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Abstract:  Nowadays, extracting fuzzy concepts using fuzzy formal concept analysis (FFCA) is an increasingly 

important process in many fields including data-mining, information retrieval, and Ontology construction. However, 

recent studies have heightened the need for more efficient approaches for extracting a reduced count of distinct fuzzy 

concepts in a reasonable time. This paper aims mainly to address such challenge. Generally, the proposed approach 

is composed of two main stages to handle quantitative data effectively. Firstly, a data-sensitive fuzzification stage 

maps the many-valued context to a more consistent fuzzy one. Secondly, an enhanced algorithm generates a reduced 

count of valuable fuzzy concepts and merges the more similar ones. Accordingly, the proposed approach can 

efficiently handle very large datasets where the process of extracting all fuzzy concepts is an intractable task. 

Surprisingly, the proposed approach reduces the overall processing time and complexity when compared with some 

other previous approaches. 

Keywords: Fuzzy formal concept analysis, One-sided fuzzy concepts, Data-sensitive fuzzy set, Fuzzy fix-points, 

Knowledge extraction. 

 

 

1. Introduction 

Formal concept analysis (FCA) is a robust lattice 

theory branch that has been inspired in 1980’s [1, 2] . 

It can be defined as "a field of applied mathematics 

based on concepts and concept hierarchies” [3, 4]. 

Amazingly, FCA has been successfully involved in 

many fields and hence many applications such as 

linguistics, information retrieval [5], economics and 

much more [6]. In fact, traditional FCA can only 

handle crisp formal contexts effectively. Such 

binary context represents a binary relationship 

between objects and attributes. In consequence, 

FCA depends mainly on the classical crisp set 

theory in which an object either belongs totally to a 

set or not belong at all. 

Generally, FCA is used to generate a set of 

formal concepts, also known as fix-points  [1, 2]. 

Afterward, it draws the corresponding conceptual 

hierarchy called formal concept lattice. Such 

concept lattice shows the parent/child relationships 

between the extracted formal concepts. Moreover, 

FCA can further generate a set of attribute 

implications and associations. In consequence, it 

best suits association rule mining problem.  

Ineffectively, traditional FCA uses a crisp 

scaling method to handle quantitative context by 

dividing the attribute domain to a set of disjoint 

intervals. Unfortunately, the crisp scaling method 

faces the problem of crisp boundaries and hence not 

suitable for human-like reasoning [3]. In contrary, 

fuzzy formal concept analysis (FFCA) has the 

ability to handle such quantitative contexts more 

effectively in a flexible human-like manner with the 

aid of fuzzy set theory. Accordingly, crisp 

boundaries problem is perfectly handled by the 

fuzzification process. In consequence, a multi-

valued attribute is scaled to a set of linguistic labels 

with matching degrees in the range of [0, 1] [7] .  

Generally, the process of extracting the whole 

set of fuzzy concepts is a time-consuming problem, 

especially in case of large contexts. Such process is 

a #P-complete problem [8]. But fortunately, the 

complexity can be reduced if the relation between 
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the objects and the attributes is relatively small even 

with large objects/attributes sets [9] . 

This paper proposes a more efficient enhanced 

approach for extracting one-sided-fuzzy concepts 

from a multi-valued context. In the first stage, it 

benefits from using data-sensitive fuzzy terms in 

which a linguistic concept is data-sensitive and has a 

flexible definition. Moreover, in the second stage, it 

reduces the processing time associated with 

extracting the whole set of fuzzy concepts, regarding 

some other related algorithms. .So, the main 

contribution of this paper is to enhance fuzzy 

concept semantics in addition to extracting them in a 

more reasonable time. 

The rest of this paper is organized as follows: 

Section 2 presents basic FCA notions and 

definitions. Moreover, FFCA notions and definitions 

are addressed in Section 3. Subsequently, Section 4 

presents some FFCA related works. The proposed 

data-sensitive approach to generate one-sided fuzzy 

concepts is introduced in Section 5. Consequently, 

Section 6 shows the conducted experiments for 

evaluating the proposed algorithm.  Eventually, 

conclusion and future works are introduced in 

Section 7. 

2. FCA notions and definitions 

This section presents some basic definitions and 

notions related to classical FCA, more definitions 

and notions are found in [1, 3, 4]. Generally, formal 

concept analysis seeks mainly to discover 

underlying clusters of objects and attributes in a 

specific dataset [10]. Mainly, FCA accepts the input 

binary formal context that represents a crisp relation 

I between objects G and their attributes  𝑀 . In 

consequence, a formal context can be simply 

defined as a cross table of object rows, and column 

attributes (or vice versa). The intersected cell 

between each object g and attribute m has a cross 

symbol if (g, m) ∈ I.   

Definition 1: A formal context is a triple K= (G, 

M, I) that consists of objects G, columns M and a 

crisp relation between objects and columns I⊆ G×M 

such that if g ∈ G and m ∈ M are in relation in I, 

then it will be represented by the pair (g, m) ∈ I or (g 

I m) and is read as “object g has attribute m”. 

Given that A ⊆ G and B ⊆ M, the derivation of A 

and B is given by Eq. (1) and Eq. (2) respectively:  
 

𝐴 ↑∶= { 𝑚 ∈  𝑀| (𝑔 𝐼 𝑚) ∀ 𝑔 ∈ 𝐴}                (1) 
 

Where A↑ (denoted as A’) is a set of common 

attributes in M shared by all objects in A. 

 

𝐵 ↓: = { 𝑔 ∈  𝐺 | (𝑔 𝐼 𝑚) ∀ 𝑚 ∈  𝐵}              (2) 
 

Where B↓ is a set of all objects that have 

relationships with all attributes in the set B. 

