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Abstract: This paper estimates the effort for software by optimizing the COnstructive COst MOdel (COCOMO) 

model parameters using hybrid BATGSA (Bat inspired Gravitational Search Algorithm) algorithm. The performance 

of the COCOMO model completely depends upon its parameters which can be optimized by using meta-heuristic 

algorithms. This paper uses hybrid BATGSA algorithm which hybrids the improved bat algorithm with the 

gravitation search algorithm (GSA) to optimize the COCOMO model.  The bat algorithm demonstrates the hunting 

and routing behavior of the bat which is improved by using a random walk in the exploration phase. The exploration 

phase is further improved by using GSA as gravitation force affects the velocity of the bat. The algorithm has been 

analyzed on four NASA datasets downloaded from promise repository. The comparison of the algorithm has been 

made with existing three states of art techniques i.e. COCOMO model, BAT algorithm, Improved BAT(IBAT) 

algorithm by using normalized error as a parameter. The reduction in error ranges from 2% to 10% on different 

dataset as compared other state of art algorithms proves the significance of proposed algorithm. 

Keywords: NASA project dataset, COCOMO, BAT, GSA, Optimization. 

 

 

1. Introduction 

Software cost estimation is a critical process as it 

is required to estimate the cost of the project at the 

initial stage of the project. The cost estimation is 

required to compute the budget and the resources 

required for the project [1, 2]. The cost of the project 

depends upon the efforts done which include the 

number of reviews, efficiency during 

implementation and pre-development processing, 

etc [3]. The Constructive Cost Model (COCOMO) is 

a model to determine the cost of the software. This 

model uses a basic regression formula for estimating 

cost, effort, and schedule for software projects based 

on features of the project. The model calculates the 

efforts as E=a × (KLOC)b, here KLOC shows the 

kilo line of code and a, b are the constants which 

depends upon the type of software [4]. This model 

can be optimized by using meta-heuristic algorithm 

[5]. Different authors have applied the various meta-

heuristic algorithm to improve the performance of 

the COCOMO model.  The author of [6] has applied 

a genetic algorithm to optimize the parameters of 

COCOMO model while the author of [1] has applied 

differential evolution algorithm for the same. The 

author of [7] has applied BAT algorithm to improve 

the performance of cost estimation by COCOMO. 

The author of [7] shows the reduction in error by 

optimizing the COCOMO model using BAT 

algorithm.  The BAT algorithm shows the better 

result as compared other existing state of the art 

techniques but BAT algorithm search locally in the 

exploration phase which opens scope for the 

improvement. This paper optimizes the estimation 

using COCOMO model by using hybrid BATGSA 

algorithm. The hybrid BATGSA algorithm has 

better convergence towards the global optima as it 

has improved exploration phase as compared to 

BAT algorithm, resulting in better optimization of 

COCOMO model. This paper further has been 

classified in five sections. The next section i.e. 

section 2 describes the improved BAT algorithm 
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which is followed by the description of Gravitation 

search algorithm (GSA) in section 3. The Hybrid 

BATGSA algorithm has been described in section 4 

while the results and corresponding discussion is 

done in section 5. 

2. Improved BAT algorithm for cost 

estimation 

Bat algorithm performs well for the various 

applications [8, 9]. This algorithm automatically 

switches from the exploration phase i.e. global 

search, to the exploitation phase i.e. local search. 

The main limitation of the algorithm is that it mainly 

searches locally even in the exploration phase [7, 9]. 

In the exploration phase change in the frequency is 

the parameter for the global search which restricts 

the search locally mainly. This behavior has been 

changed by introducing the random move nature to 

the bat resultant velocity updation is given by Eq. 

(1). Suppose there are n bats with position vector 

P[1 : n] and velocity vector V[1 : n] i.e.𝑃𝑎
𝑡 , 𝑉𝑎

𝑡 

denotes the position and velocity of the ath bat at tth 

time. Moreover, there is a frequency vector f[1 : n] 

that denotes the frequency of each bat which lies 

between fmin and fmax The velocity of each bat is 

adjusted according to frequency using the equation 
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Here pr is the probability which is generated 

randomly by using a random function and Pr is 

position at any random time stamp. This updation 

strength the exploration phase and improves the 

global search. Correspondingly position update can 

be given by Eq. (2) to improve the impact of 

velocity on the position.  
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The Eq. (2) updates the position of the bat according 

to the velocity update. The local search phase of the 

algorithm is powerful enough to exploit the search 

space. The improved bat algorithm is as follow: 

 

IBAT Algorithm (P, V, f, F, emr0, L): 

Here, P, V, f are the position, velocity and 

frequency vector for n bats respectively. The F is the 

fitness function to evaluate the fitness of the solution 

generated by the corresponding position. The L is 

the loudness vector and emr0 is initial emission rate.  

