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Abstract: Load Balancing is an important aspect of cloud service centers for optimizing the resource utilization. 

Consumption of excess power in cloud centers can result in monetary wastage. It is critical that, the resources in the 

cloud center are utilized optimally; so that, both monetary savings and client satisfaction can be achieved. One of the 

most popular techniques to achieve load balancing is the Virtual Machine (VM) migration technique; wherein, some 

of the VMs from overloaded Physical Machines (PMs) are migrated to lightly loaded PMs; however, this technique 

requires excessive time and monetary cost. Recently, a load balancing technique which migrates VM tasks instead of 

the actual VM was proposed in the literature. This technique was able to overcome some of the limitations of VM 

migration technique. Here, the overloaded VM does not accept any new task; however, the new tasks are migrated to 

lightly loaded VMs. Even though this technique migrates extra tasks to achieve VM load balancing, the already 

overloaded VMs are not relieved from their existing task burden. If some of the existing and suitable tasks in 

overloaded VMs are migrated, it could improve efficiency of load balancing. In this work, a new run time VM task 

migration technique is proposed, which migrates tasks from overloaded VMs. The suitable tasks for migration are 

selected through a discriminant function, which identifies heavy resource consuming and limited execution 

progressed tasks for migration. Since, it has been shown in the literature that, optimal task-resource mapping is NP-

hard, Particle Swarm Optimization (PSO) based solution search technique is proposed. This proposed technique 

substantially reduces computing load, and achieves good power/energy conservation in the overloaded VMs, when 

compared with the contemporary VM task migration and VM migration techniques. 
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1. Introduction 

The Cloud Computing framework provides 3 

classes of services namely— Infrastructure as a 

Service (IaaS), Platform as a Service (PaaS) and 

Software as a Service (SaaS). The first service class 

provides the required hardware computational 

resources for the requesting clients. The second 

class provides the necessary software platforms for 

the client to build the required applications. Finally, 

the complete application service is provided by SaaS 

model.  

The cloud computing framework has been 

successful in cutting down the client computational 

costs by providing on-demand computational 

service, which helps the client from avoiding 

procurement of computational resources. Also, it 

provides new business opportunities through the 

establishment of commercial cloud centers. One of 

the significant advantages of Cloud Computing 

framework is scalability. The cloud centers are not 

usually confined to a single geographical location, 

but, the cloud computational resources are 

distributed in different geographical locations, and 

the services are provided through distributed 

framework.  
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The cloud centers usually contain numerous 

computing devices or Physical Machines (PM). 

Usually, each PM provides computing services to 

multiple users through logical system called as the 

Virtual Machine (VM). The computing resource 

details of the PM are abstracted from the VM user, 

and the user may feel that a single and independent 

computing system is providing the requested service 

of the user. The computing resources of a PM are 

divided among the different VMs built over it, and 

this resource division may be mutually exclusive 

w.r.t. different VMs.    

Due to the large number of tasks and heavy 

computational workload, load balancing in cloud 

centers becomes extremely essential. Load 

balancing aids in increasing the efficiency of 

computing machines, and reduces the power 

expenditure cost.  

The VM migration technique is a load balancing 

technique, which migrates overloaded VMs from 

one PM to the other, which is lightly loaded. It is 

one of the most popular load balancing technique in 

the cloud. However, there are important drawbacks 

for this approach of load balancing: 

1. VM migration requires significant memory 

consumption, and excessive task execution 

downtime can occur because of stopping the 

functionality of the VM which is about to be 

migrated.  

2. Customer activity information can be lost in the 

VM migration process, and it can increase the 

monetary expenditure of the users.  

3. Significant increase in dirty memory can be 

seen after VM migration. 

