
Received: May 10, 2018 265

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

Run Time Virtual Machine Task Migration Technique for Load Balancing in

Cloud

Geetha Megharaj 1* Mohan Kabadi 2

1Department of Computer Science and Engineering,

Sri Krishna Institute of Technology, Bangalore, Karnataka, India
2Department of Computer Science and Engineering,

Presidency University, Bangalore, Karnataka, India

* Corresponding author’s Email: geethagvit@yahoo.com

Abstract: Load Balancing is an important aspect of cloud service centers for optimizing the resource utilization.

Consumption of excess power in cloud centers can result in monetary wastage. It is critical that, the resources in the

cloud center are utilized optimally; so that, both monetary savings and client satisfaction can be achieved. One of the

most popular techniques to achieve load balancing is the Virtual Machine (VM) migration technique; wherein, some

of the VMs from overloaded Physical Machines (PMs) are migrated to lightly loaded PMs; however, this technique

requires excessive time and monetary cost. Recently, a load balancing technique which migrates VM tasks instead of

the actual VM was proposed in the literature. This technique was able to overcome some of the limitations of VM

migration technique. Here, the overloaded VM does not accept any new task; however, the new tasks are migrated to

lightly loaded VMs. Even though this technique migrates extra tasks to achieve VM load balancing, the already

overloaded VMs are not relieved from their existing task burden. If some of the existing and suitable tasks in

overloaded VMs are migrated, it could improve efficiency of load balancing. In this work, a new run time VM task

migration technique is proposed, which migrates tasks from overloaded VMs. The suitable tasks for migration are

selected through a discriminant function, which identifies heavy resource consuming and limited execution

progressed tasks for migration. Since, it has been shown in the literature that, optimal task-resource mapping is NP-

hard, Particle Swarm Optimization (PSO) based solution search technique is proposed. This proposed technique

substantially reduces computing load, and achieves good power/energy conservation in the overloaded VMs, when

compared with the contemporary VM task migration and VM migration techniques.

Keywords: Cloud computing, Load balancing, Virtual machine, Task migration.

1. Introduction

The Cloud Computing framework provides 3

classes of services namely— Infrastructure as a

Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). The first service class

provides the required hardware computational

resources for the requesting clients. The second

class provides the necessary software platforms for

the client to build the required applications. Finally,

the complete application service is provided by SaaS

model.

The cloud computing framework has been

successful in cutting down the client computational

costs by providing on-demand computational

service, which helps the client from avoiding

procurement of computational resources. Also, it

provides new business opportunities through the

establishment of commercial cloud centers. One of

the significant advantages of Cloud Computing

framework is scalability. The cloud centers are not

usually confined to a single geographical location,

but, the cloud computational resources are

distributed in different geographical locations, and

the services are provided through distributed

framework.

Received: May 10, 2018 266

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

The cloud centers usually contain numerous

computing devices or Physical Machines (PM).

Usually, each PM provides computing services to

multiple users through logical system called as the

Virtual Machine (VM). The computing resource

details of the PM are abstracted from the VM user,

and the user may feel that a single and independent

computing system is providing the requested service

of the user. The computing resources of a PM are

divided among the different VMs built over it, and

this resource division may be mutually exclusive

w.r.t. different VMs.

Due to the large number of tasks and heavy

computational workload, load balancing in cloud

centers becomes extremely essential. Load

balancing aids in increasing the efficiency of

computing machines, and reduces the power

expenditure cost.

The VM migration technique is a load balancing

technique, which migrates overloaded VMs from

one PM to the other, which is lightly loaded. It is

one of the most popular load balancing technique in

the cloud. However, there are important drawbacks

for this approach of load balancing:

1. VM migration requires significant memory

consumption, and excessive task execution

downtime can occur because of stopping the

functionality of the VM which is about to be

migrated.

2. Customer activity information can be lost in the

VM migration process, and it can increase the

monetary expenditure of the users.

3. Significant increase in dirty memory can be

seen after VM migration.

1.1 Research issues

To counter demerits due to VM migration

technique, another load balancing strategy called as

VM Task Migration was proposed in [1, 2]. These

techniques do not migrate the overloaded VMs, but,

migrate the extra tasks which are submitted to

overloaded VMs. Even though, these techniques are

able to counter most of the problems associated with

VM migration technique, however, only address the

overloading problem that occurs due to extra tasks;

however, the overloaded VM is not subjected to

existing load reduction. It is also important to

identify suitable tasks which are currently running

inside the VM and subject some of these tasks to

migration in order to achieve efficient load

distribution. Performing existing VM task migration

also has certain challenges: the identified tasks for

migration might have completed executing

significant portion of their execution data; also, the

identified tasks should reduce significant

computational load in their original VM - when

migrated; otherwise, the task migration itself

becomes ineffective.

