
Received: April 24, 2018 226

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

Performance Improvement of PrePost Algorithm Based on Hadoop for Big Data

Yassir Rochd 1* Imad Hafidi 1

1 Laboratory of Process Engineering and Optimization of Industrial Systems, National School of Applied Science,

Hassan 1st University, Khouribga, Morocco

* Corresponding author’s Email: y.rochd@gmail.com

Abstract: With the blasting growth in data, uptake data mining techniques to mine association rules, and then find

useful information hidden in large data has become ever more important. Several existing data mining techniques

often through mining frequent itemsets draw association rules and get to relevant knowledge, but with the rapid

arrival of the era of big data, traditional data mining algorithms have been impossible to meet large data's analysis

needs. Lately, the PrePost algorithm has been suggested, a new algorithm for mining frequent itemsets based on the

idea of N-lists. PrePost in most cases outperforms other present state-of-the-art algorithms. In mind of this, we

present the HPrePostPlus algorithm. A better version of PrePost based on Hadoop, that utilization a HashMap to

traverse effectively the PPC tree, and improve the process of creating the N-lists related with 1-itemsets. We

combine also the characteristic of Hadoop with a view to process large data. Experience has demonstrated that

HPrePostPlus algorithm is greater than the state-of-the-art methods in terms of performance and scalability.

Keywords: Frequent itemset mining, PrePost, Hadoop, Big data.

1. Introduction

The past ten years has seen the outstanding

growth of Internet contact technology particularly

mobile Internet and detector system to perceive and

obtain details. Organizations from industry,

administration, and academia possess and store large

volumes of data with enormous importance. The

ability value of big data [1] cannot be uncovered by

simple gathering or statistical analysis, currently

referring to big data. Advanced big data analytics

and applications require special technologies to

successfully cope with massive amounts of data.

Data mining techniques [2] are now outline care

from the practitioners of all data related industries

for this purpose. The aim of data mining is to look

into data by searching and interpreting unforeseen

trends or patterns and then verify the results with the

detected patterns applied to new subsets. Since data

collected from various data sources is often a series

of solitary data, correlation analysis has hence

become a major basis for data mining and big data

science [3]. Association rules mining [4] was

suggested to find out certain interesting correlation

relationships among the data itemsets. Thus,

frequent itemset mining [5] is an essential stage in

the process of association rule mining.

Most of the suggested algorithms for frequent

itemsets can be grouped into Apriori method [6] and

FP-growth method [7]. The Apriori mode scans the

database to find frequent itemsets by generating a

large set of a candidate. Whereas, FP-growth mode

does the scan twice to mine frequent itemsets

without generating a candidate. The FP-growth uses

FP-tree data structure to store database and utilize a

divide-and-conquer strategy to find frequent

itemsets, which is much more efficient than Apriori

mode.

Lately, the algorithm for mining frequent itemset,

PrePost [8, 9], has been suggested. It’s based on the

notion of PPC tree (Pre-order Post-order Code tree),

which is an FP-tree type structure. PrePost operates

as follows. A tree building algorithm is accustomed

to construct a PPC-tree. Then, the N-lists are

generated. Each component of this N-lists is

associated with a 1-itemset in the tree. An N-list of

Received: April 24, 2018 227

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

k-itemset is a compact form of transaction ID list

(TID list). A divide and conquer strategy is then

used for mining frequent itemsets.

 These algorithms working on single computer

have shown good achievement in handling with

small amount of data. Nevertheless, traditional

procedures has faced considerable defiance when

computing power and remembrance space are

restricted to big data era. Some applications and

attempts have been made to mine frequent itemset

from massive data by using parallel computing

technologies.

Parallel programming frameworks are divided

into two categories: memory sharing and distributed

architectures (share nothing). Although it’s easier to

make algorithms implemented, the scalability of

parallelism on memory sharing framework is not

satisfactory enough [10]. Message passing interface

(MPI) [11], a common framework for scientific

distributed computing, takes the advantage of

memory locality. Thanks to certain MPI advantages

in iterative computation, some researchers apply it

to mine frequent itemset [12]. And yet, its

drawbacks are its high communication load due to

data exchanges between different computer nodes

and the lacking of fault tolerance.

MapReduce [13], a framework embedded in

Apache Hadoop to process large amounts of

distributed data in parallel, was designed to support

distributed computing in a cloud computing

paradigm, turning out to be an efficient platform for

parallel data mining of large scale datasets.

