
Received: March 1, 2018 275

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

Jaya Algorithm and Artificial Neural Network Based Approach for Object-

Oriented Software Quality Analysis

Mukesh Bansal1* Chaitanya Purushottam Agrawal2

1Makhanlal Chaturvedi National University of Journalism and Communication, Bhopal, India

2Department of Computer Science and Applications,
Makhanlal Chaturvedi National University of Journalism and Communication, Bhopal, India

* Corresponding author’s Email: mukeshbansal76@gmail.com

Abstract: This paper develops a technique by using Jaya algorithm and feed-forward neural network to determine

the quality of object-oriented software by using Chidamber & Kemerer (CK) along with Li & Henry metrics. The

technique basically focuses on the maintainability factor of software quality which in turn depends upon the software

complexity. The software complexity is directly proportional to the number of changes done per class which is

determined by the technique. The analysis has been done on UIMS (User Interface Management System) and QUES

(Quality Evaluation System) datasets by using the mean absolute error as the analysis parameter. The reduction in

the mean absolute error as compared to the existing state of art techniques along with the individual component of

proposed technique proves the significance of the technique.

Keywords: Jaya algorithm, Neural network, Maintainability, Software, Complexity, UIMS, QUES.

1. Introduction

The object-oriented methodology has covered

the software development market due to several

advantages over the conventional approaches. The

development of the software engineering techniques

makes it necessary to control the quality and cost of

software. The quality attributes for software

includes maintainability, reliability, usability,

portability, functionality and the efficiency [1, 2].

The maintainability is the major concerns discussed

in this paper. The complexity is one of the major

factors to control the maintainability of software, as

more complex software is difficult to edit and test

resulting low software quality [3, 4]. Moreover, the

complex software takes a long time to enhance and

maintain the software resulting increased cost and

effort, so software complexity needs to be controlled

to increase the software quality [4].

Various metrics have been given by different

authors to compute the complexity of object-

oriented methodology based software. Different

metrics are of Chidamber & Kemerer (CK) [5], Li &

Henry metrics [6], and metrics for object-oriented

design (MOOD) [7] to measure the complexity of

software [8]. This paper focuses on the CK and Li &

Henry metrics to determine software quality. The

metrics are used to compute the number of lines

changed per class in the software which in turn

determines the maintainability of the software [9].

This work takes some changes directly proportional

to the complexity of software, i.e., higher software

complexity will lead to a large number of changes

per class and vice-versa.

Different authors have worked to determine the

complexity or maintainability of the software. The

author of [10] uses linear regression to determine the

maintainability of the software. The author of [11]

uses the artificial neural network using CK and Li &

Henry metrics to determine the software

maintainability. The author of [12] uses the feed

forward back propagation neural network and

support vector machine to predict the

maintainability. The techniques are given by the

authors of [10 - 12] work on the original given set of

Received: March 1, 2018 276

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

attributes which includes relevant as well as noisy

attributes resulting low performance. While the

author of [9], uses various combinations of

optimization technique along with neural network to

determine the software maintainability. The

technique is FLANN-CSA, i.e., functional line

artificial neural network with clone selection

algorithm. The author also uses the principal

component analysis (PCA) and rough set theory

(RST) to reduce the features that define the CSA

(PCA) and CSA (RST) techniques. The PCA and

RST used for feature reduction to reduces the noisy

feature doesn’t explore the search space

exhaustively which is improved in the proposed

technique by using Jaya algorithm. Further, the

paper has been divided into three sections. Section

two gives the Jaya algorithm which is used for

feature reduction followed by proposed

methodology in section three. Then the result along

with the implementation and discussion has been

given in section four.

2. Jaya algorithm

Jaya algorithm is a simple but powerful

optimization algorithm [13]. Jaya algorithm is one

of the parameter fewer algorithms, i.e., the

performance of the algorithm do not depend upon

the parameter setting (constants) unlike the various

existing algorithms. The algorithm basically

determines the best and the worst solution among

the candidate solutions. Then the algorithm updates

each solution by moving towards the best solution

and moving away from the worst solution. The

updation phenomenon is given by Eq. (1):

'

, , , , , , , , , ,

, , , , , ,

()

()

p q r p q r p q r p best r p q r

p q r p worst r p q r

S S rand S S

rand S S

 (1)

Here, 𝑆𝑝,𝑞,𝑟
′ , 𝑆𝑝,𝑞,𝑟 showsthe updated and the

current solution for the rth iteration of qth candidate

of pth variable. The best and worst solution for the

same candidate is given by 𝑆𝑝,𝑏𝑒𝑠𝑡,𝑟 , 𝑆𝑝,𝑤𝑜𝑟𝑠𝑡,𝑟 ,

𝑟𝑎𝑛𝑑𝑝,𝑞,𝑟 is the random value between 0 and 1. The

updated value i.e. 𝑆𝑝,𝑞,𝑟
′ is accepted only if it is better

than the current solution. This process is repeated to

take the solution towards success. The process stops

when the stopping criteria are achieved [13]. This

algorithm can be applied to optimize any process.