In-order to achieve even better task load

reduction as achieved in [1]; in this work, current

running tasks from overloaded VMs which are not

only resource heavy in their execution requirements,

they should have also completed only limited part of

their entire execution cycle are identified to be

migrated along with extra tasks of these overloaded

VMs. Since, only resource heavy tasks which are

currently being executed in the overloaded VMs are

evicted, clearly, this mechanism can result in

substantial task load reduction in the overloaded

VMs; also, the computational effort wastage is

limited, because the evicted tasks have only finished

limited part of their execution cycle. Clearly, the

proposed scheme can achieve substantial load

reduction when compared to [1], because it migrates,

not only the extra tasks of overloaded VMs as in [1],

it also migrates the most resource heavy task

running in each overloaded VM.

1.2 Contributions

The following contributions are made in this

work:

1. The overloaded VMs are identified through a

novel discriminant function, which selects the

overloaded VMs based on power and

computational resource consumption. The

suitable tasks which are identified for migration

are selected on two criteria namely—the task

execution status and task migration benefit. The

first criteria, avoids those tasks which have

completed executing significant portion of the

task specific data. The second criteria, avoids

those tasks which consume limited

computational resources.

2. A scoring function is designed which assigns

migration score for a set of VMs which is a

probable destination to host the migrated VMs.

The VM set which has the lowest score is

considered the optimal choice. Particle Swarm

Optimization (PSO) technique is designed to

search the candidate solutions space, because

the search complexity is non-polynomial [1].

This technique provides an opportunity to

implement parallel solution search. The PSO

based solution search technique is implemented

in MATLAB and its relative merits in

computing load reduction, and power/energy

conservation are exhibited against

contemporary VM task migration technique [1],

Received: May 10, 2018 267

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

and contemporary VM migration techniques [2,

3].

1.3 Organization of the paper

This paper is organized as follows: section 2

describes the related work in this area. The proposed

VM task migration technique is outlined in section 3.

The empirical results are presented in section 4.

Finally, the work is concluded along with future

avenues in section 5.

2. Related work

VM migration has been one of the popular load

balancing techniques in cloud computing. In [2],

VM migration technique focused on load balancing

in data centers having multi-rooted tree format. In

[3], VM migration technique addressed load

balancing in distributed cloud centers; wherein,

cloud resources are distributed in different

geographical location. In [4], rapid migration

scheme for VM migration was proposed. As

explained above, even though VM migration

techniques have demonstrated load balancing

efficiency, they suffer from expensive cost of

migration and possible task execution latency delays.

Task scheduling for load balancing in distributed

systems—including cloud servers, deal with the

problem of distributing the submitted task load on

available computational units; so that, maximum

utilization of these computational units, and

substantial reduction in task execution time can be

achieved. It must be noted that, task scheduling does

not involve evicting already running tasks, and only

distributes the newly submitted tasks for efficient

computation. Also, overloaded VM problem is

usually not addressed in task scheduling, because

the task distribution scheme hypothesizes that,

overloading will usually not occur.

A novel programming platform for task

scheduling in cloud was presented in [5]. Genetic

algorithm based task scheduling techniques for

cloud was presented in both [6, 7]. Task scheduling

technique for geographically distributed cloud

centers was presented in [8]. Survey on different

load balancing techniques for cloud was presented

in [9]. Similarly, survey on meta-heuristic

techniques for load balancing in cloud was

presented in [10]. In [11], future problems for task

scheduling in cloud were comprehensively

presented. Dynamic Collaboration in cloud involves

collaborative framework through different

participating cloud service providers, and in [12],

task scheduling in this new framework was

presented. In [13] task scheduling technique for IaaS

based cloud centers was presented.

Task scheduling technique through user

requirement modeling for computational grids—

which can also be relevant to cloud—was presented

in [14]. Similarly, PSO based task scheduling

technique for computational grids and cloud was

presented in [15]. Security based task scheduling

technique for cloud using Swarm scheduling

approach was presented in [16]. Multi objective task

scheduling involves achieving multiple goals such

as: minimizing task latency, reducing power

consumption e.t.c., and this problem for cloud was

addressed in [17]. In [18], another multi objective

task scheduling technique for cloud using genetic

algorithm was presented. In [19], Honey Bee

optimization technique for task scheduling in cloud

was presented. In [20], task scheduling in

computational grids—which can also be extended to

cloud—was also achieved through Honey Bee

optimization technique. Task scheduling technique

for cloud using Ant Colony optimization framework

was presented in [21]. In [22], task scheduling for

cloud using probabilistic modeling was presented. In

[23], task scheduling technique for cloud using

specialized bio-inspired algorithm called: Symbiotic

Organism Search, was presented. Multi objective

task scheduling technique for cloud using Ant

Colony optimization framework was presented in

[24]. Hybrid task scheduling algorithm for cloud

through merging of two techniques namely: Cuckoo

search algorithm and Oppositional based learning

was presented in [25]. In [26], evolutionary genetic

algorithm framework was utilized to achieve task

scheduling in cloud. Similarly, fruit fly optimization

framework was utilized in [27] to design task

scheduling technique in cloud.