A number of distributed frequent itemset mining

methods [14, 15-16-17-18-19] which are usually

simple extensions of a sequential method using

distributed data processing frameworks.has been

proposed,

Although the existing distributed methods can

partially solve the limit on scalability, they still face

some problems. First, they do not have good

scalability due to workload skewness. The existing

distributed methods divide the search space of

patterns (i.e., enumeration tree) to be explored into

multiple pieces (a subtree) and assign each piece to

each machine. Each subtree of the enumeration tree

tends to have different size, i.e., different amount of

workload. In particular, the distributed methods

based on Eclat and FP-Growth have this problem

noticeably. As a result, the existing methods tend

not to improve performance proportionally to the

number of machines used. Second, they do not have

good scalability due to high network communication

overhead. The existing methods usually perform

frequent itemset mining by redistributing

intermediate data via network. This approach could

largely degrade the performance and scalability as

the amount of data transferred among machines

increases.

In this paper, we propose an improved version of

PrePost, based on Hadoop itemset mining method

for big data called HPrePostPlus.

HPrePostPlus solves the above problems, and so,

can find frequent patterns on much larger datasets

compared with the existing distributed methods.

Unlike FP-tree-based approaches, HPrePostPlus

algorithm does not build additional trees on each

iteration; it mines frequent itemset directly using the

N-list concept. The efficiency of HPrePostPlus is

achieved because: (i) N-lists are much more

compact than previously proposed vertical structures,

(ii) the support of a candidate frequent itemset can

be determined through N-list intersection. This

process is more efficient than finding the

intersection of TID lists because it avoids

unnecessary comparisons.

For solving the problem of network

communication overhead, HPrePostPlus broadcasts

only frequent itemset Fk via network, which size is

much smaller than that of intermediate data. As a

result, HPrePostPlus shows much higher

performance than the state-of-the-art MapReduce

based methods.

The main contributions of this paper are the

following:

(i) We propose HPrePostPlus, a scalable Hadoop

based method for frequent itemset mining that has

no intermediate data, and small network

communication.

(ii) We use HashMap to traverse efficiently the PPC

tree and to speed up the process of creating the N-

lists associated with frequent 1-itemsets.

Experiments show that HPrePostPlus

outperforms the state-of-the-art MapReduce-based

methods in terms of speed and scalability.

The rest of the paper is organized as follows.

Section 2 presents the basic concepts. Section 3

outlines survey of related works. Section 4 gives

proposed approach. Then, section 5 gives results and

discussion and talk at last in section 6 shows the

conclusion.

2. Preliminaries

2.1 Frequent itemset mining

Suppose that I = {I1, I2, . . . , Im} is an itemset

composed of m items. A database D consists of a

series of transactions. Each transaction is a subset of

I and has a unique label denoted by TID. A set of

items is referred to as an itemset. An itemset that

Received: April 24, 2018 228

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

contains k items is a k-itemset. The occurrence

frequency of an itemset is the number of

transactions that contain the itemset. Given an

itemset X, the support number of X is the number of

transactions in D that contain X. If the support

number of X is greater than or equal to the specified

minimum support threshold, then the itemset X is

labelled as a frequent itemset. The purpose of

frequent itemset mining is to find all frequent

itemset in a given database.

2.2 Hadoop and mapreduce

Encouraged by benefits of parallel execution in

the distributed environment, the Apache Foundation

came up with open source platform, Hadoop, for

faster and easier analysis and storage of different

varieties of data [21]. HDFS and MapReduce

programming model are two integral parts of it.

Google File System gave birth to HDFS (Hadoop

Distributed File system), which mainly deal with

storage issues. Contrary to the RDBMs, it follows

WORM (write-once read-many) model in order to

split large chunk of data to smaller data blocks then

join them to the free node available [22]. Stored

Input data blocks are kept in more than one node in

order to achieve high performance and fault

tolerance.

MapReduce which is inspired by Google's

MapReduce [13] is known to be a linearly adaptable

programming model. It contains two main functions

a map () function and a reduce () one, both of

which work in a synchronous manner in order to

operate on one set of key value pairs, and that, to

produce the other set of key value pairs. These

functions are equally valid for any size of data

irrespective of the degree of the cluster. MapReduce

uses the feature known as data locality to collocate

the data with the compute node, so that data access

is fast. It follows shared nothing architecture which

eliminates the burden from the programmer of

thinking about failure. The architecture itself detects

failed map or reduce task and assigns it to a healthy

node.

