
Received: March 5, 2018 215

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

Analyzing Continuous Data Streams Using Improved Stratified Sampling and

Ensemble Classification

Gayathiri Kathiresan 1* Krishna Mohanta 2 Khanaa VelumailuAsari 1

1Bharath University, 173, Agharam Road, Selaiyur, Chennai, Tamilnadu, India

2Kakatiya Institute of Technology and Science for Woman, Nizamabad, Thlangana, India
* Corresponding author’s Email: gayathrisenthil.k@gmail.com

Abstract: The streaming data technologies play a vital role in real-time applications. To analyze the data, Random

sampling with replacement has a problem in drawing inferences from the small random sample, while sampling

without replacement is not preferable to sub-streams that correspond to different sources. Hence, to effectively mine

the data streams from heterogeneous sources, this work proposes Adaptive Reservoir sampling Of stream In a Time

window (AdROIT) which partitions the streams in a window on time factor and determines the size of historical data

on reference window regarding the data changes in the observation window. By measuring the standard deviation of

the partitioned window, we can identify whether the changes in statistical properties of a data stream is due to one or

multiple sources. The AdROIT allocates the reservoir sampling size to the source, ensures the adaptability, updates

the ensemble classifier with dynamically estimated weight, decides accuracy of each member regarding weight. The

experimental results show that the AdROIT provides better classification and mining results over heterogeneous data

streams. The AdROIT increases the precision by 16%, compared to the Chain sampling under a high degree of

heterogeneity. Under the same scenario, the proposed scheme increases the recall by 30 %, more than that in Chain

sampling. In high degree of heterogeneity, the Chain sampling utilizes 40kb for storage, more than that of Chain

sampling. Finally, the high window size reduces the execution time in AdROIT by 15 seconds and improves the

recall by 40%, compared to the Chain sampling.

Keywords: Reservoir sampling, Time windows, Ensemble classifier, Heterogeneous sources, Dynamic weighting.

1. Introduction

The streaming data gain considerable attention

in data mining, due to the emerging applications of

commercial marketing, sensor networks, and

telecommunications. The first requirement for a

stream data analysis is that it must be able to process

instances ‘ in-stream’, without storing them to

perform any operation. Sampling over moving

window is the process of selecting some instances of

the stream data to represent the characteristics of the

whole data. Several data stream mining approaches

implement sampling techniques using two popular

methods such as sampling with replacement and

sampling without replacement [1]. The reservoir

sampling is the commonly used technique in data

stream mining. It selects fixed size random samples

without replacement from a stream of an unknown

size [2]. The critical assumption of the reservoir

sampling algorithm is independence among the

samples, or the sample always representing the

whole stream. This assumption is not valid for

heterogeneous stream applications. The sampling

with replacement eliminates the repetitive instances.

However, lack of proper allocation of reservoir size

and sampling of stream data from heterogeneous

groups are the main drawbacks of the existing

reservoir sampling algorithms [3].

Stream data analysis is the process of examining

big data to discover hidden patterns and unknown

correlations that facilitate better decision making. In

real applications, the data is not constant, but a data

stream simultaneously has multiple concept drifts.

Mostly, the ensemble classifiers are used to

incrementally learn the continuously arriving data

Received: March 5, 2018 216

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

for providing fast reaction to the data changes [4].

The most important feature for extracting the

knowledge of streaming data classification is time

window, which likely to be in a fixed or in an

adjustable size. The concept of time windows

represents the importance of recent data for stream

data classification [5]. In this model, the adaptive

windowing restricts the data analysis to the most

recent portion of the stream, and moreover, the

outdated data are not considered in the classification.

This method improves the accuracy of stream data

classification algorithms. However, biased or

distorted distribution of changes in data streaming

tends to skewed classes. To deal with the combined

challenges of concept drifts and the imbalanced

class problem, this work implements the Adaptive

Reservoir sampling Of stream In a Time window

(AdROIT) over continuously arriving data streams.

The AdROIT improves the precision of

sampling using the components of time sliding

window, adaptive reservoir sampling, and pattern

matching. The recent data can make a significant

impact on sampling, and so the time-based windows

include the recently arrived data. However,

considering the recent data alone is inefficient in

analyzing the new data. Thus, the AdROIT plans to

consider the subset of old data as reference window

and analyze the newly arrived data on the

observation window. An adaptive reservoir

sampling dynamically allocates the reservoir to

individual sub-groups using mean and standard

deviation measurement. The standard deviation

between the old and new data assists the AdROIT to

identify the scenario of both the gradual and sudden

concept drift successfully. Finally, the weighted

ensemble classification is utilized for pattern

detection and sample mapping. This can classify the

patterns precisely even under a concept drift. In this

paper, the second section provides a detailed

discussion of the previous works related to the big

data sampling and their drawbacks. The third section

illustrates various components of AdROIT with

corresponding mathematical equations. The fourth

section discusses the experimental evaluation of

AdROIT, and finally, the last section concludes the

work.

The main contributions of the proposed AdROIT

are as follows.