Definition 2: the pair (A, B) is said to be a formal 

concept of the formal context K= (G, M, I) if A ⊆ G, 

B⊆ M, A'= B and B'= A. Usually, A and B refers to 

concept extent and intent respectively. 

The unordered set of all concepts for context K= 

(G, M, I) is given by Eq. (3). 

 

𝔅(𝐺, 𝑀, 𝐼) = {(𝐴, 𝐵)| 𝐴′ =  𝐵 𝑎𝑛𝑑 𝐵′ =  𝐴} (3) 
 

Definition 3: Let (A1, B1) and (A2, B2) be two 

formal concepts of the formal context K= (G, M, I), 

then (A1, B1) is a sub-concept of (A2, B2) if A1 ⊆ A2 

(i.e. B2 ⊆ B1). Such relation is denoted by (A1, B1) ≤ 

(A2, B2) ⟺ (A1 ⊆ A2) ⟺ (B2 ⊆ B1). 

The set of all formal concepts of K (G, M, I) 

partially ordered by sub/super relation is called 

concept lattice and is denoted by ẞ (G, M, I). 

Classical FCA can only handle crisp binary 

context effectively which is not the usual case in 

real-world dataset fields. It suffers from the problem 

of crisp boundaries where it is difficult to set sharp 

borders among scaled attribute intervals. 

Definition 4: A multi-valued context K=(G, M, V, 

I) is composed of a set G of objects, a set M of 

attributes, a set V of attribute values and a ternary-

relation I between G, M, and V (i.e., I ⊆ G×M× V). 

An element (g, m, v) ∈ I indicates that the attribute 

m has the value v for the object g. 

3. FFCA notions and definitions 

Generally, there exist numerous viewpoints of 

FFCA and hence various fundamental definitions set. 

Consequently, FFCA can be categorized, according 

to the way of involving the fuzzy set theory, into (a) 

Full-sided FFCA where both sides of fuzzy concepts 

are fuzzy sets (fuzzy extent and fuzzy intent). Such 

type of FFCA is extensively introduced in literature 

in the Bělohlàvek’s series of papers [11-14]. (b) 

One-sided FFCA where only one side of fuzzy 

concepts is fuzzily defined while the other side is 

crisply defined (fuzzy extent and crisp intent) or 

(crisp extent and fuzzy intent). Such category of 

FFCA is presented in [5, 10, 15-18].  

This section introduces basic definitions and 

notions regarding the one-sided FFCA with fuzzy 

extents and crisp intents concepts. 

Definition 5: A fuzzy formal context K is a triple 

(G,  M,  I= φ (G ×M)) where G is a finite object set, 

M is a finite attribute set and I is a fuzzy set on the 
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domain G×M representing a relation between 

objects set and attributes set. Each relation (g, m) ∈ I 

has a membership value μ (g, m) ∈ [0, 1]. A 

threshold interval [t1, t2], where 0 ≤ t1 ≤ t2 ≤ 1, can 

be applied to the fuzzy context to eliminate each 

relation instance (g, m) whose membership value μ 

(g, m) is out of such threshold interval. 

Effectively, fuzzification transforms the multi-

valued context to the corresponding fuzzy one using 

suitable membership functions. Afterward, the 

resulting fuzzy context feds into the FFCA 

algorithm to generate all fuzzy concepts. 

Definition 6: A fuzzy concept of the fuzzy 

context K (G, M, I) is a pair (AF=φ (A), B) where AF 

⊆ G is the fuzzy concept extent, B ⊆ M is the crisp 

intent, A' = B and B' = A.  

Definitions of A' and B' vary according to two 

main points of view. Eq. (4) and Eq. (5) introduces 

the first viewpoint [16-18]. 
 

𝐴′: =  {𝑏 ∈ 𝐵 | ∀𝑎 ∈ 𝐴:  𝜇𝐼(𝑎, 𝑏)  ≥  𝜇𝐴 (𝑎)} (4) 

 

𝐵′ ∶=  {
𝑎

𝜇𝐴(𝑎)
 | 𝜇𝐴(𝑎) = 𝑚𝑖𝑛𝑏∈𝐵 ( 𝜇𝐼(𝑎, 𝑏) )}  (5) 

 

Where 𝐴′ is the crisp intent and 𝐵′ is the fuzzy 

extent. 

On the other hand, Eq. (6) and Eq. (7) present the 

second viewpoint that relies primarily on threshold 

interval [t1, t2] [19-21]. 
 

𝐴′ = {𝑏 ∈ 𝑀|∀𝑎 ∈ 𝐴:  𝑡1 ≤ 𝜇𝐼(𝑎, 𝑏) ≤ 𝑡2}   (6) 

 

𝐵′ = {𝑎 ∈ 𝐺| 𝑡1 ≤ min𝑏∈𝐵( 𝜇𝐼(𝑎, 𝑏)) ≤ 𝑡2}  (7) 
                                                                          

Where A' =B is the crisp intent and B' =A is the 

fuzzy extent. 

In this paper, the proposed algorithm relies on 

Eqs. (6) and (7). Such equations set usually 

generates less number of fuzzy concepts than Eqs. 

(4) and (5).  

Definition 7: Let (φ (A1), B1) and (φ (A2), B2) be 

two fuzzy concepts of the fuzzy context K (G, M, I). 

The fuzzy concept (φ (A1), B1) is said to be a sub-

concept of (φ (A2), B2), denoted by (φ (A1), B1) ≤ (φ 

(A2), B2), if φ (A1) ⊆ φ (A2) ⇔ B2⊆ B1.  