2.3 PrePost algorithm

PrePost algorithm [8,9] presents a data structure

named N-list, which is a modification of the vertical

database, storing the association rule mining all the

information needed. PrePost also need to scan the

database twice to construct a PPC-Tree, and make

use of PPC-Tree to generate the N-list of frequent 1-

itemsets (FIM1). In the mining process, the database

does not require rescanning, only need to intersect

the merger N-list, and the complexity of the

algorithm is O(m+n), m and n are the length of two

N-list. Each element of N-list composed by PrePost

Code, which is called after the sequence encoding

the preamble, the composition in the form of «pre-

order, post-order: count», PrePost Code is based on

the PPC-Tree respectively from the previous order

traversal and post order traversal. Fig. 1 shows the

PPC-Tree, which is similar to FP-Tree, and the

construction process is the same with the FP-Tree

but not the same as the composition of the node,

PPC Tree node consists of five components:

1. Item-name: represent node name

2. Count: represent node count

3. Children-list: represent a children collection of

the node

4. Pre-order: represent order of node when pre-

order

5. Post-order: represent order of node when post-

order.

Each k-frequent itemsets Fk corresponds to a N-

list, which in ascending order according to the pre-

order, at the same time must also be ascending

according to post-order .PPC-Tree's main purpose is

to construct N-list liking shown by Fig. 2, then find

all the frequent itemsets based on N-list. We can

then delete the PPC-Tree to reduce memory

overhead. The main steps of the PrePost algorithm:

1. Scan transaction database named D, output the

FIM 1, and in descending order according to

the number of its support to generate F1.

2. Scan D again, select the frequent items in each

record and arrange them in the order of F1,

assuming list of items in each record is [p|P], p

is the first item in the list, P is the rest of the

items. Call the function insert tree ([p|P], Ti).

3. Tree formed on the second step, respectively

pre-order traversal and post-order traversal, set

pre-order and post-order of each node and

establishes N-list of I-frequent itemsets.

Figure. 1 PPC-Tree corresponding with Table 1

Received: April 24, 2018 229

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

Table 1. Transaction database

Figure. 2 N-list of frequent 1-itemsets

4. Mining frequent itemsets based on N-list using

the method liking Apriori Algorithm.

5. Table 1 shows a transaction database,

corresponding to Fig. 1 for PPC-Tree, assuming

the minimum support is 3.

3. Related work

The precedent proposed algorithms for mining

frequent itemsets classed into three groups, generate

candidate, frequent pattern growth and Hybrid

approach.

Recently, three types of structure have been

suggested for representing itemsets: Node-list [23],

N-list [8], and Node set [24, 25], to facilitate the

mining of frequent itemsets. They are founded on a

prefix coding tree, which save the sufficient

information about frequent itemsets. Node-list and

N-list is founded on a PPC-tree, which is a prefix

tree with every node encoded by its pre-order

number and post-order number. The N-list (or Node-

list) of an itemsets is a set of nodes in the PPC-tree.

The solely difference between N-list and Node-list

lies in that the Node-list of an itemset consists of

descendant nodes while its N-list consists of

ancestor nodes.

 N-lists (or Node-lists) have two important

specifications: First, the support of an itemset is the

sum of counts registering in the nodes of its N-list

(or Node-list). Second, the N-list (or Node-list) of a

(k + 1)-itemset can be formed by joining the N-lists

(or Node-lists) of its subset with length of k with

linear computation complexity. Compared to the

vertical structures for representing itemsets, such as

diffset, the size of N-list or Node-list is much

smaller.

Compared with FP-tree [7], they are more simple

and flexible. Therefore, the algorithms based on N-

list or Node-list demonstrate high efficient and

outperform the existing classic algorithms, such as

Eclat and FP-growth. Compared with Node-lists, N-

lists have two advantages. The first one is that the

length of the N-list of an item-set is much smaller

than the length of its Node-list. The other one is that

N-lists have property called single path property,

which can be utilized to directly mining frequent

itemsets without generating candidate itemsets in

few cases. These make that PrePost [8], the mining

algorithm based on N-lists, is high effective than

PPV [19], the mining algorithm based on Node-lists.

Recently, PrePost has been improved by utilizing

various very effective pruning techniques [9].

Although N-list and Node-list are efficient structures

for mining frequent itemsets, they need to include

pre-order and post-order number, which is memory-

consuming.

More of the variants of PrePost algorithm were

developed to employ for small size of data in a

single machine system. With the apparition of big

data for last some years, single-machine system

shows to be incapable to treat big data. A great

number of researches has been realising for frequent

pattern mining in multi-machine environment, i.e.,

distributed computing environment [10]. Hadoop is

one of the important distributed computing

frameworks, which is adopted by many researchers

for frequent pattern mining in big data.