Even though, task scheduling is effective in load

balancing for cloud, in some scenarios, the

estimated resource consumption for a certain task,

which is used as critical parameter in task

scheduling techniques, can deviate substantially

compared to actual resource utilization—which can

burgeon rapidly. In such scenarios, VMs can easily

become overloaded, and has to be relived from this

computational burden. The VM extra task migration

techniques presented in [1, 28] achieves load

reduction from overloaded VMs through migrating

extra tasks. As outlined above, to achieve even

better load reduction as achieved in [1, 28], some of

the suitable running tasks in the overloaded VMs

need to be identified and migrated—along with

extra tasks.

3. VM task migration technique

Received: May 10, 2018 268

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

Let, VMy indicate the yth VM, cy indicates the

number of computing node in VMy, my indicates the

memory capacity of VMy, tiy indicates the ith task

present inside VMy, ciy is the CPU utilization ratio of

tiy, if tiy is running on multiple CPUs, then, ciy is the

sum of CPU utilization ratio for every CPU on

which tiy is being executed, miy represents the

memory utilization ratio of tiy and piy represents the

power consumption of tiy, which is represented in Eq.

(1)

𝑝𝑖𝑦 = 𝑐𝑖𝑦 × 𝑚𝑖𝑦 (1)

The total power consumed by all the tasks present in

VMy is indicated by the variable py and it is

represented in Eq. (2) Here, ny represents the total

number of tasks that are being executed in VMy.

 𝒑 𝑦 =
∑ 𝑝𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦
 (2)

Two thresholds are defined to detect overloaded

VMs. The first threshold is defined over CPU

utilization ratio, which is indicated by Tc. The

second threshold is defined over power consumption,

which is indicated by Tp. The VMy is decided as

overloaded if the value of the function overloaded

(VMy)=1, otherwise if, overloaded(VMy) = 0, then,

VMy is decided as not-overloaded. This case is

represented in Eq. (3)

𝑂𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑(𝑉𝑀𝑦) =

{

1, 𝑖𝑓 𝑇𝑐 ≤
∑ 𝑐𝑗𝑦
𝑁𝑦
𝑗=1

𝑐𝑦

𝑜𝑟
𝑇𝑝 ≤ 𝑝𝑦

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

3.1 Task migration methodology

To select the suitable running tasks for migration,

it is important to select those tasks which have

completed executing only small portion of their data.

The task completion ratio of tiy is represented in Eq.

(4). Here, task_completion (tiy) indicates the task

completion ratio of tiy, diy is the size of data used by

tiy and d̂iy indicates the size of data already

consumed by tiy.

𝑡𝑎𝑠𝑘_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛(𝑡𝑖𝑦) =
𝑑̂ 𝑖𝑦

 𝑑̂𝑖𝑦
 (4)

The suitable tasks for migration are identified

through their task completion ratio, CPU utilization

and consumed power. The selected task should have

the task completion ratio within the specified

threshold indicated by To. This case is represented in

Eq. (5). Since, stopping already executing tasks and

migrating them into different VMs along with their

data, reduces the task execution efficiency, so, only

a single task which provides the maximum benefit in

load reduction is selected for migration.

task_completion(tiy) ≤ To (5)

The task which has the maximum combined value of

both CPU utilization ratio and consumed power is

selected for migration, and this case is represented

in Eq. (6)

task selected for migration = max (ciy + piy) (6)

tiy

3.2 Scoring function for task migration

Suppose that, tiy has to be migrated from VMy

and VMz is one of the possible VM to which tiy has

to be migrated. The score of the migration task is

represented in Eq. (7). The value of the parameters

exeiz, transfer(tiy, VMz), pz, g(Tcz, tiy) and g(Tpz , tiy)

are represented in Eqs. (8), (9), (10), (11), and (12),

respectively. Here, score(tiy, VMz) indicates the

migration score, exeiz indicates the cost of executing

tiy in VMz, transfer(tiy, VMz) indicates the transfer

cost of transferring tiy from VMy to VMz, bwyz

indicates the bandwidth between VMy and VMz and

p̂z is the power consumed by VMz when task tiy is

migrated to VMz. The functions g(Tc, tiy) and g(Tp,

tiy) ensure that, the migration of tiy from VMy to VMz

does not cause CPU utilization threshold and power

consumption threshold violations.

Consider the situation where the set of tasks [ti1y1,

ti2y2, … tisys] which need to be migrated. One of the

candidate solution is the VM set [VMz1,

VMz2 ,….VMzs], such that, ti1y1 will be migrated to

VMz1 , ti2y2 will be migrated to VMz2 and so on tisys

will be migrated to VMzs . There is no restriction that,

the VMs in the candidate solution set should be

distinct. The migration score for this candidate

solution is represented in Eq. (13). Here, tijyj → VMzj

(1≤ j ≤ s) indicates that the task tijyj has already

been assigned to VMzj and is being executed inside it.