A fuzzy concept lattice of the fuzzy formal 

context K (G, M, I) is defined as the set of all fuzzy 

formal concepts ordered by the child/parent concept 

relation (partial order ≤). 

4. FFCA related works 

In general, fuzzy concepts generation algorithms 

can be classified according to the type of generated 

fuzzy concepts. Consequently, such algorithms can 

be categorized into three main categories (a) crisply-

generated fuzzy concepts. (b) full-sided fuzzy 

concepts and (c) one-sided fuzzy concepts. 

Algorithms that generate fuzzy concepts crisply 

aim mainly to convert the fuzzy context into an 

isomorphic crisp one using some transformation 

techniques. Afterward, any classical FCA algorithm 

can be used to generate the whole set of fuzzy 

concepts. Moreover, a post-processing step is 

usually required to eliminate redundant concepts and 

generate a reliable complete set of fuzzy concepts. 

Such approaches can be found in [3, 22]. 

Usually, the number of crisply generated fuzzy 

concepts is relatively less than the number of all 

full-sided-fuzzy concepts. Although transforming 

fuzzy context into binary one enables the use of the 

existing classical algorithms, it causes an additional 

complexity due to the following two causes:  

1) Additional processing is needed to convert the 

fuzzy context to crisp one and the consequent 

concepts transformation to fuzzy ones. 

2) Expanding the context results in increasing 

the number of objects and hence causes a 

serious increase in complexity [16]. 

On the other hand, full-sided based algorithms 

generate fuzzy concepts with fuzziness involved in 

both concept extent and intent. Such algorithms are 

found in [11-14] and rely on the fact that the fuzzy 

subsets relation is strongly linked to the implication 

notion. Consequently, it formulates FFCA in terms 

of fuzzy algebras. Abstractly, this approach defines 

the complete lattice L as (L,  ∨,  ∧,  ⨂,  →,  0, 1)  

such that (L,  ∨,  ∧,  0, 1) represents the complete 

lattice. Moreover, (L, ⨂, 1) represents the abelian 

monoid and →, ⨂ represent the adjoint operations 

(i.e., a ⨂ b ≤ c ⇔ a ≤ b ∧ c). The set of whole fuzzy 

sets in the universe of discourse G is denoted by LG 

where A: G → L is a mapping that gives each 

element g ∈ G a truth value A(g) ∈ L. Using such 

definition, Eqs. (8) and (9) define the derivation 

operators of extent and intent for context (G, M, I). 
 

A↑ (m):= ⋀ (A(g)  → I(g, m))𝑔∈𝐺                      (8) 

 

B ↓ (g) = ⋀ (B(m)  →  I(g, m))𝑚∈𝑀                     (9) 
 

In Eqs. (8) and (9), both intents and extents are 

fuzzy sets. It is worth mentioning that the count of 

extracted fuzzy concepts depends entirely on the 

count of distinct membership values generated by 

the used implication function (Lukasiewicz/ Gӧdel 

implications). Professionally, full-sided based 

algorithms extract all possible fuzzy concepts. But 

unfortunately, they usually result in a huge number 
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of fuzzy concepts and hence consume unordinary 

larger processing time. Consequently, they are of 

limited practical use, especially for huge datasets. 

As a result, some algorithms have been inspired to 

decrease the count of extracted fuzzy concepts and 

perform concepts reduction as in [23, 24]. 

On the other hand, one-sided-based algorithms 

aim mainly to generate fuzzy-concepts with fuzzy 

extent / crisp intent or crisp extent / fuzzy intent. 

Such algorithms usually reduce the number of 

generated fuzzy concepts with an acceptable loss of 

information by ignoring fuzziness of one concept 

side. In consequence, they are suitable for large 

datasets. Furthermore, they gained wide use in 

practical applications such as association rule 

mining and fuzzy Ontology construction. Such 

algorithms can be found in [5, 10, 15-18].  
However, almost recent algorithms suffer from 

the use of linguistic values with a fixed and different 

definition for each specified universe of discourse.  

5. The proposed approach 

The proposed approach incorporates two main 

phases. The first one is concerned with fuzzifying 

the given dataset into data-sensitive fuzzy one in a 

reliable manner. The second phase represents an 

enhanced algorithm for fuzzy concepts extraction 

with an impacting reduction in complexity and 

improvement in the output quality. 

5.1 Data-sensitive fuzzification phase 

This phase is concerned with the preparation of 

the given dataset into a fuzzy one. It is based mainly 

on the idea of data-sensitive fuzzy sets in which a 

linguistic label or linguistic value has dynamic 

definition respecting the minimum and maximum 

values in its universe of discourse [25]. Fig. 1 

represents an example of three linguistic-values 

namely ‘low’, ‘moderate’ and ‘high’ defined over a 

linguistic variable respecting its minimum and 

maximum values.  Accordingly, the use of the same 

linguistic-label with different attributes in the 

dataset becomes valid and reliable since it has just 

one unified definition.   

 
Figure. 1 Data sensitive linguistic labels 

5.2 Fuzzy concept extraction phase 

In this phase, the proposed enhanced algorithm 

is used to extract the set of one-sided fuzzy concepts 

satisfying a predefined threshold. This algorithm 

extracts fuzzy concepts by applying a set of 

modifications to the Yang et al. algorithm [21]. Such 

enhancement reduces the time consumed to obtain 

the same result by pruning unnecessary processing. 

Furthermore, the proposed algorithm generates one-

sided fuzzy concepts using Eqs. (6) and (7). 