There have been proposed a lot of MapReduce-

based methods for finding frequent itemsets on

large-scale data [14, 15, 16, 17, 18, 19, 20]. Table 2

summarizes the characteristics of the major existing

MapReduce-based methods [26], SPC, BigFim and

PFP.

Table 2. Resume of the characteristics of the main

methods based on MapReduce

Methods
Intermediate

data size

Speed of

support

conting

Scalability

SPC Small Slow Good

BigFIM Large Fast Bad

PFP Large fast Bad

ID Items Ordered frequent items

1 a, c, g, f c ,f ,a

2 e, a, c, b b ,c ,e ,a

3 e, c, b, i b ,c ,e

4 b ,f, h b ,f

5 b, f, e, c, d b ,c ,e ,f

Received: April 24, 2018 230

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

There have been suggested a lot of MapReduce

based methods for finding frequent itemsets on

large-scale data [14, 15, 16, 17, 18, 19, 20]. Table 2

resumes the properties of the major existing

MapReduce-based methods [26], SPC, BigFim and

PFP.

There are various Apriori-based methods on the

MapReduce framework. Lin et al. [16] proposed

three distributed Apriori methods on MapReduce:

SPC, FPC, and DPC. SPC iteratively performs the

candidate generation and testing steps as a

MapReduce round. At the k-th iteration, every

mapper reads a partitioned database, generates

candidate itemsets, and calculates support counts of

them for the partitioned database. Then, the reduce

step aggregates the support counts of the same

candidate itemset and tests them against minsup.

The result of the reduce step is broadcasted for

being utilized in the next iteration. FPC reduces the

number of MapReduce rounds by utilizing the map

function that processes the candidate k-itemsets,

(k+1)-itemsets, (k+2)-itemsets together in a single

MapReduce round. DPC dynamically gathers

candidate itemsets of consecutive multiple lengths to

be processed by the mappers in a single MapReduce

round according to the number of candidate itemsets.

By comparing these Apriori-based methods,

HPrePostPlus performs support counting much

faster from the intersection of N-lists, avoiding

needless comparisons.

Moens et al. [17] proposed BigFIM, which is a

hybrid approach between Apriori and Eclat. It first

finds frequent itemsets of short lengths using the

distributed algorithm of the Apriori approach and

generates conditional databases, i.e., equivalence

classes whose prefixes are the itemsets previously

found. After that, it performs the sequential Eclat

algorithm on each conditional database

independently in each machine. Compared with SPC,

its support counting is fast by using an efficient

sequential algorithm, Eclat. However, since the sizes

of conditional databases are quite different with

each other, i.e., there is workload skewness, mining

task tends to fail due to lack of memory in a certain

machine, or takes too long time due to the machine

having the largest workload. In addition, it generates

a large amount of intermediate data and incurs large

network communication overhead during generating

conditional databases. Therefore, BigFIM tends to

show bad scalability as the number of machines

increases.

PFP [20] and its variations [27] are the

distributed methods based on the FP-Growth

approach. They first project an input database and

build independent FP-Trees, which are kind of

conditional databases, using the projected databases.

Then, they perform frequent itemset mining on each

FP-Tree independently in each machine. Like

BigFIM, PFP and its variations can find frequent

itemsets from FP-Trees by using an efficient

sequential algorithm, FP-Growth.

However, similarly with BigFIM, PFP and its

variations have several drawbacks such as workload

skewness, large intermediate data size, and large

network communication overhead. Therefore, they

tend to fail due to lack of memory, and show bad

scalability. Comparing to BigFIM and PFP,

HPrePostPlus shows much better scalability as the

number of machines increases, since it does not

intermediate data, and small network overhead.

Liao et al. [18] presented a MRPrePost algorithm

a parallel algorithm adapted for mining big data

based on Hadoop platform under Mapreduce, the

algorithm uses N-list data structure, which enhances

PrePost by way of adding a prefix pattern. An

enhanced PrePost algorithm with hadoop platform

suggested by Thakare et al.[26] based on N-list data

structure and improved by implementing compact

PPC tree.

Comparing to the precedent versions of PrePost

based on hadoop [18, 19], general tree method is

utilized to traverse the tree PPC tree. The general

tree method utilized linked list which is an

implementation of the List interface. It provides

sequential access and effective for inserting and

deleting items in the list. But, it became less

efficient while accessing items in the list. In

HPrePostPlus algorithm, general tree method is

implemented with HashMap which is an

implementation of the Map interface. It provides an

efficient and fast for locating value based on the key.