The CPU and memory utilization ratio of tijyj in VMzj

is assumed to be same as observed when tijyj was

executing inside VMzj. The operator ∣ is interpreted

as such that.

Received: May 10, 2018 269

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

𝑠𝑐𝑜𝑟𝑒(𝑡𝑖𝑦, 𝑉𝑀𝑧) = 𝑒𝑥𝑒𝑖𝑧 + 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦 , 𝑉𝑀𝑧) +

 𝑝 𝑧 − (𝑔(𝑇𝑐 , 𝑡𝑖𝑦) + 𝑔(𝑇𝑝, 𝑡𝑖𝑦)) (7)

𝑒𝑥𝑒𝑖𝑧 =
𝑑̂𝑦

𝑐𝑧 ×𝑐𝑖𝑦 + 𝑚𝑧× 𝑚𝑖𝑦
 (8)

𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟(𝑡𝑖𝑦, 𝑧) =
𝑑̂𝑖𝑦

𝑏𝑤𝑦𝑧
 (9)

 𝑝 𝑧 = 𝑝𝑧 +
𝑝𝑖𝑦

𝑐𝑧
 (10)

𝑔(𝑇𝑐 , 𝑡𝑖𝑦) =

{
 𝑇𝑐 −

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 , 𝑖𝑓 𝑇𝑐 −

∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 > 0

−∞, 𝑖𝑓 𝑇𝑐 −
∑ 𝑐𝑗𝑧+𝑐𝑖𝑦
𝑛𝑧
𝑗=1

𝑐𝑧
 ≤ 0

 (11)

 𝑔(𝑇𝑝, 𝑡𝑖𝑦) =

{
 𝑇𝑝 − (𝑝𝑧 +

𝑝𝑖𝑦

𝑐𝑧
) , 𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +

𝑝𝑖𝑦

𝑐𝑧
) > 0

−∞, 𝑖𝑓 𝑇𝑝 − (𝑝𝑧 +
𝑝𝑖𝑦

𝑐𝑧
) ≤ 0

 (12)

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒((𝑡𝑖1𝑦1, 𝑉𝑀𝑧1), (𝑡𝑖2𝑦2, 𝑉𝑀𝑧2),

… . (𝑡𝑖𝑠𝑦𝑠, 𝑉𝑀𝑧𝑠)) = 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖1𝑦1, 𝑉𝑀𝑧1|𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, 𝑡𝑖3𝑦3 → 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) +

𝑠𝑐𝑜𝑟𝑒(𝑡𝑖2𝑦2, 𝑉𝑀𝑧2|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖3𝑦3
→ 𝑉𝑀𝑧3, … . 𝑡𝑖𝑠𝑦𝑠 → 𝑉𝑀𝑧𝑠) +

… . . 𝑠𝑐𝑜𝑟𝑒(𝑡𝑖𝑠𝑦𝑠 , 𝑉𝑀𝑧𝑠|𝑡𝑖1𝑦1 → 𝑉𝑀𝑧1, 𝑡𝑖2𝑦2 →

𝑉𝑀𝑧2, … . 𝑡𝑖(𝑠−1)𝑦(𝑠−1) → 𝑉𝑀𝑧(𝑠−1)) (13)

The most beneficial candidate solution is the one

which satisfies the optimization condition which is

represented in Eq. (14).

𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = min(VMz1,VMz2,…VMzs)

𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛_𝑠𝑐𝑜𝑟𝑒((𝑡𝑖1𝑦1, 𝑉𝑀𝑧1), (𝑡𝑖2𝑦2, 𝑉𝑀𝑧2),

… . (𝑡𝑖𝑠𝑦𝑠 , 𝑉𝑀𝑧𝑠)) (14)

4. PSO technique for VM task migration

PSO is a meta-heuristic technique [28] which

provides an approximate solution to the optimization

problems, and it is inspired by the social behavior of

the birds. The search for optimal solution is carried

out by group of particles; wherein, each particle has

an exclusive zone in candidate solution space, and

union of all particle zones is equal to the candidate

solution space. Each point in candidate solution

space represents a candidate solution vector. The

particles are continuously moving in their

corresponding candidate solution space to identify

optimal solution, and are involved in continuous

communication for exchanging their locally

discovered best solution, which in-turn decides the

corresponding velocity of the particle for navigation.

The particles continue their search until acceptable

solution is obtained.

The PSO utilizes multiple search particles,

which are collectively involved in discovering near

optimal candidate solution for optimization problem.

Here r search particles are assumed. The current

position of the ith particle at iteration t be Xi⃗⃗ ⃗(t). The

position for the next iteration is indicated by Xi⃗⃗ ⃗(t+1),

which is calculated as represented in Eq. (15)

Here, Vi⃗⃗⃗ (t) indicates the velocity of the ith particle

for t + 1 iteration, and it is calculated as represented

in Eq. (16). Here, D1 and D2 indicate the degree of

particle attraction towards individual and group

success respectively, 𝑥 gbest and 𝑥 pbesti indicate the

global best solution obtained by all the particles

until the current iteration respectively, W indicates a

control variable, and r1,r2 ∈ [0, 1] are the random

factors.