Consequently, the set operations used for evaluating 

fuzzy concepts’ extents are Zadeh’s fuzzy set 

operations [7] whereas the set operations used for 

intents are crisp set operations. 

The proposed algorithm takes a raw input fuzzy 

context and a threshold interval as inputs. Afterward, 

it filters the input fuzzy context respecting the 

predefined threshold interval on the membership 

values while extracting the fuzzy concept extent. 

Consequently, no extra time wasted for converting 

the entire context to the filtered one. 

The processing scenario of the proposed 

algorithm can be described as follows: Initially, in 

line 1, the fuzzy concept list C is initialized by the 

fuzzy concept (M', M) where M denotes the whole 

attributes set and, M' is the result of applying 

derivation operator over M. In consequence, M' 

refers to objects that share all attributes in M. Here 

M' is defined using Eq. (7). 

Proposed algorithm for fuzzy concepts extraction  

Inputs: 1) A fuzzy formal context K=( G, M, I=φ (G×M)) 

      2) A confidence threshold T= [t1, t2 ] 

Output: The set C of all fuzzy concepts of K 

Begin 

1     Initialize  C ⟵ (M′, M) 

2      for each object g ∈  G  

3          Set NewPerRow ⟵ 0; 
4          if   g’ ∉  C. intents then 

5                 C ⟵ C ∪  ((𝑔′′, 𝜇𝐼),   𝑔′);   
6                  NewPerRow + +; 
7               for j = 0 to (C. size − NewPerRow) 𝑑𝑜 

8                  if |cj. Intent|> 1 and |cj. Intent| < |M|    

9                          Inters: = cj. Intent ∩  g′ ; 

10                        if  Inters ∉  C. intents then 

11                            C = C ∪  ((Inters ′′, μI),   Inters ′);   

12                            NewPerRow + +; 
13                         end if 

14                 end if 

15             end for 

16      end if 

17  end for 

18  if   G ∉ C. extents then 

19       C ⟵ C ∪ (G, G′) 

20  end if 

𝝁 Low Moderate High 

Min Min+ 0.5 (Max-Min)   Max Linguistic 

Variable 
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In line 2, a loop is used to iterate over each 

object 𝑔  in the object set G. In line 3 a variable 

NewPerRow is initialized to 0 for each object. Such 

variable is used mainly to eliminate redundant 

iterations to extract fuzzy concepts. Consequently, 

line 4 checks if the current object intent (g') already 

exists in the fuzzy concept list intents (C.intents). If 

so, then a new concept ((g'', μI), g') is added to the 

concept list C and the NewPerRow variable is 

incremented by one (line 6). Such new concept ((g'', 

μI), g') is calculated such that: 

- g'' is the closure of the object g that is resulted 

by applying Eq. (6) then applying Eq. (7). 

- μI represents the membership value of each 

object in the set g'' to the intent set g'. Such 

membership value μI is calculated by Zadeh’s 

T-norm operator (Minimum). 

Subsequently, the loop in line 7 iterates over all 

fuzzy concepts in the list C and excludes the new 

added fuzzy concepts by the object g. Therefore, this 

loop starts from the beginning index 0 to the size of 

the concept list minus NewPerRow that represents 

the number of fuzzy concepts generated by the 

object g. Such treatment removes the unjustified 

redundant iterations. Moreover, this loop aims 

mainly to extract the new fuzzy concepts resulted by 

intersecting the newly discovered concept (line 5) 

and every old concept cj in the fuzzy concept list C. 

In line 8, another test checks if the concept intent 

length |cj.Intent| is greater than 1 and less than the 

total count of attributes |M|. If so, the intersection 

between the concept intent (cj.Intent) and the 

currently-discovered concept intent g' is calculated. 

Moreover, if the intersection results in a new 

concept intent (line 10), then a new concept is 

discovered with the intersection result as intent (line 

11) and the NewPerRow variable is incremented. 

Finally, after completing all loops, an additional 

test is carried out to check if the concept list C 

doesn’t contain the extent G. If yes, then the new 

concept (G, G') is added to the list C such that: 

- G is the whole objects set all with 1 

membership value. 

- G' is the derivation of G that is evaluated 

using Eq. (6). 

Generally, the proposed algorithm relies mainly 

on the number of distinct intents per objects. In 

consequence, it performs more efficiently in case of 

the counts of distinct intents per objects are 

relatively small. 

Unlike Yang et al. algorithm, the proposed 

algorithm checks if the object intent already exists in 

the concept list before any computation (line 4). If it 

exists, then no extra-iterations are performed. And 

hence processing time is shortened. Moreover, the 

use of NewPerRow variable prevents rechecking 

intents previously generated by the same object. 

Consequently, the proposed algorithm outperforms 

the corresponding Yang et al. algorithm by removal 

of unnecessary iterations. Such observation is shown 

in details in the experiments section. 

6. Experiments and evaluation 

First of all, an example is introduced to illustrate 

the entire process of the proposed approach for 

fuzzy concepts extraction.  

Example 1: Consider a multi-valued context 

given in Table 1 where there exist two attributes: 

salary and age. Such multi-valued context is 

fuzzified such that each linguistic variable has three 

linguistic values. For instance, salary linguistic 

variable has three linguistic values: low, moderate 

and high. On the other hand, the age linguistic 

variable has three linguistic values: young, youth 

and old. As illustrated in Fig. 2, all linguistic values 

are defined as non-stationary fuzzy sets to get a 

unified definition for all linguistic variables. In 

consequence, Fig. 2 introduces an example of a 

unified definition that is set by the designer for all 

linguistic variables. Afterward, such data-sensitive 

definition of linguistic values is applied with all 

used linguistic variables. 