1. Initiate iteration=1 

 

2. Pb=P1 

 

3. For i=2:n 

a. If F(Pi) > F(Pb) 

b. Pb=Pi 

c. End if 

End 

 

4. While iteration<max_iteration 

a. 
min max min( )iterationf f f f     

 

b. 
pr=rand

 

 

c. 
r=rand(1,n)
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f. If rand > emriteration-1 
1

1: 1:

iteration iteration iteration

n nP P L 
 

End if 

 

g. If F( 1:

iteration

nP ) > F(
1

1:

iteration

nP 
) 

1:

iteration

nP
=

1

1:

iteration

nP 

 

Else 
1

1: 1:

iteration iteration

n nL L 
 

0 ( 1)

1: 1: (1 )iteration iteration

n nemr emr e   
 

End if 

 

h. For i=1:n 

i. If F(Pi) > F(Pb) 

ii. Pb=Pi 

iii. End if 

End 

 

i. iteration++ 

End while  

 

The above algorithm gives the process of 

improved bat algorithm [10, 11]. This algorithm has 

been applied to the cost estimation of software by 

using the objective function given by Eq. (3) 
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which calculates the mean relative error which 

depends upon the actual and the predicted 

estimation. The performance of the algorithm can be 

improved discussed in next section. 

3. Gravitational search algorithm 

The gravitational search algorithm uses the law 

of gravity given by Newton [12]. According to 

Newton every particle attracts another particle with 

a gravitational force that can be given by Eq. (4). 
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F G
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                             (4) 

 

Here, G is the gravitational constant, D is the 

distance between two objects having masses M1 and 

M2 respectively. The details of GSA are as follow. 

Suppose we have n objects in d dimensions then 

position matrix for objects can be given by Eq. (5). 

 

𝑂 =

[
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                       (5) 

 

Here, 
j

iO  represents the position of ith object in the 

jth dimension. At a particular time stamp say t the 

force acting on object p from object q can be given 

by Eq. (6). 
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Here 𝑀𝑝
𝑎(𝑡),𝑀𝑞

𝑝
(𝑡) are active and passive 

gravitational masses of object p and q respectively. ɛ 

is a small constant with value 2-52,  Dpq(t) is the 

distance between object p and object q which is 

given by Eq. (7). 
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Overall the total force acting on any object p can be 

given by Eq. (8) 
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So the acceleration is given by Eq. (9). 
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Here, Op(t) is the inertia mass of object p.  

This acceleration is used to update the velocity 

of the object which affects the position of an object 

demonstrated by Eqs. (10) and (11). 

 
1: 1: 1:( 1) ( ) ( )d d d

p p pv t v t rand a t          (10) 

and 
1: 1: 1:( 1) ( ) ( 1)d d d

p p pO t O t v t              (11) 

 

The whole process is repeated for the updated 

position for the given number of iterations or until 

fulfilling the stopping criteria. The overall GSA 

algorithm can be given as follow. 

 

GSA (O, M, Fit) 

The algorithm uses O as the object position 

matrices with M as the mass metric containing mass 

of each object. Fit is the fitness function. 
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3. While iteration< max_iteration 
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f. 
1: 1: 1:( 1) ( ) ( )d d d

p p pv t v t rand a t     

 

g. 
1: 1: 1:( 1) ( ) ( 1)d d d

p p pO t O t v t     

 
h. If Fit(t)<Fit(t+1) 

1: 1:( 1) ( )d d

p pO t O t   

end 

End while 

 
4. Return best(F) 

 
The above algorithm performs the optimization. 

The fitness has been given by Eq. (3) to determine 

the software cost estimation. The improved bat 

algorithm is hybridized by using gravitational search 

algorithm discussed in next section. 