It does not save the item in the order and it provides

an easy way to access and delete items on the basis

of key value pairs. The HPrePostPlus algorithm uses

also a HashMap to improve the process of creating

the N-lists associated with 1-itemsets and combines

the features of Hadoop in order to process large data.

4. HPrePostPlus algorithm

4.1 HPrePostPlus design

The HPrePostPlus algorithm is a data mining

algorithm for frequent itemsets which uses N-list

data structure to represent the itemsets. All the

required information of the itemsets is to be saved

by N-list. Efficacy of the HPrePostPlus algorithm is

achieved by using the method of generating frequent

itemsets without generation of candidate itemsets.

The HPrePostPlus algorithm uses also a HashMap to

Received: April 24, 2018 231

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

improve the process of creating the N-lists

associated with 1-itemsets from the PPC tree and

combines the features of Hadoop in order to process

large data.

The HPrePostPlus algorithm is implemented

with Hadoop to enhance its performance. We store

the big transactional data in Hadoop distributed file

system (HDFS) of Hadoop framework, and multiple

partitions of data are distributed across cluster nodes.

The complete algorithm is divided into three phases,

which are described as follows:

Phase 1: The data file is given as input to the

Hadoop. It divides whole input file into fixed size

blocks called shard, and map it to the different

DataNode in Hadoop cluster. DataNode counts the

number of items in each block. Then, apply support

count and arrange all items in the descending order.

Then, reducer combines data from all DataNode and

generate list called F1 list. The F1 list is mapped to

different DataNode with the distributed cache. The

main input file is rearranged according to F1 list.

Here, uses the concept of distributed cache to

compare two files with Map. Then, generate the list

of frequent 1-itemset by descending called FL1 list.

The Pseudo-code for the complete process of phase

1 is presented in Fig. 3.

Algorithm of parallel statistical 1-frequent itemsets and

sort them

Input: D = Transactional Dataset, minsup= Minimum

Support Threshold, I = item

Ouput: FL1= the set of frequent l -itemsets by descending

order

1. Procedure Mapper(key,value=T)

2. For each item I in T do

3. Output (key=I, value=1)

4. End

5. End Procedure

6. Procedure Reduce (key=I,value=S(I))

7. Sum=0

8. For each 1 in S(I) do

9. Sum=Sum + 1

10. End

11. If (sum>=minsup) Output(key=I,value=Sum)

12. Then Call function Sort(Fim1)

13. End if

14. Output (FL1)

15. End Procedure

Figure. 3 Pseudo code of parallel statistical 1-frequent

itemsets and sort them

Phase2: All the non-frequent items are removed

from the original input data, which reduces the data

size. Only the FL1 list is passed as input to reduce

network communication overhead, and generate a

compressed tree called PPC tree similar like FP tree.

Post-order traversal effectively the tree to determine

post-order and preorder the tree to determine

preorder, and then use the HashMap created to

speed up the process of creating the N-lists

associated with 1-frequent items. The Pseudo-code

is shown in Figs. 4 and 5.

Algorithm of constructing PPC-Tree and corresponding

HashMap

lnput: shard and FL1

1. Output: PPC –Tree, H1 the HashMap of FL1

2. Create H1

3. Procedure Mapper(key, value=T)

4. for each Transaction T in D do

5. select the frequent item in T and sort out them

according to the order of FL1

Let the sorted frequent-item list in T be a path [p|P] as the

value to output <key, [p|P]>

where p is the first element and P is the remaining list.

6. End for

7. Procedure Reduce (key, [p|P])

8. Create root of a PPC –tree, and label it as “null”

9. For each [p|P]

10. Call insert_tree([p|P],T).

11. End for

12. Scan PPC-tree to generate the post-order of each

node

13. Return H1

14. Function insert_tree([p|P],T)

15. if T has a child N such that N.item-name = p.item-

name

16. Then increase N’s count by 1;

17. Else create a new node N, with its count initialized to

1, and add it to T’s children-list;

18. If P is nonempty then call insert tree(P,N)

recursively.

19. End if

20. End if

Figure. 4 Algorithm of constructing PPC Tree

Algorithm of generating N-List of 1-frequent itemsets

from the HashMap

Input: PPC-tree and FL1 the set of frequent 1-itemsets,

 H1 the HashMap of FL1

Output: NL1, the set of the N-lists of frequent 1-itemsets.