 The main aim of the proposed AdROIT

is to analyze the continuously arriving

data streams without storing the entire

data streams using ensemble classifier

and adaptive sampling technique

 By implementing the standard deviation

measurement on time partitioned

window individually using stratified

sampling technique and the dynamic

weighting scheme, the AdROIT is

jointly handling unpredictable and

imbalanced data changes over a data

stream

 To balance the sample size over a time

window and the accuracy of

representing the entire data, the

AdROIT dynamically allocates the

reference window size of the data

streams with a provable memory

guarantee

 By designing a new weighting

mechanism for ensemble classification

members, the AdROIT to react fast to

skewed data changes and achieve good

performance on classification accuracy
The performance evaluation of the proposed

AdROIT confirms its efficiency of handling

different types of changes over data streams.

2. Related works

Traditional sampling techniques need essential

ideas to support the data stream applications,

especially to handle changes over continuously

arriving data streams. Various stream-sampling

techniques have been proposed in [1]. Most of the

applications select samples from the streaming data

in two methods, such as sampling with replacement

and without replacement. Sampling with

replacement mostly takes the fixed size of samples

randomly, whereas sampling without replacement

takes the fixed size of samples of every changed

stream data. The reservoir and chain sampling

technique are the examples of random sampling [6].

However, the conventional chain sampling

techniques do not guarantee the sufficient number of

samples stored without any repetition in the

reservoir, mainly when the data streams emanate

from heterogeneous sources [7 - 9]. Even though the

chain sampling does not require any prior

knowledge about the stream, it occupies reasonable

memory and degrades the accuracy of

heterogeneous sources. Conventionally, a few of the

adaptive reservoir sampling techniques have been

proposed in data stream applications.

The majority of the heterogeneous data stream

applications exploit stratified sampling technique

[10, 11]. Initially, the data population of

Received: March 5, 2018 217

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

heterogeneous sources is clustered into disjoint

homogeneous groups, and stratified sampling takes

the samples with the same size from those groups.

Unlike uniform random sampling, maintaining the

non-uniform and bounded size of samples is

desirable to reduce the burden of memory

management and computational cost [12]. Moreover,

a key component needed to implement the adaptive

sampling is windowing. In [13], the instances are

decomposed into two portions based on the time of

instances. To draw a sample of non-uniform size of

the sliding windows, the expired sampled items are

removed from the sliding window. The continuous

monitoring model proposed in [14] takes into

account the aggregation process over the distributed

data stream. The distributed stream processing

physically observes and processes the streams using

different processors, whereas the parallel stream

processing exploits multiple processors also, but

only to reduce the response time. The main aim of

distributed streams model is to minimize the

communication between processors, while the

shared-memory parallel case focuses on the

processing efficiency [15]. Integrated learning-based

data classification, semi-supervised ensemble

approach [16] use constraints to derive unsupervised

models. Even though it uses limited instances, it

increases the accuracy of classification. The

traditional K-means clustering is used to cluster the

stream with the same data structure. The Density-

Based Distribute Data Stream Clustering (DB-

DDSC) determines clusters with different structures

under the Big data stream environment [17].

Recruiting similar services in the same clusters

provides collaborative recommendation services to

the system [18].

Notably, regular research considers the

frequency of instances as the primary metric in

sampling [19 - 21]. The Hybrid Streaming proposed

in [19] maintains histograms for all instances

approximately and the frequencies of instances are

stored in the internal structure. To determine the

frequently appearing patterns across multiple data

streams, the hybrid streaming technique [19]

addresses the issues of designing an efficient data

structure to store historical data patterns, updating of

frequently appearing patterns, and pattern matching

over continuously arriving data streams. The

structure-aware stream sampling in [22] discards

one instance when adding a new instance to the

reservoir. The hierarchical clustering algorithm

provided feedback according to user purchases in

the past, and it is utilized to discover the

relationships between the users [23]. This technique

avoids drifting of the essential data. However, due to

high cognitive and uncertain characteristics of

massive data mining, these techniques lack in

achieving a proper classification with the distance

method. Improving mining efficiency even along

with the data changes is an important research topic.

To accomplish these tasks, it is essential to propose

countermeasures based on adaptive windowing and

sampling techniques. The utility function in [24]

searches the optimal samples using Monte Carlo

techniques. The problem in finding an optimal

design of reservoir sampling with different types of

response variables, such as continuous, counts and

proportions. The sampling technique [25] is

developed to solve the issues of tuning and timing.

To solve those issues, it executes the hybridization

of distance and density measures. However, it takes

into account only one tuning parameter, named as

granularity. Even though the sampling technique is

validated on the large dataset, heuristic elimination

is essential. In [26], a recursive binary partition is

applied to the input instances to select a set of

samples for representing the entire stream. The

issues related to the concept drift are handled using

greedy optimality and explicit error bounds. To

reduce the excessive processing time, the sampling

technique in [27] ensures overlap independence

even though they are inadequate to the stream data

generated from heterogeneous sources.

Mainly, current studies have not focused on the

problem of maintaining a uniform random reservoir

samples over heterogeneous data streams [28]. The

statistical properties of stream data change, possibly

over time and thus, the allocation of fixed-size

reservoir optimizations among heterogeneous sub-

streams become a significant concern primarily. To

solve this issue, the proposed methodology aims at

maintaining the uniformity of the sample among

heterogeneous sources, by improving the stratified

reservoir of sampling.