1.1 Research issues 

To counter demerits due to VM migration 

technique, another load balancing strategy called as 

VM Task Migration was proposed in [1, 2]. These 

techniques do not migrate the overloaded VMs, but, 

migrate the extra tasks which are submitted to 

overloaded VMs. Even though, these techniques are 

able to counter most of the problems associated with 

VM migration technique, however, only address the 

overloading problem that occurs due to extra tasks; 

however, the overloaded VM is not subjected to 

existing load reduction. It is also important to 

identify suitable tasks which are currently running 

inside the VM and subject some of these tasks to 

migration in order to achieve efficient load 

distribution. Performing existing VM task migration 

also has certain challenges: the identified tasks for 

migration might have completed executing 

significant portion of their execution data; also, the 

identified tasks should reduce significant 

computational load in their original VM - when 

migrated; otherwise, the task migration itself 

becomes ineffective. 

In-order to achieve even better task load 

reduction as achieved in [1]; in this work, current 

running tasks from overloaded VMs which are not 

only resource heavy in their execution requirements, 

they should have also completed only limited part of 

their entire execution cycle are identified to be 

migrated along with extra tasks of these overloaded 

VMs. Since, only resource heavy tasks which are 

currently being executed in the overloaded VMs are 

evicted, clearly, this mechanism can result in 

substantial task load reduction in the overloaded 

VMs; also, the computational effort wastage is 

limited, because the evicted tasks have only finished 

limited part of their execution cycle. Clearly, the 

proposed scheme can achieve substantial load 

reduction when compared to [1], because it migrates, 

not only the extra tasks of overloaded VMs as in [1], 

it also migrates the most resource heavy task 

running in each overloaded VM. 

1.2 Contributions 

The following contributions are made in this 

work: 

1. The overloaded VMs are identified through a 

novel discriminant function, which selects the 

overloaded VMs based on power and 

computational resource consumption. The 

suitable tasks which are identified for migration 

are selected on two criteria namely—the task 

execution status and task migration benefit. The 

first criteria, avoids those tasks which have 

completed executing significant portion of the 

task specific data. The second criteria, avoids 

those tasks which consume limited 

computational resources.  

2. A scoring function is designed which assigns 

migration score for a set of VMs which is a 

probable destination to host the migrated VMs. 

The VM set which has the lowest score is 

considered the optimal choice. Particle Swarm 

Optimization (PSO) technique is designed to 

search the candidate solutions space, because 

the search complexity is non-polynomial [1]. 

This technique provides an opportunity to 

implement parallel solution search. The PSO 

based solution search technique is implemented 

in MATLAB and its relative merits in 

computing load reduction, and power/energy 

conservation are exhibited against 

contemporary VM task migration technique [1], 
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and contemporary VM migration techniques [2, 

3]. 

1.3 Organization of the paper 

This paper is organized as follows: section 2 

describes the related work in this area. The proposed 

VM task migration technique is outlined in section 3. 

The empirical results are presented in section 4. 

Finally, the work is concluded along with future 

avenues in section 5. 

2. Related work 

VM migration has been one of the popular load 

balancing techniques in cloud computing. In [2], 

VM migration technique focused on load balancing 

in data centers having multi-rooted tree format. In 

[3], VM migration technique addressed load 

balancing in distributed cloud centers; wherein, 

cloud resources are distributed in different 

geographical location. In [4], rapid migration 

scheme for VM migration was proposed. As 

explained above, even though VM migration 

techniques have demonstrated load balancing 

efficiency, they suffer from expensive cost of 

migration and possible task execution latency delays.         

Task scheduling for load balancing in distributed 

systems—including cloud servers, deal with the 

problem of distributing the submitted task load on 

available computational units; so that, maximum 

utilization of these computational units, and 

substantial reduction in task execution time can be 

achieved. It must be noted that, task scheduling does 

not involve evicting already running tasks, and only 

distributes the newly submitted tasks for efficient 

computation. Also, overloaded VM problem is 

usually not addressed in task scheduling, because 

the task distribution scheme hypothesizes that, 

overloading will usually not occur.      

