
Received:  March 5, 2018                                                                                                                                                   215 

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018           DOI: 10.22266/ijies2018.1031.20 

 

 
Analyzing Continuous Data Streams Using Improved Stratified Sampling and 

Ensemble Classification 

 

Gayathiri Kathiresan 1*         Krishna Mohanta 2            Khanaa VelumailuAsari 1 

 
1Bharath University, 173, Agharam Road, Selaiyur, Chennai, Tamilnadu, India 

2Kakatiya Institute of Technology and Science for Woman, Nizamabad, Thlangana, India 
* Corresponding author’s Email: gayathrisenthil.k@gmail.com 

 

 
Abstract: The streaming data technologies play a vital role in real-time applications. To analyze the data, Random 

sampling with replacement has a problem in drawing inferences from the small random sample, while sampling 

without replacement is not preferable to sub-streams that correspond to different sources. Hence, to effectively mine 

the data streams from heterogeneous sources, this work proposes Adaptive Reservoir sampling Of stream In a Time 

window (AdROIT) which partitions the streams in a window on time factor and determines the size of historical data 

on reference window regarding the data changes in the observation window. By measuring the standard deviation of 

the partitioned window, we can identify whether the changes in statistical properties of a data stream is due to one or 

multiple sources. The AdROIT allocates the reservoir sampling size to the source, ensures the adaptability, updates 

the ensemble classifier with dynamically estimated weight, decides accuracy of each member regarding weight. The 

experimental results show that the AdROIT provides better classification and mining results over heterogeneous data 

streams. The AdROIT increases the precision by 16%, compared to the Chain sampling under a high degree of 

heterogeneity. Under the same scenario, the proposed scheme increases the recall by 30 %, more than that in Chain 

sampling.  In high degree of heterogeneity, the Chain sampling utilizes 40kb for storage, more than that of Chain 

sampling. Finally, the high window size reduces the execution time in AdROIT by 15 seconds and improves the 

recall by 40%, compared to the Chain sampling. 

Keywords: Reservoir sampling, Time windows, Ensemble classifier, Heterogeneous sources, Dynamic weighting. 

 

 

1. Introduction 

The streaming data gain considerable attention 

in data mining, due to the emerging applications of 

commercial marketing, sensor networks, and 

telecommunications. The first requirement for a 

stream data analysis is that it must be able to process 

instances ‘ in-stream’, without storing them to 

perform any operation. Sampling over moving 

window is the process of selecting some instances of 

the stream data to represent the characteristics of the 

whole data. Several data stream mining approaches 

implement sampling techniques using two popular 

methods such as sampling with replacement and 

sampling without replacement [1]. The reservoir 

sampling is the commonly used technique in data 

stream mining. It selects fixed size random samples 

without replacement from a stream of an unknown 

size [2]. The critical assumption of the reservoir 

sampling algorithm is independence among the 

samples, or the sample always representing the 

whole stream. This assumption is not valid for 

heterogeneous stream applications. The sampling 

with replacement eliminates the repetitive instances. 

However, lack of proper allocation of reservoir size 

and sampling of stream data from heterogeneous 

groups are the main drawbacks of the existing 

reservoir sampling algorithms [3].  

Stream data analysis is the process of examining 

big data to discover hidden patterns and unknown 

correlations that facilitate better decision making. In 

real applications, the data is not constant, but a data 

stream simultaneously has multiple concept drifts. 

Mostly, the ensemble classifiers are used to 

incrementally learn the continuously arriving data 



Received:  March 5, 2018                                                                                                                                                   216 

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018           DOI: 10.22266/ijies2018.1031.20 

 

for providing fast reaction to the data changes [4]. 

The most important feature for extracting the 

knowledge of streaming data classification is time 

window, which likely to be in a fixed or in an 

adjustable size. The concept of time windows 

represents the importance of recent data for stream 

data classification [5]. In this model, the adaptive 

windowing restricts the data analysis to the most 

recent portion of the stream, and moreover, the 

outdated data are not considered in the classification. 

This method improves the accuracy of stream data 

classification algorithms. However, biased or 

distorted distribution of changes in data streaming 

tends to skewed classes. To deal with the combined 

challenges of concept drifts and the imbalanced 

class problem, this work implements the Adaptive 

Reservoir sampling Of stream In a Time window 

(AdROIT) over continuously arriving data streams.  