2.1 Problem statement

Traditional systems design the storage

architectures to scale up with the increasing

demands of Big data. However, the stream data

makes it impossible to store the entire data on disk.

Existing storage systems require unbounded

memory space to evaluate queries over streaming

data. Notably, sampling techniques reduce the

amount of data to process but do not consider the

situations, where the flow of input data stream is

generated from more than one source. They assume

that the arrived data streams as independent and

identically distributed. However, the data source

heterogeneity creates a negative impact on the

Received: March 5, 2018 218

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

sampling efficiency. Another critical problem to be

considered in the sampling techniques is concept

drift or unpredictable data changes over time.

Existing big data mining techniques are not precise

yet on how an analytics system deals with the

changes in real-time streaming data. As

heterogeneous sources characterize the streaming

data, the consolidation of different distributed data

sources to a centralized node discourages the data

mining process due to the drifting issues. A data

stream is an infinite big data scenario in which

underlying data distribution of newly arriving data

differs from historical data in the real-time

applications. The conventional data mining

algorithms become inadequate while dealing a large

amount of streaming data with changes over time.

This issue build need to propose adaptive sampling

techniques that effectively support the continuous

stream of data arriving from heterogeneous sources.

3. Proposed methodology

It is essential to extract the information and the

interrelationship among the continuously arriving

streaming data. Knowledge extraction from a hidden

data needs to describe the patterns or rules and

compare the new patterns with historical data. The

reservoir sampling and ensemble classifier are

widely employed for data stream mining without

storing the entire data. The main drawback in

reservoir sampling based ensemble classification is

the assumption that the sample data always

represent the whole data stream. This assumption

turns to the reservoir sampling as invalid for many

stream data applications, where the stream data is

generated with distinct statistical properties, i.e.,

sub-groups. Instead of random selection, the

proposed work provides adaptive sampling over

sliding windows and discovers the knowledge of

sub-group data stream without the entire data being

stored.

Figure. 1 Adaptive reservoir sampling based distributed

data stream processing

The proposed AdROIT includes the components

of time sliding window, adaptive reservoir sampling,

and pattern matching. Firstly, time-based windows

include the stream data arriving within a period. It

maintains the recent active data and discards the rest.

A subset of old data is selected as a reference

window for analyzing the new data in the

observation window.

Such windows are called as sliding windows.

Dynamic updation of the reference window

improves the performance of AdROIT over varied

data streams. Secondly, adaptive reservoir sampling

dynamically allocates the reservoir to individual

sub-groups. For reservoir sampling, the AdROIT

takes into account the mean and standard deviation

in sampling attribute values. By implementing the

standard deviation measurement of time partition

window, the AdROIT can differentiate the sudden

and gradual changes in the data stream and improve

the efficiency of reservoir sampling. Thirdly, the

AdROIT exploits the weighted ensemble

classification to implement the pattern detection and

sample mapping. According to the classification

accuracy of majority and minority pattern classes,

the AdROIT provides weight to the classifier and

precisely classifies the patterns even with data

changes. Finally, the analyzed results are stored in

the DSMS.

3.1 Sliding window design

Recent works detect the changes in the data

stream using comparison techniques. The

distribution of new data streams is compared with

the past distributed data streams using discrepancy

measurement. A subset of past data is selected for

the comparison to enhance the window model

accuracy. The selected past data in the time window

is named as Reference Window (WR). The new

streams arrived within the t time interval forms

Observation Window (WO). A large size reference

window which is closer to the entire distribution of

data stream S potentially improves the accuracy of

data change detection. Still, resource constraints

force the size of WR to be as small. Furthermore,

large WO is likely to reduce the efficiency of change

detection technique, due to the data distribution

discrepancy. The time interval t of WO indicates the

frequency with which the change detection

procedure is triggered. Smaller t tends to more

frequent change detection and, thus, it reduces the

number of delayed data change detection. However,

they increase the computational complexity and may

reduce the efficiency of the proposed change

detection technique. Therefore, the values of WR and

Time

Window
Heterogeneous

Source

Instances

Sampling

Received: March 5, 2018 219

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

WO have to be determined according to the

discrepancy level between reference and observation

windows as found in the previous time.

3.1.1. Reference and observation window selection

Consider that the WR and WO on stream S contain

the SR and SO streams, respectively. The timestamps

are included with the streams when concatenating

those windows. Two instances which have the same

value and different timestamps are also included in

the Windows, even when they are considered as

duplicates. The timestamp guarantees the accuracy

in the frequency measure of instances. Therefore,

the value of |(WR+WO)| is equal to the |WR| + |WO|

even when the instances in WR and WO are likely to

be overlapped. Dynamically generating the

reference window WR is the primary concern in

varying data streams. The AdROIT dynamically

selects the reference window size according to the

data changes using the Eq. (1).

After deciding the WR window size, the new

instances are selected using the stratified sampling

technique. Where WR’ represents the new reference

window. When high data change appears between

the reference and observation window, the size of

the new reference window gets reduced. Otherwise,

the AdROIT increases the size of reference window.