A novel programming platform for task 

scheduling in cloud was presented in [5]. Genetic 

algorithm based task scheduling techniques for 

cloud was presented in both [6, 7]. Task scheduling 

technique for geographically distributed cloud 

centers was presented in [8]. Survey on different 

load balancing techniques for cloud was presented 

in [9]. Similarly, survey on meta-heuristic 

techniques for load balancing in cloud was 

presented in [10]. In [11], future problems for task 

scheduling in cloud were comprehensively 

presented. Dynamic Collaboration in cloud involves 

collaborative framework through different 

participating cloud service providers, and in [12], 

task scheduling in this new framework was 

presented. In [13] task scheduling technique for IaaS 

based cloud centers was presented. 

Task scheduling technique through user 

requirement modeling for computational grids—

which can also be relevant to cloud—was presented 

in [14]. Similarly, PSO based task scheduling 

technique for computational grids and cloud was 

presented in [15]. Security based task scheduling 

technique for cloud using Swarm scheduling 

approach was presented in [16]. Multi objective task 

scheduling involves achieving multiple goals such 

as: minimizing task latency, reducing power 

consumption e.t.c., and this problem for cloud was 

addressed in [17]. In [18], another multi objective 

task scheduling technique for cloud using genetic 

algorithm was presented. In [19], Honey Bee 

optimization technique for task scheduling in cloud 

was presented. In [20], task scheduling in 

computational grids—which can also be extended to 

cloud—was also achieved through Honey Bee 

optimization technique. Task scheduling technique 

for cloud using Ant Colony optimization framework 

was presented in [21]. In [22], task scheduling for 

cloud using probabilistic modeling was presented. In 

[23], task scheduling technique for cloud using 

specialized bio-inspired algorithm called: Symbiotic 

Organism Search, was presented. Multi objective 

task scheduling technique for cloud using Ant 

Colony optimization framework was presented in 

[24]. Hybrid task scheduling algorithm for cloud 

through merging of two techniques namely: Cuckoo 

search algorithm and Oppositional based learning 

was presented in [25]. In [26], evolutionary genetic 

algorithm framework was utilized to achieve task 

scheduling in cloud. Similarly, fruit fly optimization 

framework was utilized in [27] to design task 

scheduling technique in cloud. 

Even though, task scheduling is effective in load 

balancing for cloud, in some scenarios, the 

estimated resource consumption for a certain task, 

which is used as critical parameter in task 

scheduling techniques, can deviate substantially 

compared to actual resource utilization—which can 

burgeon rapidly. In such scenarios, VMs can easily 

become overloaded, and has to be relived from this 

computational burden. The VM extra task migration 

techniques presented in [1, 28] achieves load 

reduction from overloaded VMs through migrating 

extra tasks. As outlined above, to achieve even 

better load reduction as achieved in [1, 28], some of 

the suitable running tasks in the overloaded VMs 

need to be identified and migrated—along with 

extra tasks. 

3. VM task migration technique  
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Let, VMy indicate the yth VM, cy indicates the 

number of computing node in VMy,  my indicates the 

memory capacity of VMy, tiy indicates the ith  task 

present inside VMy, ciy is the CPU utilization ratio of 

tiy, if tiy is running on multiple CPUs, then, ciy is the 

sum of CPU utilization ratio for every CPU on 

which tiy is being executed, miy represents the 

memory utilization ratio of tiy and piy represents the 

power consumption of tiy, which is represented in Eq. 

(1) 

 

𝑝𝑖𝑦 = 𝑐𝑖𝑦  ×  𝑚𝑖𝑦                          (1) 
 

The total power consumed by all the tasks present in 

VMy is indicated by the variable py and it is 

represented in Eq. (2) Here, ny represents the total 

number of tasks that are being executed in VMy. 