𝑋𝑖⃗⃗ ⃗(t+1) = 𝑋𝑖⃗⃗ ⃗(t) + 𝑉𝑖⃗⃗ (𝑡 + 1) (15)

𝑉𝑖⃗⃗ (𝑡 + 1) = 𝑊𝑉𝑖⃗⃗ (𝑡) + 𝐷1𝑟1(𝑥 pbesti -𝑋𝑖⃗⃗ ⃗(t))+D2r2 (𝑥 gbest

- 𝑋𝑖⃗⃗ ⃗(t)) (16)

The proposed PSO based VM task migration

technique for load balancing is outlined in

Algorithm 1. Here, initialize_PSO(P) divides the

candidate solution space among the r search

particles indicated by P=p1, p2,....pr, and assigns

each particle to some arbitrary positions in their

corresponding candidate solution space. Each

particle calculates its candidate solution for the

corresponding current position through

compute_score(𝑿𝒊⃗⃗⃗⃗ (t)), which utilizes Eqs. (15) and

(16). The values for 𝑥 gbest and 𝑥 pbesti are calculated

through local_best(scorei) and global_best(P, 𝑥 pbesti)

respectively. The particles continue to search until

the acceptable solution is found, and which is

calculated through acceptable(𝑥 gbest).

Algorithm 1 PSO Algorithm for VM task

migration

P=p1, p2 ...pr

initialize_PSO (P)

flag=0

t=0

While flag==0 do

t=t+1

For i=1 to r do

score_i= compute_score (𝑿𝒊⃗⃗⃗⃗ (t))

Received: May 10, 2018 270

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

 𝑥 pbesti = local_best(scorei)

 𝑥 gbest = global_best(P, 𝑥 pbesti)

If acceptable(𝑥 gbest) then

flag=1

end if

end for

t=t+1

end while

5. Experimental results and discussions

The proposed PSO technique for VM task

migration is simulated on MATLAB. The

simulation parameter settings are presented in Table

1. Each PSO search particle is assumed to be

executing on an exclusive computing node, so that,

maximum parallelism is exploited from both these

techniques.

To perform relative performance evaluation, the

proposed VM runtime task migration technique is

coupled with VM extra task migration technique[1],

and for the ease of reference, this coupled scheme

will be referred as VM_run. Here, VM_run identifies

the overloaded VMs, and migrates the extra and

suitable runtime tasks from the overloaded VMs.

For the ease of reference, the VM extra task

migration technique [1] will be referred as

VM_extra, and this technique only migrates the

extra tasks of overloaded VMs. Both, VM_run and

VM_extra are subjected to relative performance

evaluation.

Two performance metrics are defined for

performing simulation analysis. The first metric is -

Average CPU Utilization Ratio (ACPUR), which

indicates the average CPU utilization ratio of all

overloaded VMs after task load reduction is

performed by either VM_run or VM_extra. The

metric ACPUR is represented in Eq. (17). Here, OS

represents the set of overloaded VMs. Also,

ACPUR(VM_run) and ACPUR(VM_extra) indicate

the ACPUR score achieved by VM_run and

VM_extra respectively.

 𝐴𝐶𝑃𝑈𝑅 =
∑ 𝑐𝑝𝑢𝑟(𝑉𝑀𝑦)
|𝑂𝑆|
𝑉𝑀∈𝑂𝑆

|𝑂𝑆|
 (17)

where 𝑐𝑝𝑢𝑟(𝑉𝑀𝑦) =
∑ 𝑐𝑗𝑦
𝑛𝑦
𝑗=1

𝑐𝑦

The second performance metric is: Average

Power Utilization Ratio (APUR), which indicates

the average power utilization of all overloaded VMs

after task load reduction is performed by either

VM_run or VM_extra. The metric APUR is

represented in Eq. (18). Also, APUR(VM_run) and

Table 1. Simulation parameter settings

Simulation

Parameter

Values

Number of VMs

considered

Varied between 1000- 5000

Number of computing

nodes/CPUs in each

VM

Varied between 5 to 20

Main memory capacity

for each VM

Varied between 4GB/

8GB/16GB

Number of tasks

executing in each VM

Varied between 10 to 50 tasks

Bandwidth between

any 2 VMs

Varied between 100mbps to

500mbps

CPU utilization ratio

for any task

Varied between 0.2 to 0.8

Memory utilization of

each task

Varied between 0.2 to 0.8

Number of PSO search

particles

Varied between 5 – 25

Number of Computing

nodes allotted for each

PSO particle

1

Threshold Tc 0.7

Threshold Tp 0.6

Size of task data Varied between 1GB to 10GB

Threshold To Varied between 0.05 – 0.25

APUR(VM_extra) indicate the APUR score achieved

by VM_run and VM_extra respectively.