4. Hybrid BATGSA algorithm 

In the real-time the gravitational force as the 

impact the velocity of the BAT. in this work to 

improve the exploration phase of the algorithm the 

velocity factor has been affected by the gravitational 

force also. This improves the global search 

capability of the algorithm resulting better 

convergence for optimization. The concept can be 

easily understood by following algorithm: 

 

BATGSA Algorithm (P, V, M, f, Fit, emr0, L) 

Here, P, V, M, f are the position, velocity, mass 

and frequency vector for n bats respectively. The Fit 

is the fitness function to evaluate the fitness of the 

solution generated by corresponding position. The L 

is the loudness vector and emr0 is initial emission 

rate.  
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4. Pb=P1 

 

5. For i=2:n 

a. If Fit(Pi) > Fit(Pb) 

b. Pb=Pi 

c. End if 

End 

 

6. While iteration<max_iteration 

a. min max min( )iterationf f f f     

 

b. 
pr=rand

 

 
c. 

r=rand(1,n)
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f. If rand > emriteration-1 
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End if 

 
i. For i=1:n 

i. If F(Pi) > F(Pb) 

ii. Pb=Pi 

iii. End if 

End 

 
j. iteration++ 

End while  
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The above algorithm updates the position of the 

bat firstly on the basis of frequency of the sound 

then this position is updated on the basis of the 

gravitational force on bat for the global search while 

the local search still depends upon the loudness of 

the sound. This algorithm produces exploration as 

well as exploitation search so the optimization must 

converge towards the global optima. The objective 

function given in Eq. (3) has been used for the cost 

estimation. The implementation of algorithm and the 

result analysis has been discussed in next section. 

5. Results and discussion 

The algorithm discussed in previous section has 

been implemented using MATLAB. The analysis 

has been done on 4 datasets, 2 are the NASA 

datasets containing 60 and 93 projects respectively 

and other two are COCOMO81 and kemerer. All 

datasets has been downloaded from the promise data 

repository.  The actual cost of each software project 

is available in the dataset which is compared with 

the estimated cost to calculate the mean relative 

error for each project. The comparison of the hybrid 

BATGSA algorithm is done with the COCOMO 

based cost estimation i.e. cost estimation without 

optimization [3] with the BAT [7] and improved 

BAT based optimization [11].  The remaining 

section of the paper uses Dataset1 for the cocomo81 

dataset, Dataset2 for NASA dataset having 60 

projects, Dataset3 for NASA dataset with 93 project 

and Dataset 4 for kemerer dataset. The   software 

effort estimation for Dataset1 has been analyzed in 

Table1. 

The effort estimation for each project in the 

Dataset1 has been shown in the table 1. The analysis 

Table 1 shows that the value of the effort converges 

towards the actual effort but for some project the 

estimation is producing higher error. This is because 

the algorithm reduces the mean absolute error in 

cost estimation by Eq. (8). The mean absolute error 

in the Dataset1 has been to 433.215 from 

437.537(Improved BAT), 444.405 (Bat algorithm) 

which is reduced from 680.154 in COCOMO model.  

The normalized error in each project of Dataset1 has 

been analyzed in figure 1. The normalized error has 

been calculated by Eq. (12). 

 

( ) /i i i iNE abs actual predicted actual 
 (12) 

 

Here, NEi is the normalized error for i-th project 

which has been calculated by using actual and 

predicted effort of the project.
 

The Fig. 1 clearly shows that normalized error 

has been reduced by using hybrid BATGSA is more 

as compared to reduction by improving the bat 

algorithm and bat algorithm.  This is due to the 

better optimization of COCOMO model by 

BATGSA algorithm which is due to better 

exploration phase of BATGSA algorithm. 

The software cost/effort estimation for each 

undertaking in the Dataset2 has been appeared in the 

table 2. The mean absolute error in the Dataset2 has 

been to 127.530 from 132.486 in improved BAT and 

137.401 (Bat calculation) which is decreased from 

400.985 in COCOMO display. The standardized 

error in each project of Dataset2 has been 

investigated in Fig. 2 which is computed by Eq. (12). 

The Fig. 2 unmistakably connotes that 

normalized error has been reduced by hybrid 

BATGSA calculation is higher than the reduction 

done by improved bat and bat calculation due to 

avoidance of local minima by the BATGSA 

algorithm. 

The effort estimation for each project in the 

Dataset3 has been shown in the Table 3. The 

analysis table 3 shows that the value of the effort 

converges towards the actual effort but for some 

project the estimation is producing higher error. This 

is because the algorithm reduces the mean absolute 

error in cost estimation by Eq. (3). The mean 

absolute error in the Dataset1 has been to 355.386 

from 356.143(improved BAT), 365.164 (Bat 

algorithm) which is reduced from 618.412 in 

COCOMO model. 