1. Procedure N-lists construction (R, H1)

2. Let C=(R.pre-order,R.post-order,R.count)

3. Add C to H1 [R,name] count by C.count

4. For each child in R.children do

5. N-lists construction(child)

6. End for

Figure. 5 Pseudo code of generating N-List of 1-frequent

itemsets

Received: April 24, 2018 232

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

Phase3: The N-lists of 1-frequents itemsets NL1 are

distributed over cluster nodes as a group of lists for

loading balance on the cluster. For example from

PPC-tree of Fig. 2:

NL1G1 = {b → {< (4,8): 4 >}, f → {< (2,1): 1 >, <

(8,4): 1 >, < (9,7): 1 >}},

NL1G2 = {c → {< (1,2): 1 >, < (5,6): 3 >}, a → {<

(3,0): 1 >, < (7,3): 1 >}},

NL1G3 = {e → {< (6,5): 3 >}.

We store thus the N-list of 1-frequent itemsets in

a distributed cache, which is shared among all the

nodes. Each node independently depth-first

traversals every frequent item in the group assigned,

until all frequent item sets with the current prefixes

sub-tree are located far. For example, for b in group

1, the current prefix is b, when c and e are added to

the prefix sub-tree to generate 2-frequent itemsets

{bc,be }(bf and ba are not frequent itemsets). To bc,

be prefixed to continue the operation, eventually get

all the frequent item sets on b.{b,bc,be,bce}.

In the prefix subtree merge process, normally

when b and c are combined, the original algorithm

generates PPCode <(b.preorder, b.postorder):

c.count> when the condition is b.preorder <c.

preorder && b.postorder> c.postorder. But, this

paper will generate PPCode as <c.preorder,

c.postorder): c.count> in the same condition. As a

result of the depth-first and prefix subtree policy, we

must promise the new added element and the current

prefix subtree on the same path, necessary and

sufficient condition is the new element added and

the last element of the current prefix subtree are on

the same path.This's the reason why we generate

PPCode as <(b.preorder, b.postorder):

c.count>.Finally, reduce combines output. The

Pseudo-code of phase 3 is presented in Fig. 6.

Algorithm of mining frequent itemsets

Input: NL1G [i]=group i of NL1 and shared the NL1 to be

saved in distributed cache

Output: FLk =frequent k-itemsets F

1. For each mapper do

2. For each NL_l of NL1G [i] do

3. Call mining_fim_k(NL_l, FLk,NL1, minsup)

4. end for

5. end for

6. Function mining_fim_k(NL_k, NL1,minsup)

7. For i = 0 to NL1 do

8. If (NL_k.count >= |DBI|* minsup)

9. F=F U Lk

10. If (NL_kcount >= NL1[i].count)

11. Assume Lk= x1x2….xk , L[i].item = xk+1 , supp(xk) >

supp(xk+1)

12. FLk+1 = FLk+FL1[i] // FLk+1 = x1x2….xkxk+1

13. FLk= FLk+1

14. Compare N-list ofNL_k with N-list of NL1[i]

15. If (NL_k.preorder < NL1 [i].postorder && NL_k .

postorder > NL1[i].preorder|)

16. NL_k+l.N-list.add (NL1[i].prepost,

NL1[i].postorder.count):NL1[i].count)

17. End if

18. End If.

19. End if

20. End for

Figure. 6 Pseudo code of mining frequent itemsets

Table.3 The properties of datasets used in experiment

5. Experiments

In this section, the algorithm HPrePostPlus was

compared with its original version PrePost [8], three

state-of-the art algorithms negFin [25], MRPrePost

[18] and the well-known PFP [20]. We evaluated

the speed performance by analyzing the running

time and scalability.
The experiments were conducted on a Hadoop

cluster of 3 nodes where each node contains Intel®

Core ™ i5- 3230M CPU@2.60GHz processing

units and 12.00GB RAM . HDFS was used for

storage of input dataset and output frequent itemsets.

The datasets T10I4D100K and T40l10D100K are

used for experiments. These two real datasets were

presented at the first IEEE ICDM workshop on

Frequent Itemset Mining (FIMI’ 03) [28]. Table 3

shows the detail of the two datasets.

The running time with different support degree

for dataset T10l4D100K and T40l10D100K is

shown in Figs. 7 and 8 separately. The x-axis

denotes the support degree and y-axis represents the

running time. The support degree grows from 0.1%

to 0.5%.

The experimental results with respect to the

runtime experiments are presented in Figs. 7 and 8.

Figure 7 reflects that the performance of the parallel

algorithms HPrePostPlus, MRPrePost and PFP, is

not as good as negFIN and PrePost on small dataset.