 

 𝒑 𝑦 =
∑ 𝑝𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
           (2) 

 

Two thresholds are defined to detect overloaded 

VMs. The first threshold is defined over CPU 

utilization ratio, which is indicated by Tc. The 

second threshold is defined over power consumption, 

which is indicated by Tp. The VMy is decided as 

overloaded if the value of the function overloaded 

(VMy)=1, otherwise if, overloaded(VMy) = 0, then, 

VMy is decided as not-overloaded. This case is 

represented in Eq. (3) 

 

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑(𝑉𝑀𝑦) =  

{
 
 
 

 
 
 

  

1,   𝑖𝑓 𝑇𝑐 ≤ 
∑ 𝑐𝑗𝑦
𝑁𝑦
𝑗=1

𝑐𝑦
 

𝑜𝑟
𝑇𝑝 ≤ 𝑝𝑦

 
  

0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

          (3) 

3.1 Task migration methodology 

To select the suitable running tasks for migration, 

it is important to select those tasks which have 

completed executing only small portion of their data. 

The task completion ratio of tiy is represented in Eq. 

(4). Here, task_completion (tiy) indicates the task 

completion ratio of tiy, diy is the size of data used by 

tiy and d̂iy indicates the size of data already 

consumed by tiy. 

 

𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑡𝑖𝑦) =  
𝑑̂ 𝑖𝑦

 𝑑̂𝑖𝑦
       (4) 

 

The suitable tasks for migration are identified 

through their task completion ratio, CPU utilization 

and consumed power. The selected task should have 

the task completion ratio within the specified 

threshold indicated by To. This case is represented in 

Eq. (5). Since, stopping already executing tasks and 

migrating them into different VMs along with their 

data, reduces the task execution efficiency, so, only 

a single task which provides the maximum benefit in 

load reduction is selected for migration. 

 

task_completion( tiy ) ≤  To                   (5) 

 

The task which has the maximum combined value of 

both CPU utilization ratio and consumed power is 

selected for migration, and this case is represented 

in Eq. (6) 

 

task selected for migration = max (ciy + piy)       (6) 

tiy     

3.2 Scoring function for task migration 

Suppose that, tiy has to be migrated from VMy 

and VMz is one of the possible VM to which tiy has 

to be migrated. The score of the migration task is 

represented in Eq. (7). The value of the parameters 

exeiz, transfer(tiy, VMz), pz, g(Tcz, tiy) and g(Tpz , tiy) 

are represented in Eqs. (8), (9), (10), (11), and (12), 

respectively. Here, score(tiy, VMz)  indicates the 

migration score, exeiz indicates the cost of executing 

tiy in VMz, transfer(tiy, VMz) indicates the transfer 

cost of transferring tiy from VMy to VMz, bwyz 

indicates the bandwidth between VMy and VMz and 

p̂z is the power consumed by VMz when task tiy is 

migrated to VMz. The functions g(Tc, tiy) and g(Tp, 

tiy) ensure that, the migration of tiy from VMy to VMz 

does not cause CPU utilization threshold and power 

consumption threshold violations.  

Consider the situation where the set of tasks [ti1y1,  

ti2y2, … tisys ] which need to be migrated. One of the 

candidate solution is the VM set [VMz1, 

VMz2 ,….VMzs ], such that, ti1y1 will be migrated to 

VMz1 , ti2y2 will be migrated to VMz2 and so on tisys 

will be migrated to VMzs . There is no restriction that, 

the VMs in the candidate solution set should be 

distinct. The migration score for this candidate 

solution is represented in Eq. (13). Here, tijyj → VMzj 

(1≤  j ≤  s) indicates that the task tijyj has already 

been assigned to VMzj and is being executed inside it. 

