transactions on

Industrial Informatics, Vol. 10, No. 4, pp.

2233-2243, 2014.

[3] D. Calvaresi, M. Marinoni, A. Sturm, M.

Schumacher, and G. Buttazzo “The challenge

of real-time multi-agent systems for enabling

IoT and CPS”, In: Proc. of the International

Conference on Web Intelligence, pp356-364,

2017.

[4] M. H. Asghar, N. Mohammadzadeh, A. Negi,

and T. Kazerouni, "Principal ingredients and

framework of Internet of Things (IoT)", In:

Proc. of the Twelfth International Conference

on Wireless and Optical Communications

Networks, pp. 1-6, 2015.

[5] A. Al-Fuqaha, A. Khreishah, M. Guizani, A.

Rayes, and M. Mohammadi, "Toward better

horizontal integration among IoT services",

IEEE Communications Magazine, Vol. 53, No.

9, pp. 72-79, 2015.

[6] D. Happ, N. Karowski, T. Menzel,

V. Handziski, and A.Wolisz, "Meeting IoT

platform requirements with open pub/sub

solutions", Annals of Telecommunications,

Vol.72.1-2, pp.41-52, 2017.

[7] Z. Jiang, B. Han, P. Chen, F. Yang, and Q. Bi,

“On Novel Access and Scheduling Schemes for

IoT Communications”, Mobile Information

Systems, Vol. 2016, Article ID 3973287, 9

pages, 2016.

[8] I. Yaqoob, E. Ahmed, I. Hashem, A. Ahmed, A.

Gani, M. Imran, and M. GuIzani, "Internet of

Things Architecture: Recent Advances,

Taxonomy, Requirements, and Open

Challenges", IEEE Wireless Communications,

Vol. 24, No. 3, pp. 10-16, 2017.

[9] I. Machorro-Cano, G. Alor-Hernández, N.A.

Cruz-Ramos, C. Sánchez-Ramírez, and M.G.

Segura-Ozuna, “A Brief Review of IoT

Platforms and Applications in Industry”, New

Perspectives on Applied Industrial Tools and

Techniques. Management and Industrial

Engineering, pp.293-324, 2018.

[10] G. T. Oh, M. K. Back, and K. C. Lee, “A

Design and Implementation of the CoAP

Adaptor for Communication Between DDS-

Based Adaptors and External Devices”,

Advances in Computer Science and Ubiquitous

Computing, Lecture Notes in Electrical

Engineering, Vol 474, pp.901-909, 2017.

[11] H. J.Kim, M.Y.Jung, W.S.Chin, and J.W. Jang,

“Identifying Service Contexts for QoS Support

in IoT Service Oriented Software Defined

Networks”, In: Proc. of International

Conference on Mobile, Secure, and

Programmable Networking, Lecture Notes in

Computer Science, Vol 10566, pp 99-108, 2017.

[12] M. Albano, P. M. Barbosa, J. Silva, R. Duarte,

L. L. Ferreira, and J. Delsing, "Quality of

service on the arrowhead framework", In: Proc.

of IEEE 13th International Workshop on

Factory Communication Systems, pp. 1-8, 2017.

[13] S. Hachem, A. Pathak, and V. Issarny,

“Service-Oriented Middleware for the Mobile

Internetof Things: A Scalable Solution”, In:

Proc. of IEEE GLOBECOM: Global

Communications Conference, 2014.

[14] D. Gross, J.F. Shortle, J.M. Thompson, and

C.M. Harris, Fundamentals of Queueing

Theory, 4th ed. Hoboken, NJ, USA: Wiley,

2008.

[15] S. Abdullah and K. Yang, "A QoS aware

message scheduling algorithm in Internet of

Things environment", In: Proc. of IEEE Online

Conference on Green Communications, pp.

175-180, 2013.

[16] J. Leu, C. Chen, and K. Hsu, "Improving

Heterogeneous SOA-Based IoT Message

Stability by Shortest Processing Time

Scheduling", IEEE Transactions on Services

Computing, Vol. 7, No. 4, pp. 575-585, 2014.

[17] J. Aguirre, A. Ordóñez, and H. Ordóñez, "Low-

Cost Fire Alarm System Supported on the

Internet of Things", In: Solano A., Ordoñez H.

(eds) Advances in Computing. CCC 2017,

Received: April 25, 2018 313

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.28

Communications in Computer and Information

Science, Vol 735, 2017.

[18] F. Saeed, A. Paul, A. Rehman, W. H. Hong,

and H. Seo, "IoT-Based Intelligent Modeling of

Smart Home Environment for Fire Prevention

and Safety", Journal of Sensor and Actuator

Networks, Vol. 7, No. 1, p. 11, 2018.

[19] D. H. Kang, M. S. Park, H. S. Kim, D. Y. Kim,

S. H. Kim, H. J. Son, and S. G. Lee, "Room

Temperature Control and Fire

Alarm/Suppression IoT Service Using MQTT

on AWS", In: Proc. of International

Conference on Platform Technology and

Service, pp. 1-5, 2017.

[20] A. Malik and H. Om, "Cloud Computing and

Internet of Things Integration: Architecture,

Applications, Issues, and

Challenges", Sustainable Cloud and Energy

Services, pp1-24, 2018.

https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Do-Hun%20Kang.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Min-Sung%20Park.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hyoung-Sub%20Kim.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Da-young%20Kim.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sang-Hui%20Kim.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hyeon-Ju%20Son.QT.&newsearch=true
https://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Sang-Gon%20Lee.QT.&newsearch=true