The reason is each node needs to send message to

others in clusters, but delay of network bandwidth is

unpredictable, so I/O operation occupies main

runtime, thus affecting the performance of the

algorithm. Contrarily, negFIN and PrePost has an

advantage of data localization. But when the dataset

is large, the sequential methods negFIN and PrePost

at a lower support threshold cannot be performed

Dataset Size Transactions Items
Average

length

T10I4D100K
3.8

MB
100.000 870 10

T40l10D100K
14

MB
100.000 1000 40

Received: April 24, 2018 233

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

Figure. 7 The running time of T10I4D100K

Figure. 8 The running time of T40l10D100K

Figure.9 The running time with different computer nodes

due to memory overflow, On the other hand, the

distributed algorithm, can still frequent itemsets

mining, which is the purpose of PrePost algorithm

parallelization, the main purpose of parallelization is

to handle large dataset, which cannot be processed

on standalone.

The results in Fig. 8 reflect this view. In addition,

we can also know from Fig. 8, HPrePostPlus,

MRPrePost and PFP are significantly superior to

negFIN and PrePost, and achieved a good

performance. At this time, communication time

between the nodes in a distributed cluster is not a

major factor, but data processing time.

Parallelization is to use multiple processors

independently to process small scale data, so the

algorithm superior performance compared to a

stand-alone environment. The results also reflect,

whether on a large or small datasets, runtime of

HPrePostPlus is shorter than MRPrePost and PFP,

because of sharing cache on Hadoop when

HPrePostPlus conducts a depth-first strategy, which

reduces the communication. However, using a

HasMap to speed up the process of creating the N-

lists associated with frequent items from PPC tree is

very effective.

In Fig. 9, x-axis represents the number of

computer nodes of Hadoop cluster and y-axis

represents the running time of HPrePostPlus

algorithm. Fig. 10 illustrates the running time with

different numbers of computer nodes. With more

computer nodes, HPrePostPlus needs less execution

time, and the curve of HPrePostPlus has a nearly

linear decline. HPrePostPlus shows a characteristic

of near-linear scalability.

6. Conclusion

This paper has suggested the HPrePostPlus

algorithm as an effective algorithm for mining

frequent itemsets using the N-list. First, we

proposed several ameliorations on the previously

published PrePost algorithm: (i) use of a HasMap to

improve the process of creating the N-lists

associated with the frequent 1-itemsets from PPC

tree and (ii) implementate a scalable Hadoop-based

method for frequent itemset mining that has no

intermediate data, and small network

communication. HPrePostPlus does not improve

over the negFIN and PrePost with respect to small

datasets but the time gap is not significant. With

respect to large datasets, HPrePostPlus is faster.

Besides, the runtime of HPrePostPlus is always

faster than MRPrePost and PFP. Also, the

experimental results indicated that the proposed

algorithm shows better efficiency and scalability.

For future work we will focus on applying our

approach for mining frequent closed itemsets and

maximal itemsets.

References

[1] R. Sandhu and S.K. Sood, “Scheduling of big

data applications on distributed cloud based

on QoS parameters”, Cluster Computing, Vol.

18, No. 2, pp. 817–828, 2015 .

Received: April 24, 2018 234

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

[2] L. Han and H.Y. Ong, “Parallel data intensive

applications using MapReduce: a data mining

case study in biomedical sciences”, Cluster

Computing, Vol. 18, No. 1, pp. 403–418, 2015.

[3] Y. Chen, F. Li, and J. Fan, “Mining

association rules in big data with NGEP”,

Cluster Computing, Vol. 18, No. 2, pp. 577–

585, 2015.

[4] G. Grahne and J. Zhu, “Fast algorithms for

frequent itemset mining using fp-trees”, IEEE

Transactions knowledge and Data

Engineering, Vol. 17, No. 10, pp. 1347–1362,

2005.

[5] R. Agrawal and J.C. Shafer, “Parallel mining

of association rules”, IEEE Transactions

Knowledge and Data Engineering, Vol. 8, No.

6, pp. 962–969, 1996.

[6] R. Agrawal and R. Srikant, “Fast algorithms

for mining association rules ”, In: Proc. of the

20th international Conference on Very Large

Data Bases, Vol. 1215, pp. 487–499 , 1994.

[7] J. Han, J. Pei, and Y. Yin, “Mining frequent

patterns without candidate generation”, In:

Proc. of the International Conference on

Management of Data, Vol. 29, No. 2, pp. 1-12,

2000.

[8] Z.H. Deng, Z.H. Wang, and J.I. Jiang, “A new

algorithm for fast mining frequent itemsets

using N-lists”, Science China Information

Sciences, Vol. 55, No. 9, pp. 2008-2030, 2012.