The CPU and memory utilization ratio of tijyj in VMzj 

is assumed to be same as observed when tijyj was 

executing inside VMzj. The operator ∣ is interpreted 

as such that. 
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𝑠𝑐𝑜𝑟𝑒(𝑡𝑖𝑦, 𝑉𝑀𝑧 ) = 𝑒𝑥𝑒𝑖𝑧  +  𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) +

 𝑝 𝑧 − (𝑔(𝑇𝑐 , 𝑡𝑖𝑦) +  𝑔(𝑇𝑝, 𝑡𝑖𝑦))                   (7) 

𝑒𝑥𝑒𝑖𝑧 = 
𝑑̂𝑦

𝑐𝑧  ×𝑐𝑖𝑦 + 𝑚𝑧× 𝑚𝑖𝑦
                          (8) 

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦, 𝑧)  =
𝑑̂𝑖𝑦

𝑏𝑤𝑦𝑧
                          (9) 

 

 𝑝 𝑧 = 𝑝𝑧 + 
𝑝𝑖𝑦

𝑐𝑧
           (10) 

 

𝑔(𝑇𝑐 , 𝑡𝑖𝑦)   =

{
 𝑇𝑐 − 

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
  ,         𝑖𝑓 𝑇𝑐 − 

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
   > 0 

−∞,                                   𝑖𝑓  𝑇𝑐 − 
∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
   ≤  0 

       

 (11) 

 𝑔(𝑇𝑝, 𝑡𝑖𝑦)   =

{
 𝑇𝑝 − (𝑝𝑧 +  

𝑝𝑖𝑦

𝑐𝑧
 )  ,     𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +  

𝑝𝑖𝑦

𝑐𝑧
 )  > 0 

−∞,                                   𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +  
𝑝𝑖𝑦

𝑐𝑧
 )  ≤  0 

            

                                                                              (12) 
 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒((𝑡𝑖1𝑦1, 𝑉𝑀𝑧1), (𝑡𝑖2𝑦2, 𝑉𝑀𝑧2), 

… . (𝑡𝑖𝑠𝑦𝑠, 𝑉𝑀𝑧𝑠)) = 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖1𝑦1, 𝑉𝑀𝑧1|𝑡𝑖2𝑦2 → 

𝑉𝑀𝑧2, 𝑡𝑖3𝑦3 → 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) + 

𝑠𝑐𝑜𝑟𝑒(𝑡𝑖2𝑦2, 𝑉𝑀𝑧2|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖3𝑦3
→ 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) + 

… . . 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖𝑠𝑦𝑠 , 𝑉𝑀𝑧𝑠|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, … . 𝑡𝑖(𝑠−1)𝑦(𝑠−1) → 𝑉𝑀𝑧(𝑠−1))             (13) 

 

The most beneficial candidate solution is the one 

which satisfies the optimization condition which is 

represented in Eq. (14).    

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = min(VMz1,VMz2,…VMzs) 

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒((𝑡𝑖1𝑦1, 𝑉𝑀𝑧1), (𝑡𝑖2𝑦2, 𝑉𝑀𝑧2), 

… . (𝑡𝑖𝑠𝑦𝑠 , 𝑉𝑀𝑧𝑠))                (14) 

4. PSO technique for VM task migration  

PSO is a meta-heuristic technique [28] which 

provides an approximate solution to the optimization 

problems, and it is inspired by the social behavior of 

the birds. The search for optimal solution is carried 

out by group of particles; wherein, each particle has 

an exclusive zone in candidate solution space, and 

union of all particle zones is equal to the candidate 

solution space. Each point in candidate solution 

space represents a candidate solution vector. The 

particles are continuously moving in their 

corresponding candidate solution space to identify 

optimal solution, and are involved in continuous 

communication for exchanging their locally 

discovered best solution, which in-turn decides the 

corresponding velocity of the particle for navigation. 

The particles continue their search until acceptable 

solution is obtained. 

The PSO utilizes multiple search particles, 

which are collectively involved in discovering near 

optimal candidate solution for optimization problem.   