The Fig. 3 clearly shows that normalized error 

has been reduced by using hybrid BATGSA is more 

as compared to reduction by improving the bat 

algorithm and bat algorithm. This is due to the better 

optimization of COCOMO model by BATGSA 

algorithm which is due to better exploration phase of 

BATGSA algorithm. 

The software cost/effort estimation for each 

undertaking in the Dataset4 has been appeared in the 

table 4. The mean absolute error in the Dataset4 has 

been to 2398.141 from 4564.934 in improved BAT 

and from 5528.158 (Bat calculation) which is 

decreased from 6804.450 in COCOMO display. The 

standardized error in each project of Dataset4 has 

been investigated in figure 4 which is computed by 

Eq. (12). 

The Fig. 4 unmistakably connotes that 

normalized error has been reduced by hybrid 

BATGSA calculation is higher than the reduction 

done by improved bat and bat calculation. This is 

due to the velocity variation done to explore the 

search space appropriately. This shows that the 
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hybrid BATGSA algorithm improves the estimation of the software effort. 

 
Table 1. Analysis of effort estimation on Dataset 1 

Project 

Number 

Hybrid 

BATGSA 

Optimization 

IBAT 

Optimization 

BAT 

Optimization 
COCOMO  Actual 

1 500.0036 454.2916 474.5296 3.134719 2040 

2 1446.034 1362.665 1443.515 3 1600 

3 594.5699 543.4377 568.9498 3 243 

4 246.9118 218.9643 226.593 3.134719 240 

5 56.58902 47.70643 48.41535 3 33 

6 12.0693 9.64865 9.593832 3 43 

7 22.16179 18.09085 18.13331 3 8 

8 80.70177 68.86921 70.22168 3.270061 1075 

9 114.0294 98.4732 100.8675 3 423 

10 109.801 94.69864 96.95262 3 321 

11 122.5342 106.0797 108.7624 3 218 

12 144.0569 125.4077 128.8548 3.270061 201 

13 93.0598 79.80509 81.52591 3 79 

14 8.758434 6.925093 6.856592 3.782814 60 

15 11.73347 9.371089 9.314369 3.782814 61 

16 19.31758 15.69484 15.70312 3 40 

17 10.73201 8.54502 8.483278 3 9 

18 1595.32 1508.428 1600.005 3.270061 11400 

19 6638.286 6591.914 7125.294 3 6600 

20 1479.077 1394.886 1478.089 3.270061 6400 

21 1222.389 1145.283 1210.54 3 2455 

22 524.7245 477.5438 499.1363 3.782814 724 

23 326.0589 291.9289 303.2134 3.782814 539 

24 387.982 349.452 363.7963 3 453 

25 148.4032 129.3233 132.9303 3.270061 523 

26 192.5427 169.2959 174.6185 3.270061 387 

27 31.28028 25.83853 26.01757 3.270061 88 

28 44.8975 37.55026 37.99172 3 98 

29 6.01046 4.69124 4.621749 3.782814 7.3 

30 5.51178 4.289229 4.220852 3.782814 5.9 

31 256.1027 227.4003 235.4368 3 1063 

32 1988.874 1894.85 2015.761 3 702 

33 165.9165 145.1403 149.4089 3 605 

34 84.80089 72.49063 73.9627 3.782814 230 

35 44.8975 37.55026 37.99172 3 82 

36 52.66131 44.28563 44.90095 3.134719 55 

37 246.9118 218.9643 226.593 3 47 

38 52.66131 44.28563 44.90095 3 12 

39 19.67088 15.99184 16.00411 3 8 

40 8.758434 6.925093 6.856592 3 8 
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41 16.51591 13.34653 13.3259 3 6 

42 181.3991 159.1714 164.0462 3.134719 45 

43 108.1143 93.19433 95.39297 3.134719 83 

44 116.5742 100.7472 103.2269 3.134719 87 

45 135.4051 117.6252 120.7594 3.134719 106 

46 307.2369 274.5156 284.9027 3.134719 126 

47 84.80089 72.49063 73.9627 3.134719 36 

48 2413.831 2315.072 2469.116 3.134719 1272 

49 392.7899 353.9322 368.5205 3 156 

50 88.92049 76.13621 77.73109 3 176 

51 33.51367 27.74908 27.96687 3.134719 122 

52 26.86333 22.07421 22.18244 3 41 

53 16.51591 13.34653 13.3259 3.270061 14 

54 13.42202 10.76931 10.72319 3 20 

55 20.02484 16.28958 16.30592 3 18 

56 101.3949 87.20966 89.19133 3.270061 958 

57 60.54499 51.1601 51.96679 3.782814 237 

58 93.0598 79.80509 81.52591 3 130 

59 84.80089 72.49063 73.9627 3 70 

60 21.44701 17.48765 17.5211 3.270061 57 

61 105.5893 90.94392 93.06036 3 50 

62 30.16963 24.89016 25.05064 3 38 

63 33.51367 27.74908 27.96687 3 15 

 