The AdROIT improves the precision of 

sampling using the components of time sliding 

window, adaptive reservoir sampling, and pattern 

matching. The recent data can make a significant 

impact on sampling, and so the time-based windows 

include the recently arrived data. However, 

considering the recent data alone is inefficient in 

analyzing the new data. Thus, the AdROIT plans to 

consider the subset of old data as reference window 

and analyze the newly arrived data on the 

observation window. An adaptive reservoir 

sampling dynamically allocates the reservoir to 

individual sub-groups using mean and standard 

deviation measurement. The standard deviation 

between the old and new data assists the AdROIT to 

identify the scenario of both the gradual and sudden 

concept drift successfully. Finally, the weighted 

ensemble classification is utilized for pattern 

detection and sample mapping. This can classify the 

patterns precisely even under a concept drift. In this 

paper, the second section provides a detailed 

discussion of the previous works related to the big 

data sampling and their drawbacks. The third section 

illustrates various components of AdROIT with 

corresponding mathematical equations. The fourth 

section discusses the experimental evaluation of 

AdROIT, and finally, the last section concludes the 

work.  

The main contributions of the proposed AdROIT 

are as follows.  

 The main aim of the proposed AdROIT 

is to analyze the continuously arriving 

data streams without storing the entire 

data streams using ensemble classifier 

and adaptive sampling technique  

 By implementing the standard deviation 

measurement on time partitioned 

window individually using stratified 

sampling technique and the dynamic 

weighting scheme, the AdROIT is 

jointly handling unpredictable and 

imbalanced data changes over a data 

stream 

 To balance the sample size over a time 

window and the accuracy of 

representing the entire data, the 

AdROIT dynamically allocates the 

reference window size of the data 

streams with a provable memory 

guarantee  

 By designing a new weighting 

mechanism for ensemble classification 

members, the AdROIT to react fast to 

skewed data changes and achieve good 

performance on classification accuracy 
The performance evaluation of the proposed 

AdROIT confirms its efficiency of handling 

different types of changes over data streams. 

2. Related works 

Traditional sampling techniques need essential 

ideas to support the data stream applications, 

especially to handle changes over continuously 

arriving data streams. Various stream-sampling 

techniques have been proposed in [1]. Most of the 

applications select samples from the streaming data 

in two methods, such as sampling with replacement 

and without replacement. Sampling with 

replacement mostly takes the fixed size of samples 

randomly, whereas sampling without replacement 

takes the fixed size of samples of every changed 

stream data. The reservoir and chain sampling 

technique are the examples of random sampling [6]. 

However, the conventional chain sampling 

techniques do not guarantee the sufficient number of 

samples stored without any repetition in the 

reservoir, mainly when the data streams emanate 

from heterogeneous sources [7 - 9]. Even though the 

chain sampling does not require any prior 

knowledge about the stream, it occupies reasonable 

memory and degrades the accuracy of 

heterogeneous sources. Conventionally, a few of the 

adaptive reservoir sampling techniques have been 

proposed in data stream applications.  

The majority of the heterogeneous data stream 

applications exploit stratified sampling technique 

[10, 11]. Initially, the data population of 
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heterogeneous sources is clustered into disjoint 

homogeneous groups, and stratified sampling takes 

the samples with the same size from those groups. 

Unlike uniform random sampling, maintaining the 

non-uniform and bounded size of samples is 

desirable to reduce the burden of memory 

management and computational cost [12]. Moreover, 

a key component needed to implement the adaptive 

sampling is windowing. In [13], the instances are 

decomposed into two portions based on the time of 

instances. To draw a sample of non-uniform size of 

the sliding windows, the expired sampled items are 

removed from the sliding window. The continuous 

monitoring model proposed in [14] takes into 

account the aggregation process over the distributed 

data stream. The distributed stream processing 

physically observes and processes the streams using 

different processors, whereas the parallel stream 

processing exploits multiple processors also, but 

only to reduce the response time. The main aim of 

distributed streams model is to minimize the 

communication between processors, while the 

shared-memory parallel case focuses on the 

processing efficiency [15]. Integrated learning-based 

data classification, semi-supervised ensemble 

approach [16] use constraints to derive unsupervised 

models. Even though it uses limited instances, it 

increases the accuracy of classification. The 

traditional K-means clustering is used to cluster the 

stream with the same data structure. The Density-

Based Distribute Data Stream Clustering (DB-

DDSC) determines clusters with different structures 

under the Big data stream environment [17]. 

Recruiting similar services in the same clusters 

provides collaborative recommendation services to 

the system [18].  