Here r search particles are assumed. The current 

position of the ith particle at iteration t be  Xi⃗⃗  ⃗(t). The 

position for the next iteration is indicated by Xi⃗⃗  ⃗(t+1), 

which is calculated as represented in Eq. (15) 

Here, Vi⃗⃗⃗   (t)  indicates the velocity of the ith particle 

for t + 1 iteration, and it is calculated as represented 

in Eq. (16). Here, D1 and D2 indicate the degree of 

particle attraction towards individual and group 

success respectively, 𝑥 gbest  and   𝑥 pbesti    indicate the 

global best solution obtained by all the particles  

until the current iteration respectively, W indicates a 

control variable, and r1,r2 ∈ [0, 1] are the random 

factors. 

 

𝑋𝑖⃗⃗  ⃗(t+1) = 𝑋𝑖⃗⃗  ⃗(t) + 𝑉𝑖⃗⃗  (𝑡 + 1)                  (15) 

 

𝑉𝑖⃗⃗  (𝑡 + 1) = 𝑊𝑉𝑖⃗⃗  (𝑡) + 𝐷1𝑟1(𝑥 pbesti -𝑋𝑖⃗⃗  ⃗(t))+D2r2   (𝑥 gbest  

- 𝑋𝑖⃗⃗  ⃗(t))                                              (16)    

 

The proposed PSO based VM task migration 

technique for load balancing is outlined in 

Algorithm 1. Here, initialize_PSO(P) divides the 

candidate solution space among the r search 

particles indicated by P=p1, p2,....pr, and assigns 

each particle to some arbitrary positions in their 

corresponding candidate solution space. Each 

particle calculates its candidate solution for the 

corresponding current position through 

compute_score(𝑿𝒊⃗⃗⃗⃗ (t)), which utilizes Eqs. (15) and 

(16). The values for 𝑥 gbest  and   𝑥 pbesti    are calculated 

through local_best(scorei) and global_best(P, 𝑥 pbesti ) 

respectively. The particles continue to search until 

the acceptable solution is found, and which is 

calculated through acceptable(𝑥 gbest).      

 

Algorithm 1 PSO Algorithm for VM task 

migration 

 

P=p1, p2 ...pr 

initialize_PSO (P) 

flag=0  

t=0 

While flag==0 do 

t=t+1  

For i=1 to r do  

score_i= compute_score (𝑿𝒊⃗⃗⃗⃗ (t)) 
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                          𝑥 pbesti    = local_best(scorei) 

                          𝑥 gbest  =  global_best(P, 𝑥 pbesti) 

If acceptable(𝑥 gbest) then 

flag=1 

end if 

end for 

t=t+1 

end while  

5. Experimental results and discussions  

The proposed PSO technique for VM task 

migration is simulated on MATLAB. The 

simulation parameter settings are presented in Table 

1. Each PSO search particle is assumed to be 

executing on an exclusive computing node, so that, 

maximum parallelism is exploited from both these 

techniques. 

To perform relative performance evaluation, the 

proposed VM runtime task migration technique is 

coupled with VM extra task migration technique[1], 

and for the ease of reference, this coupled scheme 

will be referred as VM_run. Here, VM_run identifies 

the overloaded VMs, and migrates the extra and 

suitable runtime tasks from the overloaded VMs. 

For the ease of reference, the VM extra task 

migration technique [1] will be referred as 

VM_extra, and this technique only migrates the 

extra tasks of overloaded VMs. Both, VM_run and 

VM_extra are subjected to relative performance 

evaluation.  

Two performance metrics are defined for 

performing simulation analysis. The first metric is -

Average CPU Utilization Ratio (ACPUR), which 

indicates the average CPU utilization ratio of all 

overloaded VMs after task load reduction is 

performed by either VM_run or VM_extra. The 

metric ACPUR is represented in Eq. (17). Here, OS 

represents the set of overloaded VMs. Also, 

ACPUR(VM_run) and ACPUR(VM_extra) indicate 

the ACPUR score achieved by VM_run and 

VM_extra respectively.       