Table 2 illustrates the range intervals of both 

salary and age attributes. Moreover, Table 3 shows 

the fuzzy context produced by fuzzifying the multi-

valued context in Table 1 through applying 

linguistic values definitions described in Fig. 2. 

Table 1. Multi-valued context example 

Obj. Salary Age 

O0 1000 20 

O1 5000 27 

O2 7000 30 

O3 10000 45 

O4 8000 50 

 
Figure. 2  Data sensitive linguistic labels definition 

designed for the multi-valued context shown in Table 1. 

Table 2.  Ranges of salary and age attributes 

Attribute Min Max 

Salary 1000 10,000 

Age 16 60 

𝜇(𝑥) 𝜇0: Low 𝜇1: Moderate 𝜇2: High 

Min+ 0.75 

(max-min) 
  Max Min+ 0.5 

(max-min) 

Min+ 0.25 

(max-min) 
Min 

𝑥 
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In consequence, the resulted fuzzy context 

becomes ready for applying the proposed fuzzy 

concept generation algorithm that uses Eqs. (6) and 

(7) like in [21]. Accordingly, the whole set of 

generated fuzzy concepts with a threshold interval 

of [0, 1] is illustrated in Table 4.  

Alternatively, Table 5 shows the result of 

adopting equations Eqs. (4) and (5) in algorithms 

like in attribute-based algorithm [26] and Fuzzy 

CbO algorithm [27]. 

It is noticeable that the count of the fuzzy 

concepts generated using Eqs. (6) and (7) is mostly 

less than the corresponding ones using Eqs. (4) and 

(5). Consequently, recent FFCA-related works, like 

[28], that need a great reduction in the fuzzy 

concepts count use Eqs. (6) and (7) for generating 

fuzzy concepts.  
 

Table 3. The fuzzy context generated by applying the 

data-sensitive linguistic values defined in Fig. 2  

Obj SalLow      Salmod Salhigh Ageyoung Ageyouth AgeOld 

O0 1 0 0 1 0 0 

O1 0.22 0.78 0 1 0 0 

O2 0 0.33 0.67 0.73 0.27 0 

O3 0 0 1 0 0.36 0.64 

O4 0 0 1 0 0 1 

Table 4. Fuzzy concepts extracted using Eqs. (6) and (7) 

from fuzzy context in Table 3 with threshold interval [0, 

1] 

# Fuzzy formal concepts 

1 { (
𝑂0

1.0
) (

𝑂1

1.0
) (

𝑂2

1.0
) (

𝑂3

1.0
) (

𝑂4

1.0
) } , {  } 

2 { (
𝑂0

1.0
) (

𝑂1

1.0
) (

𝑂2

0.73
) } , { 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔 } 

3 { (
𝑂2

0.67
) (

𝑂3

1.0
) (

𝑂4

1.0
) } , { 𝑆𝑎𝑙ℎ𝑖𝑔ℎ  } 

4 { (
𝑂0

1.0
) (

𝑂1

0.22
) } , { 𝑆𝑎𝑙𝐿𝑜𝑤 , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔 } 

5 { (
𝑂1

0.78
) (

𝑂2

0.33
) } , { 𝑆𝑎𝑙𝑚𝑜𝑑 , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔 } 

6 { (
𝑂2

0.27
) (

𝑂3

0.36
) } , { 𝑆𝑎𝑙ℎ𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑡ℎ } 

7 { (
𝑂3

0.64
) (

𝑂4

1.0
) } , { 𝑆𝑎𝑙ℎ𝑖𝑔ℎ , 𝐴𝑔𝑒𝑂𝑙𝑑  } 

10 { (
𝑂3

0.36
)} , { 𝑆𝑎𝑙ℎ𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑡ℎ, 𝐴𝑔𝑒𝑂𝑙𝑑} 

8 { (
𝑂1

0.22
) } , { 𝑆𝑎𝑙𝐿𝑜𝑤 , 𝑆𝑎𝑙𝑚𝑜𝑑 , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔 } 

9 {(
𝑂2

0.27
)} , { 𝑆𝑎𝑙𝑚𝑜𝑑 , 𝑆𝑎𝑙ℎ𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔, 𝐴𝑔𝑒𝑦𝑜𝑢𝑡ℎ } 

11 
{  },  {𝑆𝑎𝑙𝑎𝑟𝑦𝐿𝑜𝑤 , 𝑆𝑎𝑙𝑎𝑟𝑦𝑀𝑜𝑑 , 𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 

 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔, 𝐴𝑔𝑒𝑌𝑜𝑢𝑡ℎ , 𝐴𝑔𝑒𝑂𝑙𝑑} 

 

Table 5. Fuzzy concepts extracted using Eqs. (4) and (5) 

from fuzzy context in Table 3 

# Fuzzy Formal Concepts 

1 {(
𝑂0

1.0
) (

𝑂1

1.0
) (

𝑂2

1.0
) (

𝑂3

1.0
) (

𝑂4

1.0
) } , { } 

2 { (
𝑂0

1.0
) (

𝑂1

1.0
) (

𝑂2

0.73
) } , {𝐴𝑔𝑒𝑌𝑜𝑢𝑛𝑔} 

3 { (
𝑂2

0.67
) (

𝑂3

1.0
) (

𝑂4

1.0
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ}  

4 { (
𝑂0

1.0
) (

𝑂1

0.22
) }    , {𝑆𝑎𝑙𝑎𝑟𝑦𝐿𝑜𝑤 , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔 } 

5 { (
𝑂1

0.78
) (

𝑂2

0.33
) }     , {𝑆𝑎𝑙𝑎𝑟𝑦𝑀𝑜𝑑 , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔} 

6 { (
𝑂2

0.67
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔} 

7 { (
𝑂2

0.27
) (

𝑂3

0.36
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑌𝑜𝑢𝑡ℎ} 

8 { (
𝑂3

0.64
) (

𝑂4

1.0
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑜𝑙𝑑} 

9 { (
𝑂3

0.36
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑌𝑜𝑢𝑡ℎ, 𝐴𝑔𝑒𝑜𝑙𝑑}  

10 { (
𝑂1

0.22
) } , {𝑆𝑎𝑙𝑎𝑟𝑦𝐿𝑜𝑤 , 𝑆𝑎𝑙𝑎𝑟𝑦𝑚𝑜𝑑 , 𝐴𝑔𝑒𝑌𝑜𝑢𝑛𝑔} 

11 {(
𝑂2

0.33
)} , {𝑆𝑎𝑙𝑎𝑟𝑦𝑀𝑜𝑑 , 𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔} 

12 
{ (

𝑂2

0.27
)} , {𝑆𝑎𝑙𝑎𝑟𝑦𝑀𝑜𝑑 , 𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔,

𝐴𝑔𝑒𝑌𝑜𝑢𝑡ℎ} 

13 
{  }, {𝑆𝑎𝑙𝑎𝑟𝑦𝐿𝑜𝑤 , 𝑆𝑎𝑙𝑎𝑟𝑦𝑀𝑜𝑑 , 𝑆𝑎𝑙𝑎𝑟𝑦𝐻𝑖𝑔ℎ , 

𝐴𝑔𝑒𝑦𝑜𝑢𝑛𝑔, 𝐴𝑔𝑒𝑦𝑜𝑢𝑡ℎ, 𝐴𝑔𝑒𝑜𝑙𝑑} 

For instance, in Table 5, fuzzy concepts no. 11 

and no. 12 are two different concepts over the same 

object {O2} but with different membership degrees. 

Moreover, the intent of concept no.11 is a subset of 

the intent of concept no. 12. However, Table 4 

preserves only the concept no. 12 (the concept no. 9 

in Table 4). 

Consequently, Eqs. (6) and (7) generate only 

fuzzy concepts with the largest intent with respect to 

the set inclusion. Therefore, the proposed algorithm 

always generates such type of fuzzy concepts and 

hence, generates less count of fuzzy concepts. In the 

worst case, it generates the same number of fuzzy 

concepts. Consequently, Eqs. (6) and (7) are more 

suitable for hardly processed datasets. 

It is worth mentioning that all recent fuzzy 

concepts generation algorithms like [21, 26, 27] and 

the proposed algorithm generate the same count of 

concepts in case of crisp datasets. This backs to the 

fact that the fuzzy formal concept analysis is a 

generalized form of the traditional crisp one. 
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Besides, this section presents some experiments 

conducted over two benchmark datasets. The first 

dataset "Iris”1 is available in the machine learning 

repository (UCI)2. Additionally, the second dataset 

“Countries investment dataset” is available in [29]. 

The Iris dataset comprises 150 objects, 

representing a set of iris plant instances, and five 

attributes. Four of the five attributes are quantitative 

attributes that represent the iris plant characteristics. 

The remaining attribute is a categorical one that 

represents the iris class (three classes). Ordinarily, 

each iris instance belongs to a specific iris class. 

Illustratively, Table 6 presents a snapshot of the iris 

dataset that only includes ten objects and five 

attributes. These five attributes include sepal length 

(SL), sepal width (SW), petal length (PL), petal 

width (PW) and the iris class. 

Table 7 reveals that each attribute (linguistic 

variable) has its own range of minimum and 

maximum values such that no value can lie outside 

these ranges. Consequently, the design of the data-

sensitive linguistic values copes effectively with the 

differences between attributes min and max values. 

As a preparation phase, the Iris dataset is 

fuzzified using a set of predefined data-sensitive 

linguistic values namely “low”, “middle” and “high” 

shown in Fig. 3. Such definition is just produced by 

setting the min and max values in the design 

depicted in Fig. 1. Likewise, all other attributes are 

fuzzified. Therefore, the total count of all attributes 

after fuzzification using three linguistic labels 

becomes 15 attributes. In consequence, each 

attribute value feds into each of its linguistic value 

membership functions to obtain how much each 

object matches each linguistic value. Moreover, the 

categorical attribute is discretized to be in a binary 

representation. As a sample, Table 8 shows the 

result of the fuzzification process of only two 

attributes:  sepal length and sepal width. Moreover, 

it shows the discretization of the class attribute. 

