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Abstract: Deployment of wireless links (terrestrial and satellite) along with wired links has made extension of the 

Internet even in remote places feasible. TCP/IP protocol suite is an integral part of the Internet. Congestion control 

of TCP plays a vital role in the performance of the Internet. TCP’s unconditional flow control in case of a packet loss 

has always been a concern for researchers. Further, halving congestion window in such conditions without taking in 

to account the current network state is also considered inappropriate. The problem is compounded in wireless 

networks where packet losses occur often due to channel errors rather than the shortfall in the available bandwidth. 

In this situation, TCP’s conservative behaviour underutilises the bandwidth. We therefore, propose a scheme to 

address the issue of underutilization of network resources. The proposed approach, Discrete TCP (DTCP), 

differentiates slow start and congestion avoidance phases while tuning data flow over a transport connection. DTCP 

evaluates ssthresh and cwnd before setting up parameters, based on the existing network condition to enhance the 

performance. The proposed scheme is compared and analyzed with various existing schemes with the help of 

extensive simulations using ns2. Results of simulation based experiments indicate significant performance 

improvement of DTCP on erroneous links and in heterogeneous networks and confirm its suitability. 
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1. Introduction 

The World Wide Web has seen an immense 

growth in past couple of decades. Because of 

everyday expansion of Internet, there is a 

requirement for efficient protocols. HTTP (web 

browsing) and FTP (file transfer) are two widely 

used protocols over the Internet. At the transport 

layer, both utilize TCP (Transmission Control 

Protocol) at the transport layer [1]. In Internet, most 

of the traffic is TCP-based. Thus, TCP has an 

imperative role in the performance of the Internet. 

TCP is used in the Internet that supports many 

applications such as web access, file transfer and 

email. Due to its extensive use in the Internet, it is 

desirable that TCP remains in use to offer reliable 

services for communications in wireless networks 

and in heterogeneous networks. 

TCP is a reliable end-to-end transport layer 

protocol designed for wired networks characterized 

by negligible random packet losses [2]. TCP keeps 

increasing the sending rate of packets as long as no 

packets are lost. Due to inherent reliability of wired 

networks, there is an assumption made by TCP that 

any packet loss is due to congestion. TCP will 

invoke its congestion control mechanism whenever 

any packet loss is detected. Most of the congestion 

control mechanisms reduce sending data rate to 

relieve the network from congestion. The reduction 

is not decided based on the degree of congestion and 

it affects the performance. If the sender has crossed 

a certain threshold, then a drastic reduction in the 

data flow results in inferior performance. If the 

sender is still probing the network capacity, data rate 

should be significantly decreased to help the sender 

stabilize according to available network resources. 

Most of the TCP variants do not take these 

circumstances into account while setting up the data 

rate and offer the same treatment in both the 

scenarios. 
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In this paper, we present a new approach to 

setting up apposite data flow based on the state 

whenever any loss is encountered. The transmitter 

sets data flow related parameters differently during 

slow start and congestion avoidance phases unlike 

conventional TCP. A TCP sender enters in 

congestion avoidance phase after crossing slow start 

threshold and increases data flow linearly to avoid 

possible congestion. Congestion Window (cwnd) is 

doubled per Round Trip Time (RTT) in exponential 

increase, while it is increased just by 1 in linear rise. 

Hence, reduction in cwnd should also be as per the 

current phase of the TCP sender. The proposed 

scheme follows the behaviour of SACK TCP 

whenever it is in the exponential increase, while a 

new algorithm is followed during the linear rise. 

This leads to improved network performance as well 

as robustness. The proposed scheme is compared 

with well-known existing versions of TCP by 

numerous simulations. 

The rest of the paper is organized as follows. In 

the next section, we discuss the existing approaches 

with their limitations. A new scheme named, 

Discrete TCP is proposed and explained with a state 

diagram in Section 3. Simulation environment and 

topologies are discussed in Section 4. Simulation 

results are presented and analyzed in Section 5. We 

conclude the paper in Section 6. 