The intersection between the reference and

observation window, i.e. |𝑊𝑅 ∩ 𝑊𝑂| decides the size

of the new reference window. That means, when the

value of intersection between the windows are high,

the new reference window size is also increased.

|𝑾𝑹′| =
𝟏

𝟐
 × (|𝑾𝑹 ∩ 𝑾𝑶| + 𝑾𝑹) (1)

Fig. 2 below illustrates the dynamic selection of

reference window WR. Let a distribution of stream

be initiated at the t1 time. At the initial time, WR

window records an entire stream SR, i.e., equal to the

size of WR. The observation window WO is same as

the WR at the t1 time. At the time of t2, the window

WR is full, and thus, the window gets started to

proceed forward.

During t2 time, the AdROIT concatenates the

windows of WR and WO, when the changes are not

detected in distributed stream data. The deletion of

duplicate instances results in same window size. The

window WR’ selects the instances from the window

of either WR or WO, as it is a recent reference

instance. During t2 time, small data changes appear

and so the new reference window WR’ includes the

instances maximally from the old reference window

WR. The large size window is appropriate for

Figure. 2 Dynamic reference window-size selection

analyzing the continuously incoming streams when

there is no or negligible change in the data. Thus,

frequently appearing instances are selected from

either the WR or WO, and such of those samples

replace the stream in WR at time t3. This merge and

the selection processes are triggered for every

interval. When the data deals large changes, the

AdROIT reduces the size of reference window and

maximally includes the frequently appearing

instances from the old observation window. Fig. 2

shows the dynamic selection of window size under

different cases of data changes.

3.2 Adaptive reservoir sampling

Instead of processing entire data streams on the

window, the AdROIT enhances the stratified

sampling and selects an appropriate number of

newly arrived samples from WO to represent the

entire data. Most conventional works allocate a

fixed size reservoir of R to observation window WO,

even when the data is generated from heterogeneous

sources. An input data stream of k sources (Si) is

represented as sub-streams S1, S2, S3,............Sk. Each

source generates n number of streams (Sin). The

sequence of instances in each source is represented

as Si1, Si2,Sin, such that Si ∩ Sj = ∅ and ∪Si = S.

Considering a total available reservoir size is |R|

instances in a reservoir r, and the main aim of

sampling is to allocate |R| optimally among the k

sub-streams subject to the data change frequency.

The AdROIT clusters the instances in a window into

k disjoint homogeneous strata, R1 , R2 , . . . , . . . , Rk.

From each stratum, |R|/k samples are taken

WR

t1

No

changes

in Data

Stream

t2

WR’ = WR or WO

WO’

Small

changes

in Data

Stream WR’

t4 t3

WR

WR

WO

WR’

WO

WO’

WO

High

changes

in Data

Stream

WO’

S

t5

WR’

Received: March 5, 2018 220

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

randomly. Due to the heterogeneity among sources,

the instances in one strata must not belong to any

other strata, such that Rm ∩ Rn = ∅ and ∪Ri = R. A

stratified sample of an estimated dynamic size

provides high statistical precision than a stratified

reservoir sampling, because of the usage of

statistical properties such as mean and variance.

𝑫𝒊𝒔𝒄𝒓𝒆𝒑𝒂𝒏𝒄𝒚 𝑫(𝑹𝒊)

= 𝟏 −

[

{∑ ∑ 𝜶𝒕 × 𝒀𝒊𝒋(𝒕)

|(𝑹𝒊)𝒕|
𝒋=𝟏

𝒉
𝒕=𝟏 }

[
{∑ 𝒀𝒊𝒋

(𝑹𝒊)
𝒋=𝟏 }

|𝑹|
⁄]

⁄

]

(2)

𝑻𝒐𝒕𝒂𝒍 𝑫𝒊𝒔𝒄𝒓𝒆𝒑𝒂𝒏𝒄𝒚 𝑻𝑫 = 𝟏 −

[
{∑ {∑ ∑ 𝜶𝒕 × 𝒀𝒌𝒋(𝒕)

|(𝑹𝒌)𝒕|

𝒋=𝟏
𝒉
𝒕=𝟏 }𝒌

𝒎=𝟏 }

[{∑ 𝒀𝒌𝒋(𝒕)
|𝑹𝒌|

𝒋=𝟏 } |𝑹|⁄]
⁄]

(3)

Eqs. (2) and (3) illustrate the measurement of

Discrepancy (D) for reservoir Ri and Total

Discrepancy (TD) respectively. The AdROIT

divides the instances in Ri into h divisions, where the

t represents the time interval within a window and t

varies from 1 to h. Where Yij represents the sampling

attribute value of the jth instance belongs to Ri, and

αt denotes the standard deviation of the instances in

Ri, at t time. When the weighted summation of the

attribute value in the numerator is closer to the

average attribute value measured in the denominator,

the discrepancy value is increased. When the

discrepancy value is high, the size of reservoir Ri

should be increased. Since, the corresponding

attribute has a significant impact on the stream data

concept, compared to others. The conventional

stratified reservoir considers a reservoir entirely for

measuring the discrepancy. However, it tends to

imprecise measurement when sudden changes occur

in the data stream. When there is a gradual change,

the standard deviation is increased linearly, resulting

in a high discrepancy. Consider an example such as

a sudden change occurs at a midpoint, but before

and after the midpoint, there are no changes. In such

cases, the standard deviation is also high, and the

conventional discrepancy measurement shows no

differences in the above two cases. This factor

reduces the accuracy of stratified reservoir sampling.