Table 6. A snapshot of the iris dataset 

ID SL SW PL PW Class 

O1 5.1 3.8 1.9 0.4 Iris-setosa 

O2 4.8 3 1.4 0.3 Iris-setosa 

O3 5.1 3.8 1.6 0.2 Iris-setosa 

O4 4.6 3.2 1.4 0.2 Iris-setosa 

O5 5.3 3.7 1.5 0.2 Iris-setosa 

O6 5 3.3 1.4 0.2 Iris-setosa 

O7 7 3.2 4.7 1.4 Iris-versicolor 

O8 6.4 3.2 4.5 1.5 Iris-versicolor 

O9 6.9 3.1 4.9 1.5 Iris-versicolor 

O10 5.5 2.3 4 1.3 Iris-versicolor 

                                                           
1 Iris dataset: http://archive.ics.uci.edu/ml/datasets/Iris 
2 UCI website: http://archive.ics.uci.edu/ml 

Table 7. Ranges of iris dataset linguistic variables  

Linguistic variable Min Max 

Sepal length 4.3 7.9 

Sepal width 2.0 4.4 

Petal length 1.0 6.9 

Petal width: 0.1 2.5 

 
Figure. 3 Linguistic values design for the sepal length 

linguistic variable in the iris dataset 

Table 8. Fuzzy context of the iris dataset snapshot shown 

in Table 6 for only SL, SW and the class attributes 

ID SLlow SLmid SLhigh SWlow SWmid SWhigh setosa 
versi 

color 

O1 0.56 0.44 0 0 0.5 0.5 1 0 

O2 0.72 0.28 0 0.17 0.83 0 1 0 

O3 0.56 0.44 0 0 0.5 0.5 1 0 

O4 0.83 0.17 0 0 1 0 1 0 

O5 0.44 0.56 0 0 0.58 0.42 1 0 

O6 0.61 0.39 0 0 0.92 0.08 1 0 

O7 0 0.5 0.5 0 1 0 0 1 

O8 0 0.83 0.17 0 1 0 0 1 

O9 0 0.56 0.44 0.08 0.92 0 0 1 

O10 0.33 0.67 0 0.75 0.25 0 0 1 

The proposed algorithm is evaluated versus the 

Yang et al. algorithm presented in [21], the attribute-

based algorithm presented in [26], and the fuzzy 

CbO algorithm presented in [27] over the complete 

iris dataset. In consequence, Table 9 shows a 

comparison in terms of time in milliseconds for 

extracting the whole set of fuzzy concepts over the 

iris dataset with different threshold intervals. On the 

other hand, Table 10 shows a comparison with 

respect to the number of extracted fuzzy concepts. 

As expected, the proposed algorithm generates the 

same count of fuzzy concepts as the Yang et al. 

algorithm with a great reduction in the processing 

time and enhanced semantics due to involving data-

sensitive fuzzy terms. 

It is worth mentioning that, both proposed 

algorithm and Yang et al. algorithm use the same 

equations namely Eqs. (6) and (7) to extract fuzzy 

concepts.  

𝝁𝑺𝑳 Low Moderate High 

4.3 6.1 7.9 Sepal Length 

(SL) 
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Table 9. The proposed algorithm versus Yang et al. 

algorithm, attribute-based algorithm and fuzzy CbO 

algorithm in terms of time in milliseconds over the iris 

dataset.  

Threshold 

Interval 

(1) 

proposed 

algorithm  

(2) 

Yang’s 

algorithm 

(3) 

Attribute-

based 

algorithm 

(4) 

Fuzzy CbO 

algorithm 

[0.0, 1.0] 6.644 58.902 20.86 60.006 

[0.2, 1.0] 5.436 43.627 11.432 18.055 

[0.4, 1.0] 4.604 17.934 7.911 11.952 

[0.6, 1.0] 2.938 8.195 4.689 8.77 

[0.8, 1.0] 2.708 9.798 2.813 9.376 

Table 10. The proposed algorithm versus Yang et al., 

attribute-based, and fuzzy CbO algorithms in terms of no. 

of extracted concepts over the iris dataset.  

Threshold 

Interval 

proposed 

algorithm  

Yang’s 

algorithm 

Attribute-

based 

algorithm 

Fuzzy CbO 

algorithm 

[0.0, 1.0] 293 293 702 702 

[0.2, 1.0] 263 263 476 476 

[0.4, 1.0] 139 139 227 227 

[0.6, 1.0] 78 78 120 120 

[0.8, 1.0] 62 62 71 71 

On the other hand, both the attribute-based 

algorithm and fuzzy CbO algorithm generate more 

fuzzy concepts as a result of using Eqs. (4) and (5).  

All the experimented algorithms have been 

programmed using java programming language and 

all experiments are conducted using the same 

machine with the following capabilities: core i5 3.2 

GHz processor and 4 GB RAM memory. Moreover, 

the installed operating system was 64-bit windows 

8.1. 

Both of Figs. 4 and 5 show the corresponding 

graphs that summarize the experimental results. As 

shown in Table 9, the proposed algorithm achieves a 

great reduction in the execution time compared with 

Yang et al. algorithm, the attribute-based algorithm 

and, CbO algorithm.   

On the other hand, Table 10 shows that the 

proposed algorithm generates the same concepts as 

Yang et al. algorithm without any loss. In contrary, 

it generates less number of fuzzy concepts when 

compared with the attribute-based algorithm and 

fuzzy Cbo algorithm as a result of using different 

equations set. The great reduction in the number of 

generated fuzzy concepts makes the proposed 

algorithm more suitable for complex datasets where 

there exists a huge number of fuzzy concepts. 

 
Figure. 4 The proposed algorithm versus Yang et al. [21], 

attribute-based [26], and fuzzy CbO [27] algorithms in 

terms of time in milliseconds over the iris dataset with 

different threshold intervals 

 
Figure. 5 Proposed algorithm and Yang et al. algorithm 

versus attribute based algorithm and Fuzzy CbO 

algorithm [21, 26] in terms of number of fuzzy concepts 

over iris dataset with different threshold intervals 

Table 11. A snapshot of the countries investment dataset 

Country 

Political 

stability 

(A) 

Attitude toward 

investors 

(B) 