2. Existing variants of TCP  

In this section, we describe various TCP variants, 

which are used to compare with the proposed 

approach. TCP provides reliability by setting a 

retransmission timer when it sends data. In slow 

start phase, TCP increases cwnd each time an 

acknowledgement is received, by number of packets 

acknowledged [2]. This strategy effectively doubles 

TCP cwnd for every RTT. When cwnd exceeds a 

threshold named slow start threshold (ssthresh), it 

enters congestion avoidance phase. cwnd is 

increased by 1 for each RTT until a loss occurs. If 

the data is not acknowledged before expiration of 

the timer, it retransmits the data. TCP reduces cwnd 

to 1 when Retransmission timeout (RTO) takes 

place. It is because of the original design of TCP to 

operate over wired networks, where congestion was 

the main reason for packet losses. 

TCP Tahoe is the first TCP variant, not 

depending on RTO to detect a packet loss [3]. In 

Tahoe TCP, a loss is detected by the arrival of three 

duplicate acknowledgements (dupack). When a loss 

is detected, fast retransmission is attempted. ssthresh 

is set to half of the current cwnd and  slow start 

begins again from its initial cwnd. Tahoe TCP 

reduces cwnd to 1, which deteriorates performance 

of the connection. 

TCP Reno involves fast recovery to reduce 

impact of cwnd reduction in contrast to TCP Tahoe 

[4]. When three dupacks are received, TCP Reno 

halves cwnd, performs a fast retransmit and enters 

fast recovery. Fast recovery sets new cwnd and 

ssthresh, both by half of the current cwnd. TCP 

Reno is effective to recover from a single packet 

loss, but it suffers when multiple packets are 

dropped from a window of data. 

TCP New Reno tries to improve the TCP Reno’s 

performance when a burst of packets is lost by 

modifying the fast recovery algorithm [5]. In TCP 

NewReno, a new data acknowledgement is not 

enough to take TCP from the fast recovery phase to 

congestion avoidance. Instead, it requires all the 

packets outstanding at the start of the fast recovery 

period are acknowledged. TCP NewReno assumes 

that the packet that immediately follows the partial 

acknowledgement received during fast recovery is 

lost, and retransmits the packet. However, this might 

not always be true because of reordering of packets 

and it affects the performance of TCP. 

Selective Acknowledgement (SACK) TCP adds 

a number of SACK blocks in TCP header options, 

where each SACK block acknowledges a non-

contiguous set of received data [6, 7]. SACK TCP’s 

strength lies in its ability to avoid unnecessary 

retransmissions, based on SACK blocks available 

from the receiver. SACK TCP is able to recover 

from losses faster than New Reno TCP because of 

its ability to avoid retransmission of the packets 

which have certainly reached the receiver. By 

avoiding unnecessary retransmission, SACK TCP 

utilizes the available bandwidth more efficiently, 

which results in overall performance improvement. 

However, SACK TCP also does not reduce the data 

flow discreetly. 

TCP Vegas [8] uses proactive measures to 

encounter congestion. It does not depend solely on 

packet loss as a sign of congestion. It detects 

congestion before the packet losses occur. It 

estimates the unacknowledged packets in the buffer 

of the bottleneck link. It maintains the minimum 

RTT as a reference to obtain the optimal/optimum 

throughput the network can achieve. However, it 

still retains the other mechanism of Reno, and a 

packet loss can still be detected by retransmission 

timeout if the other mechanisms fail. Issues 

identified with TCP Vegas are problems of rerouting, 

persistent congestion, and discrepancy in flow rate 

tied with starting times and link bandwidth [9]. 

Linux TCP [10] sender is governed by a state 

machine that determines the sender actions when 
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acknowledgements arrive. Linux implements a 

number of TCP enhancements proposed by Internet 

Engineering Task Force (IETF), such as Explicit 

Congestion Notification [11] and D-SACK [12]. 

The Forward Acknowledgements (FACK) 

algorithm [13] takes a more aggressive approach 

and considers the unacknowledged holes between 

the SACK blocks as lost packets. Although this 

approach often results in better TCP performance 

than the conservative approach, it is overly 

aggressive if packets have been reordered in the 

network, because the holes between SACK blocks 

do not indicate lost packets in this case. 

TCP Fast Start [14] changes conventional TCP’s 

slow start. The sender caches network parameters to 

avoid paying the slow start penalty for each page 

download. However, there is a risk of performance 

degradation if the cached information is stale. To 

shield the network as a whole from the ill-effects of 

stale information, packets sent during the fast start 

phase are assigned a higher drop priority than other 

packets. 