Instead of taking the entire samples, the AdROIT

measures the standard deviation for a partitioned

window separately and measures the discrepancy

value.

Substituting Eqs. (2) and (3) in Eq. (4), the number

of samples required for the reservoir Ri is estimated

with the knowledge of data changes.

|𝑹𝒊| = |𝑹| × {𝑫(𝑹𝒊) 𝑻𝑫⁄ } (4)

Notably, when the D(Ri) value is zero, the reservoir

size is assigned as one, instead of zero. That means

the samples in a subset represents the same concept.

The AdROIT determines the sample size of the

stratum reservoir under the proportional allocation

and selects the samples from the observation

window. Instead of equal preference to all strata, the

AdROIT optimally allocates the reservoir size on

the change of the data stream. The AdROIT adjusts

the allocation when the new streams appear, or

existing instances disappear from the old stream

data or the statistical properties of data stream get

changed. Thus, the AdROIT generates and matches

the pattern, and successfully analyzes the

continuously arriving data streams using the sample

data.

3.3 Pattern matching and storage using ensemble

classifier

Appearing changes in continuously arriving data

streams tend to imbalanced data streaming and

classification. To deal with this challenge, the

AdROIT provides dynamic weight to the ensemble

classifiers, according to their classification accuracy.

The ensemble classification method with dynamic

weighting scheme is illustrated in Fig. 3. For each

new stream, an ensemble classifier is trained. The

result of all the classifiers in the ensemble decides

the dynamic weight using majority vote. The vote is

considered as a majority, for instance, when the

ensemble member classifies the instances under the

class which is predicted by most of the ensemble

members for the same window. The classifiers

which have errors on same instances render minority

class. Eq. (5) demonstrates the estimation of

classification Accuracy (AC) for the ensemble

members Ci individually using majority and

minority classes, predicted on a window. It is

measured using the concept of result overlapping

with other classifiers. When the result of a classifier

is highly overlapped with other classifiers, it returns

high majority vote.

𝑨𝑪𝑪𝒊 =

{
{𝑴𝒂𝒋𝒐𝒓𝒊𝒕𝒚 𝑽𝒐𝒕𝒆𝑴𝒊𝒏𝒐𝒓𝒊𝒕𝒚 𝑽𝒐𝒕𝒆}𝑪𝒍𝒂𝒔𝒔𝒆𝒔

𝑻𝒐𝒕𝒂𝒍
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

⁄ }

(5)

Received: March 5, 2018 221

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

Figure. 3 Architecture of ensemble classifier in AdROIT

system

The accuracy of the classifiers is high when most of

the instances are classified into the majority vote

classes. Otherwise, the ACCi tends to negative results.

The reduced accuracy develops an adverse impact

on the Dynamic Weighting (DW) at t time, as shown

in Eq. (6).

𝑫𝑾𝑪𝒊(𝒕) = 𝟎. 𝟓 × (𝑨𝑪𝑪𝒊 × 𝑫𝑾𝑪𝒊)(𝒕 − 𝟏) (6)

For the classifiers that are currently used in the

ensemble, the dynamically estimated weight is

updated for every window. When the classification

accuracy and previous dynamic weight are high, the

classifier is used for the further processing.

When the data changes are detected, the new

classifier is added to the ensemble by replacing the

old classifier with less weight. Dynamic weight

provisioning and classifier updation ensure the

accuracy of the AdROIT system over continuously

varying data streams.

4. Performance evaluation and setup

The performance of the proposed AdROIT is

evaluated against the Chain sampling [6] with the

ensemble classifier algorithm. These algorithms

have been executed using the following tools. This

work exploits Apache Storm 1.0.2 version as a

processing engine. A storm has a topology built by

the spouts and bolts. A spout reads instances from

an external source and emits them into the bolt,

whereas the bolt performs the proposed sampling,

aggregation, joining, and pattern matching. The

Storm engine does not include any Machine

Learning (ML) library, and thus, the SAMOA

platform provides third-party ML for Storm with

several classifications and clustering

implementations. The target/SAMOA-Storm-0.4.0-

SNAPSHOT.jar file is used to deploy Apache

SAMOA in Storm.

The SAMOA supports the AdROIT to create

ensemble classifiers in Storm engine. Storm can

integrate with any queuing and any database system.

In addition to processing and ML libraries, the tool

Kafka version 0.8 is used for data stream movement

and interaction with other tools. The retrieved

patterns and historical pattern are stored in the Druid

database version 0.7.3. Storm bolts to do pattern

classification, and sending the patterns to the Druid.

4.1 Weather dataset and metrics

This work experiments weather dataset. The

dataset is collected from different sources, and the

characteristics of the data from each source are

different. It develops gradually, and sudden concept

drifts over streaming data. The weather dataset

includes the data on 30 major USA cities, and it is

collected from 18 sources or websites for every 45

minutes. The dataset has some common attributes

among heterogeneous sources such as Timestamp,

Location, Temperature (°F), and Condition.