Canada 3.7 3.7 

USA 3.7 3.7 

Mexico 2.9 2.9 

Argentina 1.1 1.1 

Brazil 2.8 2.8 

Chile 0.3 0.3 

Colombia 2 2 

Peru 1.6 1.6 

Venezuela 2.5 2.5 

Australia 3.4 3.4 
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Table 12. Fuzzy context of the countries investment 

dataset snapshot shown in Table 11 

Country Alow Amod Ahigh Blow Bmod Bhigh 

Canada 0 0 1 0 0.3 0.7 

USA 0 0 1 0 0 1 

Mexico 0 0.1 0.9 0 0.8 0.2 

Argentina 0.9 0.1 0 0.3 0.7 0 

Brazil 0 0.2 0.8 0 0.2 0.8 

Chile 1 0 0 1 0 0 

Colombia 0 1 0 0 1 0 

Peru 0.4 0.6 0 0.8 0.2 0 

Venezuela 0 0.5 0.5 0 0.9 0.1 

Australia 0 0 1 0 0.3 0.7 

Table 13. The proposed algorithm versus Yang et al., 

attribute-based and fuzzy CbO algorithms in terms of 

time in milliseconds over countries investment dataset. 

Threshold 

Interval 

(1) 

proposed 

algorithm  

(2)Yang et 

al. 

algorithm 

(3) 

Attribute-

based 

algorithm 

(4) 

Fuzzy 

CbO 

[0.4, 1] 530.1 959.5 7330.0 7850.7 

[0.5, 1] 150.3 405.7 2197.5 2633.9 

[0.6, 1] 50.7 140.8 469.7 487.3 

[0.7, 1] 45.9 56.8 76.5 165.9 

[0.8, 1] 15.7 33.2 64.5 89.4 

 

The second dataset “Countries investment 

dataset” has 43 objects, representing a set of 

countries, and 15 attributes representing investment 

confidence criteria. All attributes have the same 

range of [0, 4] such that 0 refers to max risk to 

invest and 4 refers to min risk to invest. For more 

clarification, Table 11 shows a snapshot of the 

countries investment dataset. It shows only 10 

countries and 2 attributes namely political-stability 

and attitude-toward-investors. In short, these 

attributes are referred to as A and B respectively. 

At the first stage of the proposed approach, the 

data-sensitive linguistic values depicted in Fig. 2 are 

applied to fuzzify the countries investment dataset. 

Subsequently, Table 12 shows the fuzzy context 

resulted from fuzzifying the snapshot in Table 11 

with min and max values 0 and 4 respectively.  

Intuitively, the total count of attributes in the 

entire countries investment dataset after 

fuzzification becomes 45 attributes. 

At the second stage of the proposed approach, 

the resulted fuzzy context of the first stage 

represents the input of the applied fuzzy concept 

generation algorithm. Consequently, all of the 

proposed, attribute-based, Yang et al., and fuzzy 

CbO algorithms are applied to the fuzzy context. 

Finally, Table 13 and Fig. 6 show a comparison 

between these algorithms in terms of execution time 

in milliseconds for different threshold intervals. 

Noticeably, the proposed algorithm outperforms 

the corresponding algorithms as it only considers 

distinct intents per objects and only extracts the 

maximum length fuzzy concept intents for the 

similar concept extents. 

Moreover, Table 14 and Fig. 7 illustrate another 

comparison with respect to the number of generated 

fuzzy concepts. 

 
Figure. 6 The proposed algorithm versus Yang et al., 

attribute-based, and fuzzy CbO algorithms [21, 26, 27] in 

terms of time in milliseconds over the countries 

investment dataset with different threshold intervals 

Table 14. The proposed algorithm versus Yang et al., 

attribute-based, and fuzzy CbO algorithms in terms no. of 

extracted concepts over the countries investment dataset. 

Threshold 

Interval 

Algorithms (1) 

and (2) 

Algorithms 

(3) and (4)  

[0.4, 1] 3256 13427 

[0.5, 1] 1979 7552 

[0.6, 1] 1323 3141 

[0.7, 1] 717 1384 

[0.8, 1] 411 661 

 
Figure. 7 Proposed algorithm and Yang et al.’s algorithm 

versus attribute-based and Fuzzy CbO algorithms [21, 26] 

in terms of number of fuzzy concepts over the countries 

investment dataset with different threshold intervals 
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7. Conclusion  

In general, FFCA is considered one of the most 

essential and challenging fields that are exploited by 

several applications including association rule 

mining and ontology construction. Numerous 

researchers have tried to improve and accelerate the 

entire FFCA process. However, there still a need for 

more improved approaches.  

This paper attempts to enhance the process of 

fuzzy formal concept extraction in both of the 

semantic of generated fuzzy concepts and the 

processing time it consumes. The semantics of the 

generated fuzzy concepts are enhanced through the 

use of data-sensitive fuzzy terms that preserve 

flexible scalable definitions when applied to 

different universes of discourses. On the other hand, 

an improved algorithm has been presented to reduce 

the execution time consumed in the fuzzy concept 

generation process.  

Compared with Yang et al. algorithm, attribute-

based algorithm, and fuzzy CbO algorithm, the 

proposed enhanced algorithm amazingly reduces 

fuzzy concepts extraction time by considering only 

the distinct intent set. In consequence, it skips the 

identical object intents at earlier step without any 

additional processing. So, all identical records are 

processed only once.  

On the other hand, the proposed enhanced 

algorithm generates less fuzzy concepts than the 

attribute-based and fuzzy CbO algorithms. This 

backs to the fact that the proposed algorithm 

generates only fuzzy concepts with largest intents 

according to the set inclusion. Consequently, It 

works extremely faster so it can be used for large 

datasets where extracting fuzzy concepts is an 

intractable task. 

As a future work, we aim to find an enhanced 

updatable algorithm for incrementally update the 

already produced fuzzy concepts.  
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