AFStart TCP [15] dynamically sets ssthresh and 

cwnd. AFStart approaches ssthresh quickly than 

standard slow start. Cwnd is initialized with 4 

packets. An abrupt increase of cwnd may acquire the 

available resources and which may force other 

traffic to get congested. 

Novel Quick Start [16] optimizes slow start for 

the satellite communication networks. The value of 

cwnd is initialized to the detected network 

bandwidth. Error in estimated bandwidth is reduced 

in subsequent iterations. An abrupt change of cwnd 

may lead to congestion in the network. 

An EQF (Explicit Queue-length Feedback) [17] 

uses the queue-length of the congested switch port 

as a congestion signal to trigger TCP congestion 

control for controlling the sending rate of the sender 

in a TCP connection. 

Congestion control of Reno TCP or NewReno 

TCP is recently modified in [18 - 20]. Agility based 

safety growth enhanced slow start algorithm [18] 

tries to reduce Epoch time to increase cwnd quickly. 

This may lead to congestion if bandwidth estimation 

fails or concurrent traffic by other users increases. 

Slow start is modified to increase step up count to 

improve the efficiency [19]. However, packet drops 

are increased by 30% [19], which is wastage of 

network resources. Other connections can utilise the 

available bandwidth if these excess packet drops can 

be avoided. TCP LR-Newreno congestion control is 

an algorithm for IEEE 802.15.4 based standard [20]. 

It increases drop rate of the packets as compared to 

Vegas TCP when channel is error free. It also 

consumes more energy than Vegas TCP, which is a 

crucial parameter in wireless sensor networks 

(WSN). 

Authors of [21] try to reduce the packet drops by 

proposing an enhanced queue management scheme 

for TFRC over wired networks. All the 

routers/intermediate nodes need to change the 

queuing mechanism which is a task. TCP variants 

demanding changes at sender or receiver are viable 

mechanisms. 

3. Discrete TCP  

TCP performance is strongly influenced by its 

congestion control algorithms that limit the amount 

of transmitted traffic based on the estimated network 

capacity. Most of the congestion control 

mechanisms assign new values to cwnd and ssthresh 

after an indication of the loss. It is conventional to 

halve cwnd whenever 3 dupacks are received by the 

sender. We propose an algorithm, which considers 

the state of the sender before setting up the 

parameters, cwnd and ssthresh. Hence, we call it a 

Discrete TCP. Discrete TCP (DTCP) tunes 

parameters differently after a packet loss based on 

slow start and congestion avoidance. 

The sender doubles cwnd after each round trip 

time (RTT) in the slow start. cwnd is incremented 

only by 1 after an RTT if the sender is in the 

congestion avoidance. 3 dupacks trigger the sender 

to attempt fast retransmission and fast recovery is 

evoked after that. DTCP modifies the fast recovery 

based on the slow start/exponential increase or the 

congestion avoidance/linear rise. DTCP reduces 

cwnd and ssthresh by half of the previous cwnd in 

the slow start because the last doubling of cwnd 

probably caused congestion and resulted in the 

packet loss. DTCP reduces cwnd and ssthresh by 3/4 

of the previous cwnd in linear rise because the last 

update in cwnd caused just one additional packet 

over the network. It is obvious that one additional 

packet cannot cause severe congestion and reduction 

of cwnd to half harms the network performance. It is 

also to be noted that this loss can also be due to 

errors of the wireless link in today’s heterogeneous 

networks. Reducing cwnd by half in such 

circumstances is irrational. DTCP gracefully reduces 

cwnd to relieve the network from potential 

congestion, while improving the performance as 

discussed in a later section. The pseudo code of 

DTCP is given in Fig. 1. 

The state diagram of DTCP is shown in Fig. 2. 

The behaviour of the slow start and the congestion 

avoidance phases are as per SACK TCP. Whenever 

cwnd exceeds ssthresh, the TCP sender enters the 

congestion avoidance from the slow start. 

https://www.ietf.org/
https://www.ietf.org/
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Figure. 1 Pseudo code of discrete TCP 

 

Figure. 2 State diagram of DTCP 

 

The congestion avoidance is continued as long 

as new acknowledgements are received. Whenever a 

packet loss takes place on the network, dupacks are 

generated by the receiver. On arrival of 3 dupacks, 

the sender fast retransmits the lost packet and 

changes the state. If the previous state was slow start, 

then standard fast recovery is followed as shown in 

Fig. 2. Whereas modified fast recovery is followed 

if the previous state was congestion avoidance. 