𝐴𝑃𝑈𝑅 =
∑ 𝑃𝑦
|𝑂𝑆|
𝑉𝑀∈𝑂𝑆

|𝑂𝑆|
 (18)

VM_run is also compared against the contemporary

VM migration technique presented in [2] and [3].

For the ease of reference VM migration techniques

presented in [2] and [3] are denoted as VM_M_1 and

VM_M_2 respectively. Since, optimal scheme for

VM migration is NP hard [2], approximation

algorithm is utilized in [2] for VM migration. In [3],

Bin Packing framework is used to model VM

migration problem. Again, optimal Bin Packing is

NP hard [3]. Hence, approximate Bin Packing

technique is utilized for VM migration in [3]. In-

order to perform empirical analysis between

VM_run, VM_M_1 and VM_M_2, the metric AEXE

is utilized, which represents the average execution

time of all the tasks—including extra and running

tasks—from overloaded VMs--after either of

VM_run, VM_M_1 or VM_M_2 is executed. The

metric AEXE is represented in Eq. (19). Here,

(𝑡1, 𝑡2, … . . 𝑡𝐾) represent the set of all extra and

running tasks ∈ 𝑂𝑆 . Here, 𝑒𝑥𝑒(𝑡𝑖) (1 ≤ 𝑖 ≤ 𝐾),

represents the execution time of 𝑡𝑖 after either of

Received: May 10, 2018 271

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

VM_run, VM_M_1 or VM_M_2 is executed, and this

metric is calculated as represented in Eq. (8). Also,

AEXE(VM_run), AEXE(VM_M_1) and

AEXE(VM_M_2) represent the AEXE value for

VM_run, VM_M_1 and VM_M_2 respectively.

𝐴𝐸𝑋𝐸 =
∑ 𝑒𝑥𝑒(𝑡𝑖)
𝐾
𝑖=1

𝐾
 (19)

The first experiment analyzes the performance

of VM_run and VM_extra w.r.t. ACPUR, when the

number of VMs used in simulation is varied. The

result of this experimental analysis is illustrated in

Fig.1 Here, VM_run considerably outperforms

VM_extra, because existing running tasks inside

overloaded VMs have no impact from migration of

only extra tasks by VM_extra; however, VM_run

selects the most resource consuming task running

inside overloaded VM, and subjects the task to

migration. Hence, appreciable reduction in ACPUR

is observed for VM_run. Also, as the number of

overloaded VMs increase, it creates a tendency to

produce more overloaded VMs. Some of these

overloaded VMs might have high resource

consuming tasks, and evicting these tasks creates

more resource release. Hence, ACPUR(VM_run)

improves as the number of VMs increase.

The analysis result of first experiment w.r.t.

APUR is illustrated in Fig. 2 Similar results seen in

Fig. 1 can be observed here, and for the same

reasons outlined for Fig. 1. The execution latency of

both VM_run and VM_extra for first experiment is

illustrated in Fig. 3. Here, VM_run is slightly

expensive due to the extra component of performing

VM runtime task migration.

The second experiment analyzes the

performance of VM_run and VM_extra w.r.t.

ACPUR and APUR, when the parameter To is varied.

The result of second experiment analysis is

presented in Fig. 4 and Fig. 5 respectively. Here,

VM_run outperforms VM_extra for the same reasons

outlined for first experiment. Increase in To values

creates an opportunity to select the suitable tasks for

migration from a more expanded set of qualified

tasks. Hence, some of these qualified tasks for

migration - usually are more resource consuming,

their eviction creates better resource release. Hence,

ACPUR (VM_run) improves as To increases.

However, higher values of To can lead to the

problem of significantly wasting the existing

computed result of the migrated tasks.

The third experiment explores the influence of

the number of particles on the execution latency of

VM_run. The result of final experimental analysis is

Figure.1 No. of VMs vs ACPUR

Figure 2. No. of VMs vs APUR

Figure. 3 No. of VMs vs Execution latency

illustrated in Fig. 6. The increase in number of

particles leads to the reduction in the search space

size for each particle; hence, execution efficiency of

VM_run improves considerably.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

A
C

P
U

R

No. of VMs

ACPUR(VM_extra)

ACPUR(VM_run)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1000150020002500350040005000

A
P

U
R

No. of VMs

APUR(VM_extra)

APUR(VM_run)

0
10
20
30
40
50
60
70
80
90

E
x
ec

u
ti

o
n

 L
a

te
n

cy
(s

)

No. of VMs

VM_extra

VM_run

Received: May 10, 2018 272

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

Figure. 4 To vs ACPUR

Figure. 5 To vs APUR

Figure. 6 No. of Particles vs Execution Latency

The final experiment analyzes the relative

performance of VM_run, VM_M_1 and VM_M_2

through AEXE metric. The result of the final

experimental analysis when number of VMs and To

are varied is represented in Fig. 7 and Fig. 8. Here,

VM_run substantially out performs the other two

VM migration techniques, because only extra tasks

and a single running task from overloaded VM are

Figure. 7 No. of VMs vs AEXE

Figure. 8 𝑇𝑜 vs AEXE

migrated in VM_run; however, all the extra and

running tasks from overloaded VM are migrated in

VM_M_1 and VM_M_2, which causes substantial

task execution delays in migrated Physical Machines

due to resource competition from already running

tasks in those machines.