 

      𝐴𝐶𝑃𝑈𝑅  = 
∑ 𝑐𝑝𝑢𝑟(𝑉𝑀𝑦)
|𝑂𝑆|
𝑉𝑀∈𝑂𝑆

|𝑂𝑆|
           (17) 

where          𝑐𝑝𝑢𝑟(𝑉𝑀𝑦) =
∑ 𝑐𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
               

 

The second performance metric is: Average 

Power Utilization Ratio (APUR), which indicates 

the average power utilization of all overloaded VMs 

after task load reduction is performed by either 

VM_run or VM_extra. The metric APUR is 

represented in Eq. (18). Also, APUR(VM_run) and 

 

 
Table 1. Simulation parameter settings 

Simulation 

Parameter 

Values 

Number of VMs 

considered 

Varied between 1000- 5000 

Number of  computing 

nodes/CPUs in each 

VM 

Varied between 5 to 20 

 

Main memory capacity 

for each VM 

Varied between 4GB/ 

8GB/16GB  

Number of tasks 

executing  in each VM 

Varied between 10 to 50 tasks  

Bandwidth between 

any 2 VMs 

Varied between 100mbps to 

500mbps 

CPU utilization ratio 

for any task 

Varied between 0.2 to 0.8 

 

Memory utilization of 

each task 

Varied between 0.2 to 0.8 

 

Number of PSO search 

particles 

Varied between 5 – 25 

 

Number of Computing 

nodes allotted for each 

PSO particle 

1 

Threshold Tc 0.7 

Threshold Tp 0.6 

Size of task data Varied between 1GB to 10GB 

Threshold To Varied between 0.05 – 0.25 

 

APUR(VM_extra) indicate the APUR score achieved 

by VM_run and VM_extra respectively.    

 

𝐴𝑃𝑈𝑅  =  
∑ 𝑃𝑦
|𝑂𝑆|
𝑉𝑀∈𝑂𝑆

|𝑂𝑆|
                        (18) 

 

VM_run is also compared against the contemporary 

VM migration technique presented in [2] and [3]. 

For the ease of reference VM migration techniques 

presented in [2] and [3] are denoted as VM_M_1 and 

VM_M_2 respectively. Since, optimal scheme for 

VM migration is NP hard [2], approximation 

algorithm is utilized in [2] for VM migration. In [3], 

Bin Packing framework is used to model VM 

migration problem. Again, optimal Bin Packing is 

NP hard [3]. Hence, approximate Bin Packing 

technique is utilized for VM migration in [3]. In-

order to perform empirical analysis between 

VM_run, VM_M_1 and VM_M_2, the metric AEXE 

is utilized, which represents the average execution 

time of all the tasks—including extra and running 

tasks—from overloaded VMs--after either of 

VM_run, VM_M_1 or VM_M_2 is executed. The 

metric AEXE is represented in Eq. (19).  Here, 

(𝑡1, 𝑡2, … . . 𝑡𝐾)  represent the set of all extra and 

running tasks ∈ 𝑂𝑆 . Here, 𝑒𝑥𝑒(𝑡𝑖) ( 1 ≤ 𝑖 ≤ 𝐾 ), 

represents the execution time of 𝑡𝑖  after either of 
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VM_run, VM_M_1 or VM_M_2 is executed, and this 

metric is calculated as represented in Eq. (8). Also, 

AEXE(VM_run), AEXE(VM_M_1) and  

AEXE(VM_M_2) represent the AEXE value for 

VM_run, VM_M_1 and VM_M_2 respectively.         

 

𝐴𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒(𝑡𝑖)
𝐾
𝑖=1  

𝐾
                     (19)  

 

The first experiment analyzes the performance 

of VM_run and VM_extra w.r.t. ACPUR, when the 

number of VMs used in simulation is varied. The 

result of this experimental analysis is illustrated in 

Fig.1 Here, VM_run considerably outperforms 

VM_extra, because existing running tasks inside 

overloaded VMs have no impact from migration of 

only extra tasks by VM_extra; however, VM_run 

selects the most resource consuming task running 

inside overloaded VM, and subjects the task to 

migration. Hence, appreciable reduction in ACPUR 

is observed for VM_run. Also, as the number of 

overloaded VMs increase, it creates a tendency to 

produce more overloaded VMs. Some of these 

overloaded VMs might have high resource 

consuming tasks, and evicting these tasks creates 

more resource release. Hence, ACPUR(VM_run) 

improves as the number of VMs increase.    