Notably, regular research considers the 

frequency of instances as the primary metric in 

sampling [19 - 21]. The Hybrid Streaming proposed 

in [19] maintains histograms for all instances 

approximately and the frequencies of instances are 

stored in the internal structure. To determine the 

frequently appearing patterns across multiple data 

streams, the hybrid streaming technique [19] 

addresses the issues of designing an efficient data 

structure to store historical data patterns, updating of 

frequently appearing patterns, and pattern matching 

over continuously arriving data streams. The 

structure-aware stream sampling in [22] discards 

one instance when adding a new instance to the 

reservoir. The hierarchical clustering algorithm 

provided feedback according to user purchases in 

the past, and it is utilized to discover the 

relationships between the users [23]. This technique 

avoids drifting of the essential data. However, due to 

high cognitive and uncertain characteristics of 

massive data mining, these techniques lack in 

achieving a proper classification with the distance 

method. Improving mining efficiency even along 

with the data changes is an important research topic. 

To accomplish these tasks, it is essential to propose 

countermeasures based on adaptive windowing and 

sampling techniques. The utility function in [24] 

searches the optimal samples using Monte Carlo 

techniques. The problem in finding an optimal 

design of reservoir sampling with different types of 

response variables, such as continuous, counts and 

proportions.  The sampling technique [25] is 

developed to solve the issues of tuning and timing. 

To solve those issues, it executes the hybridization 

of distance and density measures. However, it takes 

into account only one tuning parameter, named as 

granularity. Even though the sampling technique is 

validated on the large dataset, heuristic elimination 

is essential. In [26], a recursive binary partition is 

applied to the input instances to select a set of 

samples for representing the entire stream. The 

issues related to the concept drift are handled using 

greedy optimality and explicit error bounds. To 

reduce the excessive processing time, the sampling 

technique in [27] ensures overlap independence 

even though they are inadequate to the stream data 

generated from heterogeneous sources.   

Mainly, current studies have not focused on the 

problem of maintaining a uniform random reservoir 

samples over heterogeneous data streams [28]. The 

statistical properties of stream data change, possibly 

over time and thus, the allocation of fixed-size 

reservoir optimizations among heterogeneous sub-

streams become a significant concern primarily. To 

solve this issue, the proposed methodology aims at 

maintaining the uniformity of the sample among 

heterogeneous sources, by improving the stratified 

reservoir of sampling. 

2.1 Problem statement 

Traditional systems design the storage 

architectures to scale up with the increasing 

demands of Big data. However, the stream data 

makes it impossible to store the entire data on disk. 

Existing storage systems require unbounded 

memory space to evaluate queries over streaming 

data. Notably, sampling techniques reduce the 

amount of data to process but do not consider the 

situations, where the flow of input data stream is 

generated from more than one source. They assume 

that the arrived data streams as independent and 

identically distributed. However, the data source 

heterogeneity creates a negative impact on the 
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sampling efficiency. Another critical problem to be 

considered in the sampling techniques is concept 

drift or unpredictable data changes over time. 

Existing big data mining techniques are not precise 

yet on how an analytics system deals with the 

changes in real-time streaming data. As 

heterogeneous sources characterize the streaming 

data, the consolidation of different distributed data 

sources to a centralized node discourages the data 

mining process due to the drifting issues. A data 

stream is an infinite big data scenario in which 

underlying data distribution of newly arriving data 

differs from historical data in the real-time 

applications. The conventional data mining 

algorithms become inadequate while dealing a large 

amount of streaming data with changes over time. 

This issue build need to propose adaptive sampling 

techniques that effectively support the continuous 

stream of data arriving from heterogeneous sources. 

3. Proposed methodology 

It is essential to extract the information and the 

interrelationship among the continuously arriving 

streaming data. Knowledge extraction from a hidden 

data needs to describe the patterns or rules and 

compare the new patterns with historical data. The 

reservoir sampling and ensemble classifier are 

widely employed for data stream mining without 

storing the entire data. The main drawback in 

reservoir sampling based ensemble classification is 

the assumption that the sample data always 

represent the whole data stream. This assumption 

turns to the reservoir sampling as invalid for many 

stream data applications, where the stream data is 

generated with distinct statistical properties, i.e., 

sub-groups. Instead of random selection, the 

proposed work provides adaptive sampling over 

sliding windows and discovers the knowledge of 

sub-group data stream without the entire data being 

stored.    

Figure. 1 Adaptive reservoir sampling based distributed 

data stream processing 

The proposed AdROIT includes the components 

of time sliding window, adaptive reservoir sampling, 

and pattern matching. Firstly, time-based windows 

include the stream data arriving within a period. It 

maintains the recent active data and discards the rest. 

A subset of old data is selected as a reference 

window for analyzing the new data in the 

observation window. 

Such windows are called as sliding windows. 