Pseudo code of the proposed algorithm is shown in 

the figure. 

No change is proposed in Discrete TCP for RTO. 

The sender completely follows SACK algorithm in 

the event of the timeout. DTCP does not require 

changes at intermediate nodes or at the receiver side. 

The TCP header and options are also not modified. 

DTCP needs changes only in SACK TCP sender 

implementation, which makes is easily deployable 

and also interoperable with senders and receivers, 

involving different variants. 
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4. Simulation environment  

The performance of Discrete TCP was evaluated 

with several TCP variants, using simulations under 

identical conditions. The simulations were carried 

out using network simulator ns-2[22]. Selective 

Acknowledgement TCP(SACK)[6], Vegas 

TCP(Vegas)[8], Linux TCP(Linux)[10], Forward 

acknowledgement TCP(FACK)[13],  Fast Start 

TCP(FS)[14], and Reno TCP(Reno)[4]   are used for 

evaluation in ns-2. In order to examine the 

performance of DTCP, experiments were conducted 

for three types of environments: 1. only errors, no 

congestion 2. congestion but no error 3. errors and 

congestion. 

The basic error model of ns was chosen for 

experiments. It simulates link-level errors by 

marking the packet’s error flag or dumping the 

packet to a drop target. A random variable is 

uniformly distributed from 0 to 1 to cause packet 

drops according to the percentage error rate. 

Different error-rates (0.00,0.001 and 0.01) in terms 

of percentage of packets were configured during 

simulations to analyze the impact on the 

performance.  

FTP traffic was generated for 100 seconds. The 

purpose of conducting simulations for longer 

duration is to examine the impact of changes on a 

settled TCP connection. Packet size was kept 1500 

bytes to be compatible with Ethernet. All the 

parameters are summarized in Table 1. 

 

Simulation Topologies 

A simple network topology shown in Fig. 3, was 

used to evaluate the performance in the presence of 

only errors. Node 1, node 2 and node 3 are 

transmitter, router and receiver respectively. The 

propagation delay of all duplex links is 50 msec 

with data rate of 100 Mbps. The erroneous packets 

were dropped from the intermediate node 2, 

resulting in a gap in sequence numbers at the 

receiver node 3. Because of equal incoming and 

outgoing data rates at a router, congestion never 

takes place. Hence, all packet losses are because of 

corruption only. This scenario was created to 

 
Table 1. Simulation parameters 

Simulator ns2 

Application FTP 

Packet size 1500 byes 

Link type Full duplex 

Time 100 sec 

Error rates 0, 0.001, 0.01 

Error model Random. Uniform (0-1) 

Queue length  50 

Type of the Queue Droptail 

 
Figure. 3 Erroneous network topology 

 

 
Figure. 4 Congested network topology 

 

characterize a simple wireless network. The 

performance of DTCP along with previously 

mentioned variants was tested in this scenario. 

Simulations were repeated on a topology shown 

in Fig. 4. It shows a typical network with two 

sources (node 1 and node 2), transmitting on 10 

Mbps full duplex link with a 1 msec delay. The link 

between router (node 3) and a common destination 

(node 4), is a bottleneck link with 2 Mbps data rate 

with 10ms delay. A router with a finite buffer of size 

50, drops packets in case of overflow. This 

obviously creates congestion at a router because of 

total incoming traffic from sources is 20 Mbps 

whereas the capacity of the outgoing line is only 2 

Mbps. In the second experiment, we assume error-

free environment to study the impact of only 

congestion. 

Simulations were also carried out on a topology 

shown in Fig. 5. The topology consists two sources 

(node 1 and node 2), transmitting on 10 Mbps full 

duplex link with a 1 msec delay. The link between 

router1 (node 3) and router 2(node 4) is a bottleneck 

link with 5Mbps data rate and 100ms delay. Source 

1 and source 2 are sending data to destination 

1(node 5) and destination 2(node 6) respectively.  