 

 
Figure. 1 Analysis of normalized error on Dataset 1 
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Table 2. Analysis of effort estimation on Dataset 2 

Project 

Number 

Hybrid 

BATGSA 

Optimization 

IBAT 

Optimization 

BAT 

Optimization 
COCOMO  Actual 

1 287.2043 265.0441 247.4643 3 278 

2 1167.179 1070.171 1132.798 3 1181 

3 872.9328 801.4547 826.5829 3 1248 

4 523.2879 481.5761 474.4389 3 480 

5 102.5464 95.08511 80.96048 3 120 

6 63.37579 58.8953 48.03242 3 60 

7 270.6567 249.8417 232.0345 3 300 

8 13.85218 12.96357 9.227148 3 18 

9 29.59828 27.60263 21.0285 3 50 

10 42.18202 39.27361 30.88377 3 60 

11 49.45893 46.01497 36.70414 6.520409 114 

12 16.90391 15.80499 11.45188 6.520409 42 

13 38.61608 35.96821 28.06175 6.520409 60 

14 21.65029 20.2197 14.9788 6.520409 42 

15 387.5022 357.109 342.4826 6.520409 450 

16 45.79719 42.62334 33.76551 6.520409 90 

17 138.6684 128.3999 112.3196 6.520409 210 

18 28.24655 26.34772 19.98866 6.520409 48 

19 775.5962 712.4771 727.0806 3 815 

20 185.4654 171.5012 153.979 3 239 

21 115.5157 107.0519 92.12647 3 170 

22 37.90906 35.31268 27.50479 3 62 

23 47.25644 43.97509 34.93428 3 70 

24 50.56617 47.0403 37.59643 3 82 

25 127.8651 118.441 102.8585 3 192 

26 87.81213 81.48128 68.42088 3 117.6 

27 82.58465 76.65239 64.01337 3 117.6 

28 20.68617 19.32334 14.25653 3 31.2 

29 27.23952 25.41264 19.21672 3 25.2 

30 4.647672 4.371511 2.821779 3 8.4 

31 8.082867 7.58319 5.14345 3 10.8 

32 22.29692 20.82077 15.46477 3 36 

33 270.6567 249.8417 232.0345 3 352.8 

34 712.3336 654.62 662.9693 6.520409 324 

35 439.3494 404.6549 392.4677 6.520409 360 

36 439.3494 404.6549 392.4677 6.520409 215 

37 439.3494 404.6549 392.4677 6.520409 360 

38 45.79719 42.62334 33.76551 6.520409 48 

39 115.0935 106.6625 91.76123 6.520409 60 

40 110.8853 102.7803 88.12707 6.520409 60 

41 15.36584 14.37324 10.32592 6.520409 24 
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42 32.67584 30.45876 23.41075 6.520409 36 

43 64.52773 59.96081 48.98032 6.520409 72 

44 64.52773 59.96081 48.98032 6.520409 48 

45 20.04739 18.72936 13.77956 6.520409 72 

46 1640.226 1501.541 1638.561 6.520409 2400 

47 2089.383 1910.585 2130.591 6.520409 3240 

48 1118.321 1025.576 1081.446 6.520409 2120 

49 192.322 177.8117 160.1644 6.520409 370 

50 444.5907 409.46 397.5498 10.26826 750 

51 944.1499 866.5265 899.9904 6.520409 420 

52 180.9169 167.3143 149.8864 10.26826 252 

53 68.39128 63.53386 52.16987 6.520409 107 

54 2450.814 2239.436 2533.23 10.26826 2300 

55 331.7397 305.9395 289.3568 6.520409 400 

56 1528.865 1400.05 1518.225 6.520409 973 

57 1512.239 1384.895 1500.321 6.520409 1368 

58 326.7409 301.3507 284.6296 10.26826 571.4 

59 33.02077 30.7788 23.67897 10.26826 98.8 

60 61.84511 57.47932 46.77514 10.26826 155 

 