The next section describes how Jaya algorithm is

used in this work. Moreover, the proposed

methodology defines a method to analyze object-

oriented software quality.

3. Proposed methodology

This section describes a technique to determine

the number of changes per class by using CK, Li

&Henry metrics for object-oriented software’s. The

technique uses the Jaya algorithm for the feature

reduction and the neural network for the prediction.

The complete steps of the technique can be easily

described in Fig. 1.

The Fig. 1, i.e. flowchart briefs the steps used in

the proposed methodology. The input dataset is

normalized along with the prediction factor to avoid

the noise due to the scalability of data. The scaling

has been done by using Eq. (2):

_

_ _

V Max V
NV

Max V Min V

 (2)

Here, NV shows the normalized value while the

V is the current value with Max_V, Min_V are the

maximum and minimum value for present attributes.

Then the normalized data has been reduced by

using the Jaya algorithm. In this, Initially, the

random contribution is assumed for each attribute

towards the prediction. Then the fitness is evaluated

by using Eq. (3) which calculates the mean absolute

error for this contribution.

1

_ c _ c
N

i i

i

Actual hanges Estimated hanges

F
N

 (3)

Figure. 1 Proposed flowchart

Input Dataset

Normalize Dataset

Reduce Features By Jaya Algorithm

Prediction using Feed Forward Neural network

Calculate Mean Absolute Error

Received: March 1, 2018 277

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

Where actual changes are given in the dataset

itself and estimated changes for any particular

instance is given by Eq. (4):

_

_

. e

e Each Attribute

Estimated changes

Contribution Attributes

 (4)

This calculates the fitness of each instance of the

dataset by using each attribute as e and its

contribution as “Contribution”. Then instance

corresponding minimum and maximum fitness value

are selected as the best and workable solution. Then

each solution is updated Eq. (1) already described in

the previous section. This process is repeated for the

given number of iteration. Here, the maximum

iterations are 10 to calculate the best solution. This

best solution determines the contribution of each

attribute. The new dataset is prepared by using best

value contribution as given by Eq. (5):

_

_

.e e
e each attribute

New dataset

Contribution attribute

 (5)

The new dataset has been prepared by using the

contribution of each attribute identified by using

Jaya algorithm given as “Contribution”. This new

dataset is classified by using the feed-forward neural

network. Five-Fold cross-validation has been used

to determine the better mean absolute error in the

changes. The following algorithm can understand

the complete process:

1. Input Dataset

2. For each attribute say V

_

_ _

V Max V
NV

Max V Min V

Cont =rand;

End

3. Iteration=1

4. For iteration<max_iteration

a. _ . e

e V

Est chn Cont V

b.

1

_ c _ c
N

i i

i

Act hn Est hn

F
N

c. best_cont=cont(Min(F))

d. worst_cont=cont(Max(F))

e.

_

.(_)

.(_)

New Cont Cont

rand best cont cont

rand worst cont cont

f.

_ _ . e

e V

NEst chn New Cont V

g.

1

_ c _ c
N

i i

i

Act hn NEst hn

NF
N

h. If NF<F

Cont =NCont

End if

i. iteration=iteration+1

end

5. _ .e e
e V

New dataset Cont V

6. [Train Test]=Use 5-Fold Cross-Validation

7. For each fold

MAE=Use Fed forward Neural Network

End

8. Return mean(MAE)

The above algorithm computes the mean

absolute error, which determines the software

quality and the process has been implemented using

the MATLAB discussed in the next section.

4. Result and discussion

The model discussed in the previous section has

been analyzed by using metrics values (datasets)

given by [6]. The author [6] gives two datasets, i.e.,

metric value for two software systems known as

UIMS and QUES. This software is developed in

classic-ADa programming language, an object-

oriented language. The two software systems have

39 and 71 instances respectively. The dataset given

by [6] comprises of two CK metric suite and the Li

& Henry metric suite along with size and the change

attribute. The size attribute consists of two types of

sizes one is the line of code and other is a sum of the

number of attributes and local methods. The change

attribute specifies the mean of the changes done in

the time span of 3 years. Fig. 2 shows the mean,

median and standard deviation of all ten attributes

described for the UIMS datasets.