According to the AdROIT, the sampling technique

collects the samples from each source with

dynamically estimated window size and the bolt in

Storm executes the ensemble classification. To find

the accuracy of sampling and ensemble classifier,

this work considers the source of Yahoo in

collecting the weather dataset as the gold standard.

Due to the usage of the gold standard, this

evaluation has provided the metrics of precision and

recall, in addition to the execution time and memory

utilization. Intuitively, three factors affect the

performances of the AdROIT and Chain sampling

algorithms over a data stream from heterogeneous

sub-streams, namely Degree of heterogeneity,

Number of Sub-Streams, and Window Size. The

degree of heterogeneity refers the level of

discrepancy between sources of stream data. These

three parameters are used in the performance

evaluation between AdROIT and Chain sampling,

regarding the precision, recall, execution time, and

memory utilization.

Precision: It is defined as the ratio between the

numbers of correct results to the total number of

returned results.

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝑵𝒐. 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑹𝒆𝒔𝒖𝒍𝒕𝒔
𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇
𝑹𝒆𝒕𝒖𝒓𝒏𝒆𝒅 𝑹𝒆𝒔𝒖𝒍𝒕𝒔

⁄ (7)

Recall: It is defined as the ratio between the

number of correct results to the total number of

results that have been returned.

Add, Delete, and

Update the Classifiers

Testing Samples

New Data

Training Samples

Old Data

Dynamic Weightage

Provision

Extracting

Majority votes
Classes

Improved Stratified

Sampling Technique

Classifier 1 Classifier n

Received: March 5, 2018 222

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

Figure. 4 Degree of heterogeneity vs. precision

Figure. 5 Degree of heterogeneity vs. recall

Figure. 6: Degree of heterogeneity vs. memory

𝑹𝒆𝒄𝒂𝒍𝒍

=
𝑵𝒐. 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑹𝒆𝒔𝒖𝒍𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇
𝑹𝒆𝒕𝒖𝒓𝒏𝒆𝒅 𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝒎𝒖𝒔𝒕 𝒉𝒂𝒗𝒆 𝒃𝒆𝒆𝒏 𝒓𝒆𝒕𝒖𝒓𝒏𝒆𝒅

 (8)

Execution Time (Sec): The time taken by the

AdROIT to take samples from continuously arriving

streaming data and classify the patterns using

ensemble classifier.

Memory Utilization (Bytes): The memory usage of

the AdROIT during sampling process on windows

and ensemble classification.

4.2 Experimental results

Fig. 4 demonstrates the precision of AdROIT

and Chain Sampling over various degrees of

heterogeneity. When the degree of heterogeneity is

low, the precision of AdROIT and Chain sampling

are relatively close to one another compared with

the case of a higher degree of heterogeneity. The

observed influence of the degree of heterogeneity on

the precision of the AdROIT is reasonable,

compared to the Chain sampling. The AdROIT

allocates the size of sub-reservoir on the

heterogeneity of the sources. For instance, both the

AdROIT and Chain sampling attains nearly 95% of

precision with no heterogeneity among the sources.

However, the difference between the algorithms

increases with the degree of heterogeneity. As the

chain sampling exploits divide and conquer and

provides the uniform distribution of samples, the

degree of heterogeneity negatively impacts the

performance of Chain sampling technique.

Moreover, the chain sampling assumes that the most

recent items of the stream represent the context of

the entire window. However, this is not perfect with

the case of a higher degree of heterogeneity. The

performance of AdROIT improves the precision by

16% more than that of Chain sampling with a high

degree of heterogeneity.

Fig. 5 shows the influence of the degree of

heterogeneity on the recall of both AdROIT and

Chain sampling. Low heterogeneity among stream

data sources is attributed to the uniform sampling in

AdROIT, which is closer to the performance of

Chain sampling. That is, the statistical change

among sub-streams relatively is small and, therefore,

it does not cause too much difference in uniformly

allocated sub-reservoir sizes.

For instance, the recall of both the AdROIT and

Chain sampling is equal to 95%. However, the

significance of heterogeneity increases the

degradation in the recall while escalating the degree

of heterogeneity. As the heterogeneity among

sources represents the running statistics of sub-

streams change over time, thus leads the AdROIT

system to select a fewer number of samples for each

source, resulting in recall degradation. High degree

of heterogeneity decreases the recall of AdROIT

from 95 to 80%. As the chain sampling excludes the

frequency of the change among sub-streams in

reservoir allocation, the recall of chain sampling has

Received: March 5, 2018 223

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

Figure. 7 Number of sources vs. execution time

Figure. 8 Window size vs. recall

Figure. 9 Window size vs. execution time

degraded by 30% with the scenario of high

heterogeneity, compared to the AdROIT.