The analysis result of first experiment w.r.t. 

APUR is illustrated in Fig. 2 Similar results seen in 

Fig. 1 can be observed here, and for the same 

reasons outlined for Fig. 1. The execution latency of 

both VM_run and VM_extra for first experiment is 

illustrated in Fig. 3. Here, VM_run is slightly 

expensive due to the extra component of performing 

VM runtime task migration.  

The second experiment analyzes the 

performance of VM_run and VM_extra w.r.t. 

ACPUR and APUR, when the parameter To is varied. 

The result of second experiment analysis is 

presented in Fig. 4 and Fig. 5 respectively. Here, 

VM_run outperforms VM_extra for the same reasons 

outlined for first experiment.  Increase in To values 

creates an opportunity to select the suitable tasks for 

migration from a more expanded set of qualified 

tasks. Hence, some of these qualified tasks for 

migration - usually are more resource consuming, 

their eviction creates better resource release. Hence, 

ACPUR (VM_run) improves as To increases. 

However, higher values of To can lead to the 

problem of significantly wasting the existing 

computed result of the migrated tasks. 

The third experiment explores the influence of 

the number of particles on the execution latency of 

VM_run. The result of final experimental analysis is 

 

 

 
Figure.1 No. of VMs vs ACPUR 

 

 
Figure 2. No. of VMs vs APUR 

 

 
Figure. 3 No. of VMs vs Execution latency 

 

illustrated in Fig. 6. The increase in number of 

particles leads to the reduction in the search space 

size for each particle; hence, execution efficiency of 

VM_run improves considerably. 
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Figure. 4 To vs ACPUR 

 
Figure. 5 To vs APUR 

 

 
Figure. 6 No. of Particles vs Execution Latency 

 

The final experiment analyzes the relative 

performance of VM_run, VM_M_1 and VM_M_2 

through AEXE metric. The result of the final 

experimental analysis when number of VMs and To 

are varied is represented in Fig. 7 and Fig. 8. Here, 

VM_run substantially out performs the other two 

VM migration techniques, because only extra tasks 

and a single running task from overloaded VM are 

 

 

 
Figure. 7 No. of VMs vs AEXE 

 

 
Figure. 8 𝑇𝑜 vs AEXE 

 

migrated in VM_run; however, all the extra and 

running tasks from overloaded VM are migrated in 

VM_M_1 and VM_M_2, which causes substantial 

task execution delays in migrated Physical Machines 

due to resource competition from already running 

tasks in those machines. 

6. Conclusion 

In this work, the benefits of migrating suitable 

running tasks along with extra tasks from 

overloaded VMs were outlined. The contemporary 

VM task migration technique, migrates only the 

extra tasks from overloaded VMs. However, the 

proposed technique—in-order to achieve superior 

load balancing--migrates the most resource 

consuming tasks along with extra tasks from these 

overloaded VMs. Also, the evicted running task is 

also ensured to have completed limited part of its 

execution work load, which prevents wastage of 
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substantial computational effort. The proposed 

technique—as expected—provides superior load 

balancing merits when compared empirically with 

contemporary VM task migration and VM migration 

techniques. 

In future, the merits of applying VM task 

migration schemes for Distributed Cloud Center in 

which, the cloud center is distributed in different 

geographical locations need to be analyzed. Task 

migration in this new setting faces multiple 

challenges, because migrating tasks to different 

locations in the cloud center can result in 

performance limitation due to large geographical 

distances. 
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