Fig. 2 has two subplots; the first subplot denotes

the analysis of mean, median and standard deviation

of all attributes while the second subplot represents

the analysis of same for a normalized dataset.

The normalization has been done using Eq. (2).

A similar analysis for QUES dataset has been shown

in Fig. 3. Fig. 3 denotes the analysis of QUES

dataset for the given and normalized values by mean,

median and standard deviation. The analysis has

been done by using five-fold cross-validation.

Received: March 1, 2018 278

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

Figure. 2 UIMS dataset analysis

Figure. 3 Analysis of QUES dataset

Received: March 1, 2018 279

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

 Figure. 4 Box Plot for UIMS dataset

Figure. 5 Box plot for QUES dataset

Figure. 6 Box Plot for UIMS reduced data

The box plot for training and testing data of both

datasets are shown in Figs. 4 and 5 to analyze the

distribution of the data. The datasets have been

divided into testing and training part randomly by

using the five-fold cross-validation. These figures

show only the data for one fold for each dataset

respectively.

The data has been reduced by using the Jaya

algorithm, the box plot for corresponding reduced

data for one fold is given in Figs. 6 and 7. The Figs.

6 and 7 denote that the Jaya algorithm has

concussed the variation in the data.

The neural network has been applied to this

modified data to analyze the performance. Moreover,

the complete datasets have been scaled as shown in

Figs. 6 and 7, i.e., changes in the testing as well as

training data. The evaluation of objective function

for the Jaya algorithm to reduce the data as

discussed earlier is shown in Figs. 8 and 9. The Jaya

algorithm has been iterated to reduce the data, the

cost of the attributes has been calculated in each

iteration for each dataset. The Figs. 8 and 9 show the

cost for datasets UIMS and QUES respectively for

Jaya algorithm.

Figure. 7 Box plot for QUES reduced data

Figure. 8 Cost by objective function using UIMS

dataset

Received: March 1, 2018 280

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

Figure. 9 Cost by objective function using QUES

dataset

Figure. 10 Neural network training state for UIMS

reduced data

 The neural network is applied to the reduced

data to make the prediction. The training pattern

displaying complete details of training for UIMS

and QUES datasets is given in Figs. 10 and 11.

The Figs. 10 and 11 demonstrate that the 37 and

29 epoch is used to train the reduced data of UIMS

and QUES dataset respectively. Moreover, the

learning rate along with its gradient has been shown

in Figs. 10 and 11, respectively.

The training state for each dataset by a neural

network is given in Figs. 12 and 13 for the original

data, i.e. without Jaya algorithm.

Figure. 11 Neural network training state for QUES

reduced data

Figure. 12 Neural network training state for UIMS

dataset

The change in the number of epochs, learning

rate as well as in the gradient can be easily

recognized for UIMS and QUES datasets in Figs. 12

and 13 as compared to the corresponding values for

reduced datasets in Figs. 10 and 11.

The mean absolute error has been calculated by

using the Eq. (6) for each dataset.

1

_ c _ c
N

i i

i

MAE

Actual h Estimated h

N

 (6)

Received: March 1, 2018 281

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

Figure. 13 Neural network training state for QUES

dataset

Figure. 14 MAE comparison of UIMS dataset

Figure. 15 MAE comparison of QUES dataset

Table 1. MAE comparison of proposed technique

with existing state of the art technique

Techniques MAE in

UIMS dataset

MAE in

QUES

dataset

Traditional[4] 0.4464 0.3833

CSA[9] 0.0937 0.1587

CSA(PCA)[9] 0.0998 0.1181

CSA(RST)[9] 0.0537 0.1374

Jaya Algorithm [13] 0.0235 0.0381

Proposed 0.0211 0.0272

The mean absolute error is calculated by

comparing the actual and the estimated changes.

Here N is the number of instances in the

corresponding dataset.

The analysis of the MAE is shown in Figs. 14

and 15 respectively for datasets UIMS and QUES

respectively. The performance analysis has been

done on four variants, i.e., traditional, i.e. statistical

method to compute changes directly, compute the

changes using a neural network, compute the

changes by using Jaya algorithm and the proposed

(changes by using Jaya and Neural Network).