Fig. 6 holds the experiment results on the

memory utilization on both AdROIT and Chain

sampling while varying the degree of heterogeneity

from 0 to 1. The AdROIT has demonstrated less

memory occupation since the proper measurement

of standard deviation over time partitioned window

efficiently allocates the ensemble classifiers. Due to

no variation in the statistic of sub-streams over time,

initially, both the AdROIT and Chain sampling

occupy same memory, i.e. nearly 30 KB. The

concurrent graphical representations in Fig. 6 reveal

the adaptivity of AdROIT under the scenario of high

heterogeneity. When a new classifier adds in both

AdROIT and Chain sampling, memory has to be

enhanced to the sub-reservoir wherein the sub-

streams arrive newly. However, improper allocation

of classifiers due to the result of Chain sampling

increases the memory utilization up to 165 KB.

Without the consideration of the standard deviation

among the sampling attributes of sub-streams, the

sampling techniques are impossible to allocate the

classifiers properly. Thus, it results in an

unnecessary increase in the number of classifiers

and memory utilization.

Fig. 7 shows the execution time against the

number of sources. Notably, the increasing number

of sources also increases the degree of heterogeneity.

The number of samples has a significant influence

on the execution time of AdROIT and Chain

sampling. From low to a medium number of sources

(i.e., from 9 to 18), it is observed that the Chain

sampling extends the execution time of an algorithm

longer than that in AdROIT. For a higher number of

sources (e.g., 27 or higher), there is a decrement in

execution time compared to the AdROIT. The

reason for this is that Chain sampling does not take

into account the heterogeneity measurement

between sub-streams, whereas the proposed

AdROIT does. The proper allocation of reservoir

size and classifiers using dynamic weight influences

the speed of execution only with the scenario of a

high number of sources. Even though the execution

time of AdROIT is high compared to the Chain

sampling, the recall value of AdROIT is always

better than the Chain sampling.

Figs. 8 and 9 reveal the result of the recall and

execution time against the window-size with the

same degree of heterogeneity (0.4) respectively. As

in Fig. 8, the sub-sample recall of AdROIT

distinctively maintains a superior performance over

the Chain sampling. The AdROIT recall oscillates

within the range of 90 to 92%, even when the

window size is increased from 25 to 325 samples.

The Chain sampling technique does not provide

importance to the historical information, and so it

increases the samples with window size, resulting in

weaker recall value. For instance, with the window

size of 325 samples, the AdROIT increases the

recall by 40%, more than that of the existing work.

However, from Fig. 9, it is observed that the

execution time of AdROIT extends longer than

Chain sampling method after the point of 175

samples. This is due to the computational time of

discrepancy and updating frequency of dynamic

weight to the classifiers.

Received: March 5, 2018 224

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

5. Conclusion

This paper has presented an adaptive reservoir

sampling of the stream in a time window, AdROIT

over continuously arriving data streams. The

proposed sampling model allocates the samples on

the degree of heterogeneity among sources, as it

introduces more than one source for stream

generation. The standard deviation of time

partitioned window improves the accuracy of

discrepancy measurement that influences the

accurate representation of entire stream data with

sampled instances. Moreover, the proposed AdROIT

includes the ensemble classifier with the dynamic

weight, which is estimated based on the extracted

majority votes for each window. The majority of

votes decide the accuracy of the classifier as well as

its lifetime in the ensemble. This system improves

the accuracy even with the unbound size of arriving

streams over time. The evaluated results show the

effectiveness of the AdROIT and its outstanding

performance over the Chain sampling. Unlike the

existing system, AdROIT allocates the sample

instances with the knowledge of statistical changes

over time, instead of random selection, and thus it

ensures the enhanced accuracy of sampling. The

dynamic weight of AdROIT enables accurate

measurement and proper maintenance of the

classifiers in the ensemble. From the evaluation, the

AdROIT results indicate 80-90% of recall, when

varying the degree of heterogeneity among sources,

as compared to Chain sampling.

There are possible directions for the sampling

technique to extend in the future and those are

discussed as follows.

 In future, adaptive sampling techniques need to

be extended to support the multivariate

sampling environment.

 In future, it is essential to choose the stream

data by importance, by analyzing the

dependencies multi- variate response.

 Diversity between a different subset of

sampling needs to be considered for improving

the prediction accuracy.

References

[1] P.J. Haas, “Data-stream sampling: basic

techniques and results", Data Stream

Management, Springer, Berlin Heidelberg, pp.

13-44, 2016.

[2] [2] W. Hu, and B. Zhang, “Study of sampling

techniques and algorithms in data stream

environments”, In: Proc. of the 9th

International IEEE Conf. on Fuzzy Systems and

Knowledge Discovery, pp. 1028-1034, 2012.

[3] B. Park, G. Ostrouchov, N. Samatova, and

A.Geist, “Reservoir-based random sampling

with replacement from data stream”, In: Proc.

of SIAM International Conference on Data

Mining, pp. 492-496, 2004.

[4] J. Gama, I. Zliobaite, A. Bifet, M. Pechenizkiy,

and A. Bouchachia, “A survey on concept drift

adaptation,” ACM Computing Surveys, Vol. 46,

No. 4, pp. 1-37, 2014.

[5] D. Mejri, R. Khanchel, and M. Limam, “An

ensemble method for concept drift in

nonstationary environment”, Journal of

Statistical Computation and Simulation, Vol.

83, No. 6, pp. 1115– 1128, 2013.

[6] E.I.R. Sibai, Y. Chabchoub, J. Demerjian, Z.