6. Conclusion

In this work, the benefits of migrating suitable

running tasks along with extra tasks from

overloaded VMs were outlined. The contemporary

VM task migration technique, migrates only the

extra tasks from overloaded VMs. However, the

proposed technique—in-order to achieve superior

load balancing--migrates the most resource

consuming tasks along with extra tasks from these

overloaded VMs. Also, the evicted running task is

also ensured to have completed limited part of its

execution work load, which prevents wastage of

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0. 05 0.1 0.15 0.2 0.25

A
C

P
U

R

To

ACPUR(VM_extra)
ACPUR(VM_run)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0. 05 0.1 0.15 0.2 0.25

A
P
U
R

To

APUR(VM_extra)

APUR(VM_run)

0
10
20
30
40
50
60
70
80
90

5 8 11 14 17 20 25

E
x

ec
u

ti
o

n
 L

a
te

n
cy

(s
)

No. of Particles

VM_run

0

200

400

600

800

1,000

1,200

1,400

1,600

A
E

X
E

 (
S

)

No. of VMs

AEXE(VM_M_1)

AEXE(VM_M_2)

AEXE(VM_run)

0

200

400

600

800

1000

1200

0.05 0.1 0.15 0.2 0.25

A
E

X
E

 (
S

)

To

AEXE(VM_M_1)

AEXE(VM_M_2)

AEXE(VM_run)

Received: May 10, 2018 273

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

substantial computational effort. The proposed

technique—as expected—provides superior load

balancing merits when compared empirically with

contemporary VM task migration and VM migration

techniques.

In future, the merits of applying VM task

migration schemes for Distributed Cloud Center in

which, the cloud center is distributed in different

geographical locations need to be analyzed. Task

migration in this new setting faces multiple

challenges, because migrating tasks to different

locations in the cloud center can result in

performance limitation due to large geographical

distances.

References

[1] F. Ramezani, J. Lu and F. K. Hussain, “Task-

Based System Load Balancing in Cloud

Computing Using Particle Swarm

Optimization”, International Journal of

Parallel Programming, Vol. 42, No. 5, pp. 739-

754, 2014.

[2] Jain, N., Menache, I., Naor, J. and Shepherd, F.

“Topology Aware VM Migration in Bandwidth

Oversubscribed Datacenter Networks”, In: 39th

International Colloquium, pp. 586-597 (2012).

[3] Kumaraswamy S. and Mydhilli K. N., “Virtual

Machine Placement in Distributed Cloud

Centers using Bin Packing Algorithm”,

International Journey of Grid and Utility

Computing, 2018.

[4] Sapuntzakis, C.P., Chandra, R., Pfaff B., Chow,

J., Lam, M.S. and Rosenblum, M. “Optimizing

the Migration of Virtual Computers”, In: ACM

SIGOPS Oper. Syst. Rev. 36(SI), 377390

(2002).

[5] Whitaker, A., Cox, R.S., Shaw and M., Gribble

S.D. “Constructing Services with Interposable

Virtual Hardware”, In: 1st Symposium on

Networked Systems Design and Implementation

(NSDI), pp. 169 182 (2004).

[6] Albert Y., Zomaya and Yee-Hwei T.,

“Observations on Using Genetic Algorithms for

Dynamic Load Balancing”, IEEE Transactions

on parallel Distributed systems.12 (9), 899-

911(2001).

[7] Zhao, C., Zhang, S., Liu, Q., Xie, J. and Hu, J,

“Independent Tasks Scheduling based on

Genetic Algorithm in Cloud Computing”, In:

5th International Conference on Wireless

Communications, Networking and Mobile

Computing, pp. 1-4(2009).

[8] Juhnke, E., Dornemann, T.Bock and D.

Freisleben B., “Multi Objective Scheduling of

BPEL Workflows in Geographically

Distributed Clouds”, In: 4th IEEE International

Conference on Cloud Computing,pp.412-

419(2011)

[9] Geetha M. and K.G. Mohan, “A Survey on

Load Balancing Techniques for Cloud

Computing”, IOSR Journal of Computer

Engineering (IOSR-JCE) e-ISSN: 2278-

0661,p-ISSN: 2278-8727,Volume 18, Issue 2,

Ver. I (Mar-Apr. 2016), PP 55-61, May 2017,

pp 12-23.

[10] S. Poonam, D. Maitreyee and A. Naveen, “A

Review of Task Scheduling Based on

Metaheuristics Approach in Cloud Computing”,

Journal Knowledge and Information Systems,

July 2017, pp 1-51.