Dynamic updation of the reference window 

improves the performance of AdROIT over varied 

data streams. Secondly, adaptive reservoir sampling 

dynamically allocates the reservoir to individual 

sub-groups. For reservoir sampling, the AdROIT 

takes into account the mean and standard deviation 

in sampling attribute values. By implementing the 

standard deviation measurement of time partition 

window, the AdROIT can differentiate the sudden 

and gradual changes in the data stream and improve 

the efficiency of reservoir sampling. Thirdly, the 

AdROIT exploits the weighted ensemble 

classification to implement the pattern detection and 

sample mapping. According to the classification 

accuracy of majority and minority pattern classes, 

the AdROIT provides weight to the classifier and 

precisely classifies the patterns even with data 

changes. Finally, the analyzed results are stored in 

the DSMS. 

3.1 Sliding window design 

Recent works detect the changes in the data 

stream using comparison techniques. The 

distribution of new data streams is compared with 

the past distributed data streams using discrepancy 

measurement. A subset of past data is selected for 

the comparison to enhance the window model 

accuracy. The selected past data in the time window 

is named as Reference Window (WR). The new 

streams arrived within the t time interval forms 

Observation Window (WO). A large size reference 

window which is closer to the entire distribution of 

data stream S potentially improves the accuracy of 

data change detection. Still, resource constraints 

force the size of WR to be as small. Furthermore, 

large WO is likely to reduce the efficiency of change 

detection technique, due to the data distribution 

discrepancy. The time interval t of WO indicates the 

frequency with which the change detection 

procedure is triggered. Smaller t tends to more 

frequent change detection and, thus, it reduces the 

number of delayed data change detection. However, 

they increase the computational complexity and may 

reduce the efficiency of the proposed change 

detection technique. Therefore, the values of WR and 
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WO have to be determined according to the 

discrepancy level between reference and observation 

windows as found in the previous time. 

3.1.1. Reference and observation window selection  

Consider that the WR and WO on stream S contain 

the SR and SO streams, respectively. The timestamps 

are included with the streams when concatenating 

those windows. Two instances which have the same 

value and different timestamps are also included in 

the Windows, even when they are considered as 

duplicates. The timestamp guarantees the accuracy 

in the frequency measure of instances. Therefore, 

the value of |(WR+WO)| is equal to the |WR| + |WO| 

even when the instances in WR and WO are likely to 

be overlapped. Dynamically generating the 

reference window WR is the primary concern in 

varying data streams. The AdROIT dynamically 

selects the reference window size according to the 

data changes using the Eq. (1). 

After deciding the WR window size, the new 

instances are selected using the stratified sampling 

technique. Where WR’ represents the new reference 

window. When high data change appears between 

the reference and observation window, the size of 

the new reference window gets reduced. Otherwise, 

the AdROIT increases the size of reference window. 

The intersection between the reference and 

observation window, i.e. |𝑊𝑅 ∩ 𝑊𝑂| decides the size 

of the new reference window. That means, when the 

value of intersection between the windows are high, 

the new reference window size is also increased. 

 

|𝑾𝑹′| =
𝟏

𝟐
 × (|𝑾𝑹 ∩ 𝑾𝑶| + 𝑾𝑹)         (1) 

 

Fig. 2 below illustrates the dynamic selection of 

reference window WR. Let a distribution of stream 

be initiated at the t1 time. At the initial time, WR 

window records an entire stream SR, i.e., equal to the 

size of WR. The observation window WO is same as 

the WR at the t1 time. At the time of t2, the window 

WR is full, and thus, the window gets started to 

proceed forward.  

During t2 time, the AdROIT concatenates the 

windows of WR and WO, when the changes are not 

detected in distributed stream data. The deletion of 

duplicate instances results in same window size. The 

window WR’ selects the instances from the window 

of either WR or WO, as it is a recent reference 

instance. During t2 time, small data changes appear 

and so the new reference window WR’ includes the 

instances maximally from the old reference window 

WR. The large size window is appropriate for 

 

Figure. 2 Dynamic reference window-size selection 
 

analyzing the continuously incoming streams when 

there is no or negligible change in the data. Thus, 

frequently appearing instances are selected from 

either the WR or WO, and such of those samples 

replace the stream in WR at time t3. This merge and 

the selection processes are triggered for every 

interval. When the data deals large changes, the 

AdROIT reduces the size of reference window and 

maximally includes the frequently appearing 

instances from the old observation window. Fig. 2 

shows the dynamic selection of window size under 

different cases of data changes. 

3.2 Adaptive reservoir sampling 

Instead of processing entire data streams on the 

window, the AdROIT enhances the stratified 

sampling and selects an appropriate number of 

newly arrived samples from WO to represent the 

entire data. Most conventional works allocate a 

fixed size reservoir of R to observation window WO, 

even when the data is generated from heterogeneous 

sources. An input data stream of k sources (Si) is 

represented as sub-streams S1, S2, S3,............Sk. Each 

source generates n number of streams (Sin). The 

sequence of instances in each source is represented 

as Si1, Si2, .........Sin, such that Si ∩ Sj = ∅ and ∪Si = S. 