Kazi-Aoul, and K. Barbar, "A performance

study of the chain sampling algorithm", In:

Proc. of the Seventh International Conference

on Intelligent Computing and Information

Systems, pp.487-494, 2015.

[7] S.P. Efraimidis and P. Spirakis, “Weighted

random sampling with a reservoir”, Information

Processing Letters, Vol.97, No.5, pp.181-185,

2006.

[8] S. Tirthapura and P.D. Woodruff, “Optimal

random sampling from distributed streams

revisited”, In: Proc. of International

Symposium on Distributed Computing, pp. 283-

297, 2011.

[9] S.P. Efraimidis, "Weighted random sampling

over data streams", Algorithms, Probability,

Networks, and Games, Springer International

Publishing, pp. 183-195, 2015.

[10] S. Chaudhuri, G. Das, and V. Narasayya,

“Optimized stratified sampling for approximate

query processing”, ACM Transactions on

Database Systems, Vol. 32, No. 2, pp. 1-50,

2007.

[11] M. Cuong, Y. Cao, R. Klamma, and M. Jarke,

“A Clustering Approach for Collaborative

Filtering Recommendation Using Social

Network Analysis”, Journal of Universal

Computer Science, Vol. 17, No. 4, pp. 583-604,

2011.

[12] R. Gemulla, P.J. Haas, and W. Lehner, "Non-

uniformity issues and workarounds in bounded-

size sampling", Journal of Very Large Data

Bases, Vol.22, No. 6, pp.753-772, 2013.

[13] V. Braverman, R. Ostrovsky, and C. Zaniolo.

"Optimal sampling from sliding

windows", Journal of Computer and System

Sciences, Vol.78, No.1, pp. 260-272, 2012.

Received: March 5, 2018 225

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018 DOI: 10.22266/ijies2018.1031.20

[14] G. Cormode, S. Muthukrishnan, K. Yi, and Q.

Zhang, "Continuous sampling from distributed

streams", Journal of the ACM, Vol. 59, No. 2,

pp. 1-25, 2012.

[15] N. Jain, M. Pozo, R. Chiky, and Z. Kazi-Aoul,

"Sampling semantic data stream: Resolving

overload and limited storage issues" In: Proc.

of first International Conf. on Advanced Data

and Information Engineering, pp. 41-48, 2013.

[16] J. Liu, G. Xu, D. Xiao, L. Gu, and X. Niu, “A

Semi-supervised Ensemble Approach for

Mining Data Streams”, Journal of Computers,

Vol.8, No.11, pp. 2873-2879, 2013.

[17] B. Gao and J. Zhang, “Density Based Distribute

Data Stream Clustering Algorithm”, Journal of

Software, Vol.8, No.2, pp.435-442, 2013.

[18] S. Joshi and C. Jermaine, “Robust stratified

sampling plans for low selectivity queries”, In:

Proc. of IEEE International Conference on

Data Engineering, pp.199–208, 2008.

[19] J. Guo, P. Zhang, J. Tan, and L. Guo, “Mining

frequent patterns across multiple data streams”,

In: Proc. of the 20th ACM International

Conference on Information and Knowledge

Management, pp.2325–2328, 2011.

[20] A. Cuzzocrea, “Data warehousing and

knowledge discovery from sensors and

streams”, Knowledge and Information Systems,

Vol.28, No.3, pp.491–493, 2011.

[21] K. Kutzkov and R. Pagh, "Consistent subset

sampling", In: Proc. of Scandinavian Workshop

on Algorithm Theory, pp. 294-305, 2014.

[22] E. Cohen, G. Cormode, and N. Duffield,

“Structure-aware sampling on data streams”,

In: Proc. of ACM SIGMETRICS Joint

International Conference on Measurement and

Modeling of Computer Systems, pp.197–208,

2011.

[23] S.R. Deputter, T. Xiong, and S. Wang,

“Combining collaborative filtering and

clustering for implicit recommender system”,

In: Proc. of the 27th International Conf. on

Advanced Information Networking and

Applications, pp. 748-755, 2013.

[24] G.M. Falk, M.J. McGree, and N.A. Pettitt,

“Sampling designs on stream networks using

the pseudo-Bayesian approach”, Environmental

and Ecological Statistics, Vol.21, No.4, pp.751-

773, 2014.

[25] F. Ros and S. Guillaume, “DIDES: A Fast and

Effective Sampling for Clustering Algorithm”,

Knowledge and Information Systems, Vol.50,

No.2, pp.543-568, 2017.

[26] C. Cervellera and D. Maccio, “Distribution-

preserving Stratified Sampling for learning

Problems”, IEEE Transactions on Neural

Networks and Learning Systems, Vol.29, No.7,

pp.2886–2895, 2018.

[27] Y. Tao, X. Hu, and M. Qiao, “Stream Sampling

Over Windows With Worst-Case Optimality

and ℓ-overlap independence”, Journal of Very

Large Data Bases, Vol.26, No.4, pp.493-510,

2017.

[28] A. Boicea, C. Truica, F. Radulescu, and E. Buse,

“Sampling Strategies for Extracting Information

from Large Data Sets”, Data and knowledge

Engineering, 2018, Accepted for publication.