[9] Z.H. Deng and S.L. Lv, “PrePost+: An efficient

N-lists-based algorithm for mining frequent

itemsets via Children–Parent Equivalence

pruning”, Expert Systems with Applications,

Vol. 42, No. 13, pp. 5424-5432, 2015.

[10] D. Apilatti, E. Baralis, T. Cerquitelli, P. Garza,

F. Pulverenti, and L. Venturini, “Frequent

itemset mining for big data: A Comparative

analysis”, Big Data research, Vol.9, pp.67-83,

2017.

[11] S. Li, T. Hoefler, C. Hu, and M. Snir,

“Improved MPI collectives for MPI processes

in shared address spaces”, Cluster Computing,

Vol. 17 , No. 4, pp. 1139–1155, 2014.

[12] M.G. Kaosar, Z. Xu and X. Yi, “ Distributed

Association rule mining with minimum

communication overhead”, In: Proc. of the

Eighth Australasian Data Mining Conference,

Vol. 101, pp. 17–23, 2009.

[13] J. Dean and S. Ghemawat, “MapReduce:

simplified data processing on large clusters”,

Communicaton of the ACM, Vol.51, No. 1, pp.

107–113, 2008.

[14] C. Bhat and C.K. Bhendadia, “ Mining Big

Data Using Modified Induction Tree

Approach”, International Journal of Intelligent

Engieneering and Systems, Vol.9, No.2, pp.14-

20, 2016.

[15] K. Chon and M. Kin, “BIGMiner: a fast and

scalable distributed frequent pattern miner for

big data”, Cluster Computing, 2018.

[16] M.Y. Lin, P.Y. Lee, and S.C. Hsueh,

“Apriori-based frequent itemset mining

algorithms on MapReduce”, In: Proc. of the

6th International Conference on Ubiquitous

Information Management and Communication,

article 76, 2012.

[17] S. Moens, E. Aksehirli. and B. Goethals,

“ Frequent Itemset Mining for Big Data”, In:

IEEE International Conference on Big Data, pp.

111-118, 2013.

[18] J. Liao, Y. Zhao, and S. Long, “MRPrePost-A

parallel algorithm adapted for mining big data”,

In: Proc. of IEEE Workshop Electronics,

Computer and Applications, pp. 564-568, 2014.

[19] S. Thakare, S. Rathi S and RR. Sedamkar, “An

Improved PrePost Algorithm for Frequent

Pattern Mining with Hadoop on Cloud”, In:

Proc. of the 7th International Conference on

Communication, Computing and Virtualization,

2016.

[20] H. Li H, Y. Wang Y, D. Zhang, M. Zhang, and

E.Y. chang, “Pfp: parallel fp-growth for query

Recommendation”, In: Proc. of the ACM

Conterence on Recommender Systems, pp.107-

114, 2008.

[21] Apache Hadoop. http://hadoop.apache.org.

[22] Yahoo developer network. Hadoop tutorial.

https://developer.yahoo.com/hadoop/tutorial/.

[23] Z.H. Deng and Z.H. Wang, “A new fast

vertical method for mining frequent itemsets”,

International Journal of Computational

Intelligence Systems, Vol. 3, No. 6, pp. 733–

744, 2010.

[24] Z.H. Deng, “ DiffNodesets: An efficient stucure

for fast mining frequent itemsets”, Applied Soft

Computing, Vol. 41, pp. 214–223, 2016.

[25] N. Arybarzan, B. Bidgoli, and M. Reshnehlab,

“negFIN: An efficient algorithm for fast mining

frequent itemsets”, Expert Systems with

Applications, Vol.105, pp.129-143, 2018.

[26] Y. Rochd, I. Hafidi, and B. Ouartassi, “A

Review of Scalable Algorithms for Frequent

Itemset Mining for Big Data Using Hadoop and

Spark”, In : Real-Time Intelligent Systems,

Advances in Intelligent Systems and Computing,

Vol .756, pp.90-99, Mai 2018.

[27] Y. Xun, J. Zhang, X. Qin, and X.Zhao,

“Fidoop-dp: data partitioning in frequent

itemsetmining on hadoop clusters”, IEEE

Received: April 24, 2018 235

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.21

Transactions on Parallel and Distributed

Systems Journal, Vol. 28, No.1, pp.101–114,

2017.

[28] B. Goethals and M.J. Zaki, “ FIMI’03:

Workshop on frequent itemset mining

implementations ”, In: Proc. of the Third IEEE

International Conference on Data Mining

Workshop on Frequent Itemset Mining

Implementations, pp.1–13, 2003.