Considering a total available reservoir size is |R| 

instances in a reservoir r, and the main aim of 

sampling is to allocate |R| optimally among the k 

sub-streams subject to the data change frequency. 

The AdROIT clusters the instances in a window into 

k disjoint homogeneous strata, R1 , R2 , . . . , . . . , Rk. 

From each stratum, |R|/k samples are taken 

WR 

t1 

No 

changes 

in Data 

Stream 

t2 

WR’ = WR or WO  

 

WO’ 

 

Small 

changes 

in Data 

Stream WR’ 

 
t4 t3 

WR 

 

WR 

 

WO 

 

WR’ 

 

WO 

 

WO’ 

 

WO 

 

High 

changes 

in Data 

Stream 

WO’ 

 

S 

t5 

WR’ 

 



Received:  March 5, 2018                                                                                                                                                   220 

International Journal of Intelligent Engineering and Systems, Vol.11, No.5, 2018           DOI: 10.22266/ijies2018.1031.20 

 

randomly. Due to the heterogeneity among sources, 

the instances in one strata must not belong to any 

other strata, such that Rm ∩ Rn = ∅ and ∪Ri = R. A 

stratified sample of an estimated dynamic size 

provides high statistical precision than a stratified 

reservoir sampling, because of the usage of 

statistical properties such as mean and variance.  

 

𝑫𝒊𝒔𝒄𝒓𝒆𝒑𝒂𝒏𝒄𝒚 𝑫(𝑹𝒊)

= 𝟏 −

[
 
 
 
 
 
{∑ ∑ 𝜶𝒕 × 𝒀𝒊𝒋(𝒕)

|(𝑹𝒊)𝒕|
𝒋=𝟏

𝒉
𝒕=𝟏 }

[
{∑ 𝒀𝒊𝒋

(𝑹𝒊)
𝒋=𝟏 }

|𝑹|
⁄ ]

⁄

]
 
 
 
 
 

 

(2) 

 
𝑻𝒐𝒕𝒂𝒍 𝑫𝒊𝒔𝒄𝒓𝒆𝒑𝒂𝒏𝒄𝒚 𝑻𝑫 = 𝟏 −

[
{∑ {∑ ∑ 𝜶𝒕 × 𝒀𝒌𝒋(𝒕)

|(𝑹𝒌)𝒕|

𝒋=𝟏
𝒉
𝒕=𝟏 }𝒌

𝒎=𝟏 }

[{∑ 𝒀𝒌𝒋(𝒕)
|𝑹𝒌|

𝒋=𝟏 } |𝑹|⁄ ]
⁄ ]  

(3) 

 

Eqs. (2) and (3) illustrate the measurement of 

Discrepancy (D) for reservoir Ri and Total 

Discrepancy (TD) respectively. The AdROIT 

divides the instances in Ri into h divisions, where the 

t represents the time interval within a window and t 

varies from 1 to h. Where Yij represents the sampling 

attribute value of the jth instance belongs to Ri, and 

αt denotes the standard deviation of the instances in 

Ri, at t time. When the weighted summation of the 

attribute value in the numerator is closer to the 

average attribute value measured in the denominator, 

the discrepancy value is increased. When the 

discrepancy value is high, the size of reservoir Ri 

should be increased. Since, the corresponding 

attribute has a significant impact on the stream data 

concept, compared to others. The conventional 

stratified reservoir considers a reservoir entirely for 

measuring the discrepancy. However, it tends to 

imprecise measurement when sudden changes occur 

in the data stream. When there is a gradual change, 

the standard deviation is increased linearly, resulting 

in a high discrepancy. Consider an example such as 

a sudden change occurs at a midpoint, but before 

and after the midpoint, there are no changes. In such 

cases, the standard deviation is also high, and the 

conventional discrepancy measurement shows no 

differences in the above two cases. This factor 

reduces the accuracy of stratified reservoir sampling. 

Instead of taking the entire samples, the AdROIT 

measures the standard deviation for a partitioned 

window separately and measures the discrepancy 

value.  

Substituting Eqs. (2) and (3) in Eq. (4), the number 

of samples required for the reservoir Ri is estimated 

with the knowledge of data changes. 

 

|𝑹𝒊| = |𝑹| × {𝑫(𝑹𝒊) 𝑻𝑫⁄ }               (4) 

 

Notably, when the D(Ri) value is zero, the reservoir 

size is assigned as one, instead of zero. That means 

the samples in a subset represents the same concept. 