[11] M. A. Sadeghi and N. N. Jafari, “Load

Balancing Mechanisms and Techniques in the

Cloud Environments”, Journal of Networks and

Computer Applications, August 2016, volume

71, pp 86-98.

[12] Song B., Hassan M.M. and Huh, E, “A Novel

Heuristic-based Task Selection and Allocation

Framework in Dynamic Collaborative Cloud

Service Platform” In: 2nd IEEE International

Conference on Cloud Computing Technology

and Science (CloudCom), pp.360-367 (2010).

[13] Li, J., Qiu, M., Ming, Z.,Quan, G., Qin, X. and

Gu, Z, “Online Optimization for Scheduling

Preemptable Tasks on IaaS Cloud Systems”,

Journal of parallel and Distributed Computing,

72(5), 666-677(2012).

[14] Kolodziej, J. and Xhafa, F. “Modern

Approaches to Modeling User Requirements on

Resource and Task Allocation in Hierarchical

Computational Grids”, International Journal of

Applied Mathematics and Computer Science.

21(2), 243-257(2011).

[15] Lei, Z., Yuehui, C., Runyuan, S., Shan, J. and

Bo. Y, “A Task Scheduling Algorithm based on

PSO for Grid Computing”, Int. J.Comput. Intell.

Res. 4(1), 37-43 (2008).

[16] Liu, H., Abrahan, A., Snasel, V. and McLoone,

S, “Swarm Scheduling Approaches for

Workflow Applications with Security

Constraints in Distributed Data-intensive

Computing Environments”, Journal

Information Sciences. 192, 228-243(2012).

[17] F. Ramezani, J. Lu, and F. Hussain, “Task

Based System Load Balancing Approach in

Cloud Environments”, Knowledge Engineering

and Management, pp. 31-42, 2014.

[18] F. Ramezani, L. Jie and T. Javid and H.

Farookh Khadeer, “Evolutionary Algorithm-

based Multi-objective Task Scheduling

Received: May 10, 2018 274

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.25

Optimization Model in Cloud Environments”,

Journal World Wide Web, November 2015,

volume 2015, pp 1737-1757.

[19] D. B. LD, and P. V. Krishna, “Honey Bee

Behavior Inspired Load Balancing of Tasks in

Cloud Computing Environments”, Applied Soft

Computing Journal, Vol. 13, No. 5, pp. 2292-

2303, 2013.

[20] Taheri, J., Choon Lee, Y., Zomaya A.Y. and

Siegel H.J., “A Bee Colony based Optimization

Approach for Simultaneous Job Scheduling and

Data Replication in Grid Environments”,

Comput. Oper. Res. 40(6), 1564-1578(2013).

[21] Li, J., Peng, J., Cao, X., Li and H.-Y “A Task

Scheduling Algorithm based on Improved Ant

Colony Optimization in Cloud Computing

Environment”, Energy procedia, 13, 6833-6840

(2011).

[22] R. Shiva, N. A. Habibizad, R. A. Masoud and

H. Mehdi, “Probabilistic Modeling to Achieve

Load Balancing in Expert Clouds”, Journal Ad

Hoc Networks, May 2017, pp 12-23.

[23] A.M.A. Ngadi, S. Muhammad and Abdulhamid,

“Symbiotic Organism Search Optimization

Based Task Scheduling in Cloud Computing

Environment”, Future Generation Computing

Systems, March 2016, volume 56, pp 640-650.

[24] G. Reddy N. Reddy and S. Phanikumar , “Multi

Objective Task Scheduling Using Modified Ant

Colony Optimization in Cloud Computing”,

International Journal of Intelligent Engineering

and Systems, Vol.11, No.3, 2018 DOI:

10.22266/ijies2018.0630.26.

[25] P. Krishnadoss and P. Jacob, “OCSA: Task

Scheduling Algorithm in Cloud Computing

Environment”, International Journal of

Intelligent Engineering and Systems, Vol.11,

No.3, 2018 DOI: 10.22266/ijies2018.0630.29.

[26] A.B.A. Muthu and S. Enoch, “Optimized

Scheduling and Resource Allocation Using

Evolutionary Algorithms in Cloud

Environment”, International Journal of

Intelligent Engineering and Systems, Vol.10,

No.5, 2017DOI: 10.22266/ijies2017.1031.14.

[27] M. LawanyaShri, S. Subha and B. Balusamy,

“Energy-Aware Fruit-fly Optimisation

Algorithm for Load Balancing in Cloud

Computing Environments”, International

Journal of Intelligent Engineering and Systems,

Vol.10, No.1, 2017 DOI:

10.22266/ijies2017.0228.09.

[28] Geetha M. and Mohan G. K., “Metaheuristic

Based Virtual Machine Task Migration

Technique for Load Balancing in Cloud”, In:

Second International Conference on Integrated

Intelligent Computing, Communication and

Security(ICIIC-2018), January 2018, SJBIT,

Bangalore.