Router 2 is connected to destinations by 10Mbps full 

duplex link with 1ms Delay. Error model is 

configured at router1 to cause losses due to 

corruption also. Error rates were changed during 

simulations in the presence of congestion. The 

packet losses in this environment may be either due 

to congestion or because of errors. This environment 

resembles a heterogeneous network with wired and 

wireless links. 
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Figure. 5 Congested and erroneous network topology 

5. Simulation results and analysis  

The results are analyzed on the basis of number 

of packets successfully delivered over the simulation 

period of 100 seconds. The error rate is varied from 

0.00 to 0.001 and 0.01 in order to check response of 

the network in absence of errors, in presence of 

moderate error rate and in presence of severe error 

rate. Results of three topologies are discussed in this 

section. 

5.1 Errors without congestion 

As the incoming and outgoing link capacity is 

identical in the topology of Fig. 3, no packet is 

dropped because of congestion. 

 

(i) Error rate 0.00 

Initially, the error rate was kept 0.00 to check the 

response of all variants in utopian condition. In this 

congestion-free and error-free network, TCP scheme 

is expected to deliver the best performance in 

absence of channel errors. However, the TCP 

performance is obviously constrained by its inherent 

dynamic parameter like cwnd apart from other 

network parameters like the channel bandwidth, 

delay and router queue length etc. Performance of 

all schemes is observed to be identical in absence of 

errors except Linux TCP as shown in Table 2. This 

indicates that these schemes adopt the conventional 

TCP behaviour in absence of packet losses. Our 

detailed examination revealed that Linux TCP 

delivered almost significantly (almost 6 times) more 

packets than rest of the TCP schemes in the same 

period. We confirmed aggressive behaviour of 

Linux TCP by observing its cwnd at intermediate 

points. All other TCP variants never send more than 

50 packets in one RTT because of specified 

maximum window (maxwnd). Linux TCP does not 

restrict its data flow to 50 and sends up to 543 by the 

end of 100 seconds simulation. We carried out other 

simulations with higher maxwnd values and other 

TCP variants were found to perform same as Linux 

TCP. Note that, this aggressive data flow is not 

friendly with other competing connections in the 

network and it may hamper their performance. In 

the absence of errors, DTCP performs same as other 

TCP as expected. We verified here that no action is 

taken by our proposed algorithm if no loss is 

encountered. DTCP is activated only when any 

packet loss is detected in order to revise the sending 

rate of TCP judiciously. 

 

(ii) Error rate 0.001 

Error rate was then increased to 0.001 to check 

behaviour of various TCP variants in the presence of 

moderate link errors. Vegas TCP shows better 

performance than other variants because of its 

ability of estimating network bandwidth and 

accordingly adjusting cwnd. Note that Vegas TCP 

adopts the conventional behaviour along with 

conservative cwnd value after a packet loss. Linux 

TCP reduces cwnd frequently in case of random 

error losses without considering network condition. 

This leads to underutilization of network. The 

proposed algorithm, DTCP sets up higher data rate 

as compared to other TCP variants, which helps in 

using the available bandwidth promptly and more 

efficiently. The same can be observed in the third 

column of Table 2. 

DTCP delivers only 7.8% lesser packets in 

presence of 0.001 error rate than the most 

favourable network condition of 0.00 error rate as 

compared to other variants, which reduce by 19.3% 

to 87.9% as mentioned in Table 2. Vegas TCP is 

second best to DTCP, while Linux TCP’s aggressive 

data rate is controlled by link errors, which 

deteriorates performance greatly. 

 

(iii) Error rate 0.01 

Error rate 0.01 was also configured over the 

network to check the response in the presence of a 

highly error-prone link. DTCP surpasses all other 

 
Table 2. Number of delivered packets for erroneous 

network 

 

error=0 error=0.001 error=0.01 

SACK[6] 24762 15940 6331 

Vegas[8] 24587 19836 8456 

Linux[10] 146302 17567 6561 

FACK[13] 24762 17009 6226 

FS[14] 24762 14598 5259 

Reno[4] 24762 16225 5049 

DTCP 24762 22818 8671 
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protocols once again as observed from the last 

column of Table 2. The performance gain in the 

number of successfully delivered packets varies 

from 2.54% to 71.7% in DTCP against other 

protocols. DTCP performs 43.14% and 36.96% 

better than one of the widely used implementation 

SACK TCP for 0.001 and 0.01 error rates 

respectively. The rationale behind this improvement 

is pertinent cwnd setting while encountering a loss at 

the sender. 