The comparison is shown in Figs. 14 and 15

clearly demonstrate that error has been reduced by

using the Jaya with neural network technique as

compared to other individual techniques. The reduce

error shows the significance of the algorithm. The

improvement in the performance is due to the

optimized exploration and exploitation search

property of the Jaya algorithm. Jaya algorithm

enables the proposed technique to determine the

relevant feature which is further classified by the

neural network. The neural network gives the better

classification results due to its learning capability.

This comparison can be made with the different

techniques available in the literature with their

corresponding results given in Table 1.

Table 1 compares the existing state of art

techniques, i.e., CSA, CSA (PCA) and CSA (RST)

already described in previous sections with the

proposed algorithm. The reduction in the absolute

error in the proposed technique signifies its

performance here. This is due to the enhanced

performance of the Jaya algorithm as compared to

the rough set theory. This removes the noisy

features resulting improved performance as

compared to existing techniques.

5. Conclusion

This paper designs a Jaya and neural network

based technique to analyze the complexity of

software which in turn determines the

Received: March 1, 2018 282

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.27

maintainability cost of the software. The technique

has been analyzed by computing the mean absolute

error over two datasets, i.e., UIMS and QUES for

the number of changes in software over a span of 3

years time. The designed technique has been

compared with the existing state of art technique as

well as with the traditional (statistical) approach to

show its significance. The proposed technique

shows the 7.3% reduced error as compared to

existing CSA (RST) technique which already shows

more than 90% improvement on traditional

technique. Moreover, the designed technique has

been compared with its components, i.e., Jaya

algorithm and the neural network to prove its

significance. In future new metrics can be

incorporated to improve the performance. The

model designed in the paper can verify the new

metrics.

References

[1] L. Kumar, A. Krishna, and S. K. Rath, “The

impact of feature selection on maintainability

prediction of service-oriented applications”,

Serv. Oriented Comput. Appl., Vol. 11, No. 2,

pp. 137–161, 2017.

[2] H. W. Jung, S. G. Kim, and C. S. Chung,

“Measuring software product quality: A survey

of ISO/IEC 9126”, IEEE Softw., Vol. 21, No. 5,

pp. 88–92, 2004.

[3] K. Kevrekidis, S. Albers, P. J. M. Sonnemans,

and G. M. Stollman, “Software complexity and

testing effectiveness: An empirical study”, In:

Proc. of the Annual Reliability and

Maintainability Symposium, pp. 539–543, 2009.

[4] R. D. Banker, S. M. Datar, and D. Zweig,

“Software complexity and maintainability”, In:

Proc. of the tenth international conference on

Information Systems - ICIS ’89, pp. 247–255,

1989.

[5] S. R. Chidamber and C. F. Kemerer, “A

Metrics Suite for Object Oriented Design”,

IEEE Trans. Softw. Eng., Vol. 20, No. 6, pp.

476–493, 1994.

[6] W. Li and S. Henry, “Object-oriented metrics

that predict maintainability”, J. Syst. Softw.,

Vol. 23, No. 2, pp. 111–122, 1993.

[7] F. B. Abreu and R. Carapuça, “Object-Oriented

Software Engineering : Measuring and

Controlling the Development Process”, In:

Proc. of the 4th. Int. Conf. Softw. Qual., pp. 3–5,

1994.

[8] M. Bansal and C. P. Agrawal, “Critical

Analysis of Object Oriented Metrics in

Software Development”, In: Proc. of the

Fourth International Conference on Advanced

Computing & Communication Technologies, pp.

197–201, 2014.

[9] L. Kumar and S. K. Rath, “Hybrid functional

link artificial neural network approach for

predicting maintainability of object-oriented

software”, J. Syst. Softw., Vol. 121, pp. 170–

190, 2016.

[10] S. C. Misra, “Modeling design/Coding factors

that drive maintainability of software systems”,

Softw. Qual. J., Vol. 13, No. 3, pp. 297–320,

2005.

[11] K. K. Aggarwal, Y. Singh, A. Kaur, and R.

Malhotra, “Application of Artificial Neural

Network for Predicting Maintainability using

Object-Oriented Metrics”, In: Proc. of the

World Acad. Sci. Eng. Technol. Vol 15, vol. 15,

no. 10, pp. 285–289, 2006.

[12] R. Malhotra and A. Chug, “Application of

Group Method of Data Handling model for

software maintainability prediction using object

oriented systems”, Int. J. Syst. Assur. Eng.

Manag., Vol. 5, No. 2, pp. 165–173, 2014.

[13] R. V. Rao, “Jaya: A simple and new

optimization algorithm for solving constrained

and unconstrained optimization problems”, Int.

J. Ind. Eng. Comput., Vol. 7, No. 1, pp. 19–34,

2016.