The AdROIT determines the sample size of the 

stratum reservoir under the proportional allocation 

and selects the samples from the observation 

window. Instead of equal preference to all strata, the 

AdROIT optimally allocates the reservoir size on 

the change of the data stream. The AdROIT adjusts 

the allocation when the new streams appear, or 

existing instances disappear from the old stream 

data or the statistical properties of data stream get 

changed. Thus, the AdROIT generates and matches 

the pattern, and successfully analyzes the 

continuously arriving data streams using the sample 

data. 

3.3 Pattern matching and storage using ensemble 

classifier 

Appearing changes in continuously arriving data 

streams tend to imbalanced data streaming and 

classification. To deal with this challenge, the 

AdROIT provides dynamic weight to the ensemble 

classifiers, according to their classification accuracy. 

The ensemble classification method with dynamic 

weighting scheme is illustrated in Fig. 3. For each 

new stream, an ensemble classifier is trained. The 

result of all the classifiers in the ensemble decides 

the dynamic weight using majority vote. The vote is 

considered as a majority, for instance, when the 

ensemble member classifies the instances under the 

class which is predicted by most of the ensemble 

members for the same window. The classifiers 

which have errors on same instances render minority 

class. Eq. (5) demonstrates the estimation of 

classification Accuracy (AC) for the ensemble 

members Ci individually using majority and 

minority classes, predicted on a window. It is 

measured using the concept of result overlapping 

with other classifiers. When the result of a classifier 

is highly overlapped with other classifiers, it returns 

high majority vote.  

 

𝑨𝑪𝑪𝒊 =

{
{𝑴𝒂𝒋𝒐𝒓𝒊𝒕𝒚 𝑽𝒐𝒕𝒆𝑴𝒊𝒏𝒐𝒓𝒊𝒕𝒚 𝑽𝒐𝒕𝒆}𝑪𝒍𝒂𝒔𝒔𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 
𝑪𝒍𝒂𝒔𝒔𝒆𝒔

⁄ }   

(5) 
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Figure. 3 Architecture of ensemble classifier in AdROIT 

system 
 

The accuracy of the classifiers is high when most of 

the instances are classified into the majority vote 

classes. Otherwise, the ACCi tends to negative results. 

The reduced accuracy develops an adverse impact 

on the Dynamic Weighting (DW) at t time, as shown 

in Eq. (6).  

 

𝑫𝑾𝑪𝒊(𝒕) = 𝟎. 𝟓 × (𝑨𝑪𝑪𝒊 × 𝑫𝑾𝑪𝒊)(𝒕 − 𝟏)    (6) 

 

For the classifiers that are currently used in the 

ensemble, the dynamically estimated weight is 

updated for every window. When the classification 

accuracy and previous dynamic weight are high, the 

classifier is used for the further processing.  

When the data changes are detected, the new 

classifier is added to the ensemble by replacing the 

old classifier with less weight. Dynamic weight 

provisioning and classifier updation ensure the 

accuracy of the AdROIT system over continuously 

varying data streams. 

4. Performance evaluation and setup  

The performance of the proposed AdROIT is 

evaluated against the Chain sampling [6] with the 

ensemble classifier algorithm. These algorithms 

have been executed using the following tools. This 

work exploits Apache Storm 1.0.2 version as a 

processing engine. A storm has a topology built by 

the spouts and bolts. A spout reads instances from 

an external source and emits them into the bolt, 

whereas the bolt performs the proposed sampling, 

aggregation, joining, and pattern matching. The 

Storm engine does not include any Machine 

Learning (ML) library, and thus, the SAMOA 

platform provides third-party ML for Storm with 

several classifications and clustering 

implementations. The target/SAMOA-Storm-0.4.0-

SNAPSHOT.jar file is used to deploy Apache 

SAMOA in Storm.  

The SAMOA supports the AdROIT to create 

ensemble classifiers in Storm engine. Storm can 

integrate with any queuing and any database system. 

In addition to processing and ML libraries, the tool 

Kafka version 0.8 is used for data stream movement 

and interaction with other tools. The retrieved 

patterns and historical pattern are stored in the Druid 

database version 0.7.3. Storm bolts to do pattern 

classification, and sending the patterns to the Druid. 

4.1 Weather dataset and metrics 

This work experiments weather dataset. The 

dataset is collected from different sources, and the 

characteristics of the data from each source are 

different. It develops gradually, and sudden concept 

drifts over streaming data. The weather dataset 

includes the data on 30 major USA cities, and it is 

collected from 18 sources or websites for every 45 

minutes. The dataset has some common attributes 

among heterogeneous sources such as Timestamp, 

Location, Temperature (°F), and Condition. 