5.2 Congestion without errors 

In order to examine compatibility with the 

existing terrestrial wired network, the next set of 

experiments was carried out in a congested 

environment without link impairments. Incoming 

data flow at a router, as shown in Fig. 4, is much 

higher than the capacity of the outgoing link. 

Multiple losses in a single transmitted window tend 

to be present due to congestion. DTCP restricts 

packet sending rate in a congested network as there 

is no scope of utilizing bandwidth further. No 

improvement can be expected in this case. Therefore, 

there was no valid reason for DTCP to set up cwnd 

according to the proposed modifications as most of 

the losses were from the slow start phase. The 

bottleneck link in Fig. 4 can carry up to 2×106 

bits/sec or 25× 104 bytes/sec. Thus, maximum 

16666 packets of 1500 byes each can be sent in 100 

seconds simulation period. All TCP versions 

perform nearly same as seen in Table 3. However, it 

is noteworthy that DTCP does not deteriorate 

network performance when deployed in severely 

congested environment. 

5.3 Errors and congestion 

Real networks are likely to suffer from errors 

and congestion together. Most of heterogeneous 

networks experience packet losses due to congestion 

as well as errors. The same was tested on topology 

shown in Fig. 5 to examine all the possibilities. The 

error rate was increased to 0.001 to evaluate 

behaviour in a realistic environment. DTCP 

transfers highest number of packets followed by 

Vegas TCP [8]. DTCP delivered 4.48% and 23.2% 

more packets than Vegas TCP and SACK TCP, 

respectively. When error rate was further increased 

to 0.01 to observe the impact of highly noisy 

wireless links, DTCP outperformed all other 

schemes considered for experiments. DTCP’s 

performance was found to be 10.55% and 58.47% 

higher than Vegas TCP and SACK TCP, 

respectively. DTCP delivers 92% more packets than 

FS TCP in case of congested network having 0.01 

error rate. Fig. 6 illustrates the percentage 

improvement of DTCP in terms of delivered packets 

over other TCP schemes. It can be observed from 

that DTCP performs better when higher error rates 

were encountered. It validates DTCP’s ability to 

rightly assign cwnd according to the state of the 

network. 

 
Table 3. Number of delivered packets for error-free congested network 

 SACK Vegas Linux FACK FS Reno DTCP 

Sender 1 7274 8334 8192 8148 8560 7366 8097 

Sender 2 8983 8330 8084 8119 7610 8728 8182 

Total Packets 16257 16664 16276 16267 16170 16094 16279 

 

Table 4. Number of delivered packets for erroneous and congested network 

 

error=0 error=0.001 error=0.01 

SACK 40217 30631 10592 

Vegas 40289 36118 15183 

Linux 39373 32306 10644 

FACK 40217 30833 10630 

FS 40217 27979 8705 

Reno 40217 30567 9690 

DTCP 40217 37739 16786 
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Figure. 6 Improvement of DTCP over other variants for erroneous and congested network 

 

6. Conclusion 

In this paper, we propose a modification to 

change congestion control algorithm of the 

conventional TCP with a more appropriate value of 

cwnd in case of a packet loss. The proposed scheme, 

Discrete TCP (DTCP) tunes data flow differently in 

case of slow start and linear rise. The objective is to 

use available bandwidth more efficiently. 

The performance of the proposed scheme is 

evaluated over different topologies in presence of 

different error rates, delay, and levels of congestion. 

The performance of the proposed scheme is 

compared with other well-known TCP variants. Our 

observations are as under: 

1. In absence of errors, performance of all TCP 

variants is observed to be same. DTCP 

adopts behaviour of the conventional TCP 

when links are error free. DTCP improves 

performance up to 56.3% and 71.7% over 

erroneous network with 0.001 and 0.01 error 

rates respectively. 

2.   There is no improvement in case of severe 

congestion, which in turn confirms network 

friendliness of DTCP.   

3. Simulation results indicate substantial 

performance enhancement in DTCP as 

compared to many other TCP variants in the 

presence of errors in a congested network 

also. 

All changes in implementation are confined to 

the sending side. No changes are needed in the TCP 

header, routers or at the receiver implementation. 

Hence, it is interoperable with any other TCP 

implementation at the receiver. 
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