According to the AdROIT, the sampling technique 

collects the samples from each source with 

dynamically estimated window size and the bolt in 

Storm executes the ensemble classification. To find 

the accuracy of sampling and ensemble classifier, 

this work considers the source of Yahoo in 

collecting the weather dataset as the gold standard. 

Due to the usage of the gold standard, this 

evaluation has provided the metrics of precision and 

recall, in addition to the execution time and memory 

utilization. Intuitively, three factors affect the 

performances of the AdROIT and Chain sampling 

algorithms over a data stream from heterogeneous 

sub-streams, namely Degree of heterogeneity, 

Number of Sub-Streams, and Window Size. The 

degree of heterogeneity refers the level of 

discrepancy between sources of stream data. These 

three parameters are used in the performance 

evaluation between AdROIT and Chain sampling, 

regarding the precision, recall, execution time, and 

memory utilization.  

 

Precision: It is defined as the ratio between the 

numbers of correct results to the total number of 

returned results. 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝑵𝒐. 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑹𝒆𝒔𝒖𝒍𝒕𝒔
𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 
𝑹𝒆𝒕𝒖𝒓𝒏𝒆𝒅 𝑹𝒆𝒔𝒖𝒍𝒕𝒔

⁄  (7) 

 

Recall:  It is defined as the ratio between the 

number of correct results to the total number of 

results that have been returned. 
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Figure. 4 Degree of heterogeneity vs. precision 

 

 
Figure. 5 Degree of heterogeneity vs. recall 

 

 
Figure. 6: Degree of heterogeneity vs. memory 

 

 

𝑹𝒆𝒄𝒂𝒍𝒍

=
𝑵𝒐. 𝒐𝒇 𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑹𝒆𝒔𝒖𝒍𝒕𝒔

𝑻𝒐𝒕𝒂𝒍 𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 
𝑹𝒆𝒕𝒖𝒓𝒏𝒆𝒅 𝑹𝒆𝒔𝒖𝒍𝒕𝒔 𝒎𝒖𝒔𝒕 𝒉𝒂𝒗𝒆 𝒃𝒆𝒆𝒏 𝒓𝒆𝒕𝒖𝒓𝒏𝒆𝒅

 

 (8) 

 

Execution Time (Sec): The time taken by the 

AdROIT to take samples from continuously arriving 

streaming data and classify the patterns using 

ensemble classifier.  

 

Memory Utilization (Bytes): The memory usage of 

the AdROIT during sampling process on windows 

and ensemble classification.  

4.2 Experimental results 

Fig. 4 demonstrates the precision of AdROIT 

and Chain Sampling over various degrees of 

heterogeneity. When the degree of heterogeneity is 

low, the precision of AdROIT and Chain sampling 

are relatively close to one another compared with 

the case of a higher degree of heterogeneity. The 

observed influence of the degree of heterogeneity on 

the precision of the AdROIT is reasonable, 

compared to the Chain sampling. The AdROIT 

allocates the size of sub-reservoir on the 

heterogeneity of the sources. For instance, both the 

AdROIT and Chain sampling attains nearly 95% of 

precision with no heterogeneity among the sources. 

However, the difference between the algorithms 

increases with the degree of heterogeneity. As the 

chain sampling exploits divide and conquer and 

provides the uniform distribution of samples, the 

degree of heterogeneity negatively impacts the 

performance of Chain sampling technique. 

Moreover, the chain sampling assumes that the most 

recent items of the stream represent the context of 

the entire window. However, this is not perfect with 

the case of a higher degree of heterogeneity. The 

performance of AdROIT improves the precision by 

16% more than that of Chain sampling with a high 

degree of heterogeneity. 

Fig. 5 shows the influence of the degree of 

heterogeneity on the recall of both AdROIT and 

Chain sampling. Low heterogeneity among stream 

data sources is attributed to the uniform sampling in 

AdROIT, which is closer to the performance of 

Chain sampling. That is, the statistical change 

among sub-streams relatively is small and, therefore, 

it does not cause too much difference in uniformly 

allocated sub-reservoir sizes.  

For instance, the recall of both the AdROIT and 

Chain sampling is equal to 95%. However, the 

significance of heterogeneity increases the 

degradation in the recall while escalating the degree 

of heterogeneity. As the heterogeneity among 

sources represents the running statistics of sub-

streams change over time, thus leads the AdROIT 

system to select a fewer number of samples for each 

source, resulting in recall degradation. High degree 

of heterogeneity decreases the recall of AdROIT 

from 95 to 80%. As the chain sampling excludes the 

frequency of the change among sub-streams in 

reservoir allocation, the recall of chain sampling has 
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Figure. 7 Number of sources vs. execution time 

 

 
Figure. 8 Window size vs. recall 

 

 
Figure. 9 Window size vs. execution time 

 

degraded by 30% with the scenario of high 

heterogeneity, compared to the AdROIT. 

Fig. 6 holds the experiment results on the 

memory utilization on both AdROIT and Chain 

sampling while varying the degree of heterogeneity 

from 0 to 1. The AdROIT has demonstrated less 

memory occupation since the proper measurement 

of standard deviation over time partitioned window 

efficiently allocates the ensemble classifiers. Due to 

no variation in the statistic of sub-streams over time, 

initially, both the AdROIT and Chain sampling 

occupy same memory, i.e. nearly 30 KB. The 

concurrent graphical representations in Fig. 6 reveal 

the adaptivity of AdROIT under the scenario of high 

heterogeneity. When a new classifier adds in both 

AdROIT and Chain sampling, memory has to be 

enhanced to the sub-reservoir wherein the sub-

streams arrive newly. However, improper allocation 

of classifiers due to the result of Chain sampling 

increases the memory utilization up to 165 KB. 

Without the consideration of the standard deviation 

among the sampling attributes of sub-streams, the 

sampling techniques are impossible to allocate the 

classifiers properly. Thus, it results in an 

unnecessary increase in the number of classifiers 

and memory utilization.  

Fig. 7 shows the execution time against the 

number of sources. Notably, the increasing number 

of sources also increases the degree of heterogeneity. 

The number of samples has a significant influence 

on the execution time of AdROIT and Chain 

sampling. From low to a medium number of sources 

(i.e., from 9 to 18), it is observed that the Chain 

sampling extends the execution time of an algorithm 

longer than that in AdROIT. For a higher number of 

sources (e.g., 27 or higher), there is a decrement in 

execution time compared to the AdROIT. The 

reason for this is that Chain sampling does not take 

into account the heterogeneity measurement 

between sub-streams, whereas the proposed 

AdROIT does. The proper allocation of reservoir 

size and classifiers using dynamic weight influences 

the speed of execution only with the scenario of a 

high number of sources. Even though the execution 

time of AdROIT is high compared to the Chain 

sampling, the recall value of AdROIT is always 

better than the Chain sampling.  

Figs. 8 and 9 reveal the result of the recall and 

execution time against the window-size with the 

same degree of heterogeneity (0.4) respectively. As 

in Fig. 8, the sub-sample recall of AdROIT 

distinctively maintains a superior performance over 

the Chain sampling. The AdROIT recall oscillates 

within the range of 90 to 92%, even when the 

window size is increased from 25 to 325 samples. 

The Chain sampling technique does not provide 

importance to the historical information, and so it 

increases the samples with window size, resulting in 

weaker recall value. For instance, with the window 

size of 325 samples, the AdROIT increases the 

recall by 40%, more than that of the existing work. 

However, from Fig. 9, it is observed that the 

execution time of AdROIT extends longer than 

Chain sampling method after the point of 175 

samples. This is due to the computational time of 

discrepancy and updating frequency of dynamic 

weight to the classifiers. 
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5. Conclusion 

This paper has presented an adaptive reservoir 

sampling of the stream in a time window, AdROIT 

over continuously arriving data streams. The 

proposed sampling model allocates the samples on 

the degree of heterogeneity among sources, as it 

introduces more than one source for stream 

generation. The standard deviation of time 

partitioned window improves the accuracy of 

discrepancy measurement that influences the 

accurate representation of entire stream data with 

sampled instances. Moreover, the proposed AdROIT 

includes the ensemble classifier with the dynamic 

weight, which is estimated based on the extracted 

majority votes for each window. The majority of 

votes decide the accuracy of the classifier as well as 

its lifetime in the ensemble. This system improves 

the accuracy even with the unbound size of arriving 

streams over time. The evaluated results show the 

effectiveness of the AdROIT and its outstanding 

performance over the Chain sampling. Unlike the 

existing system, AdROIT allocates the sample 

instances with the knowledge of statistical changes 

over time, instead of random selection, and thus it 

ensures the enhanced accuracy of sampling. The 

dynamic weight of AdROIT enables accurate 

measurement and proper maintenance of the 

classifiers in the ensemble. From the evaluation, the 

AdROIT results indicate 80-90% of recall, when 

varying the degree of heterogeneity among sources, 

as compared to Chain sampling.  

There are possible directions for the sampling 

technique to extend in the future and those are 

discussed as follows.  

 In future, adaptive sampling techniques need to 

be extended to support the multivariate 

sampling environment. 

 In future, it is essential to choose the stream 

data by importance, by analyzing the 

dependencies multi- variate response. 

 Diversity between a different subset of 

sampling needs to be considered for improving 

the prediction accuracy. 
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