 
Figure. 2 Analysis of normalized error on Dataset 2 

 
Table 3. Analysis of effort estimation on Dataset 3 

Project 

Number 

Hybrid 

BATGSA 

Optimization 

IBAT 

Optimization 

BAT 

Optimization 
COCOMO  Actual 

1 99.20243 93.56455 75.74521 3 117.6 

2 93.74146 88.38874 71.37792 3 117.6 

3 26.13845 24.48804 18.69947 3 31.2 

4 28.0106 26.25112 20.10661 3 36 

5 33.69317 31.6061 24.4048 3 25.2 
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6 6.592658 6.133727 4.409609 3 8.4 

7 10.98438 10.24602 7.532536 3 10.8 

8 280.2345 265.693 225.1002 3 352.8 

9 25.39293 23.78613 18.14048 6.520409 72 

10 74.65834 70.3147 56.21907 6.520409 72 

11 19.86814 18.58797 14.02459 6.520409 24 

12 438.1441 416.3439 359.7068 6.520409 360 

13 39.85181 37.41485 29.10324 6.520409 36 

14 438.1441 416.3439 359.7068 6.520409 215 

15 74.65834 70.3147 56.21907 6.520409 48 

16 438.1441 416.3439 359.7068 6.520409 360 

17 684.2813 651.6947 574.1434 6.520409 324 

18 123.0252 116.1592 94.92732 6.520409 60 

19 54.41322 51.16594 40.34614 6.520409 48 

20 127.3263 120.241 98.41099 6.520409 60 

21 73.42792 69.15009 55.2477 3 60 

22 280.2345 265.693 225.1002 3 300 

23 114.4643 108.0369 88.01115 3 120 

24 54.41322 51.16594 40.34614 6.520409 90 

25 151.2085 142.9179 117.8548 6.520409 210 

26 34.84069 32.68804 25.27728 6.520409 48 

27 56.01076 52.67581 41.5894 3 70 

28 197.7336 187.1444 156.1494 3 239 

29 59.6202 56.08796 44.4047 3 82 

30 45.70538 42.94007 33.60213 3 62 

31 127.7571 120.6499 98.76027 3 170 

32 140.307 132.5641 108.9592 3 192 

33 18.05542 16.88392 12.68562 3 18 

34 36.37604 34.13594 26.44682 3 50 

35 50.43812 47.40997 37.26043 3 60 

36 21.69598 20.30703 15.38079 6.520409 42 

37 46.49121 43.6821 34.20833 6.520409 60 

38 390.2161 370.5845 318.552 6.520409 444 

39 27.26034 25.54449 19.54213 6.520409 42 

40 58.41479 54.94832 43.46355 6.520409 114 

41 825.4542 786.8871 698.9662 3 1248 

42 1477.063 1412.18 1286.772 6.520409 2400 

43 1370.405 1309.713 1189.493 6.520409 1368 

44 1384.298 1323.059 1202.144 6.520409 973 

45 338.1075 320.866 274.0882 6.520409 400 

46 2139.425 2049.264 1897.824 10.26826 2400 

47 887.3909 846.238 754.0714 6.520409 420 

48 193.2555 182.885 152.4424 10.26826 252 

49 78.77285 74.20987 59.47296 6.520409 107 
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50 333.4047 316.3806 270.0911 10.26826 571.4 

51 40.23975 37.78091 29.40045 10.26826 98.8 

52 71.79028 67.60018 53.95606 10.26826 155 

53 442.964 420.9472 363.8582 10.26826 750 

54 1037.398 990.0667 888.2906 6.520409 2120 

55 204.468 193.5508 161.7318 6.520409 370 

56 1079.141 1030.109 925.815 3 1181 

57 296.004 280.7215 238.4036 3 278 

58 2.467429 2.28434 1.573054 3 8.4 

59 5388.899 5185.847 5000.907 10.26826 4560 

60 1737.146 1662.194 1525.38 6.520409 720 

61 296.004 280.7215 238.4036 6.520409 458 

62 1311.233 1252.883 1135.682 6.520409 2460 

63 390.2161 370.5845 318.552 6.520409 162 

64 159.9815 151.2528 125.0365 6.520409 150 

65 619.3632 589.5723 517.151 6.520409 636 

66 684.2813 651.6947 574.1434 6.520409 882 

67 1677.211 1604.562 1470.228 6.520409 444 

68 1147.283 1095.493 987.223 6.520409 192 

69 654.2464 622.9494 547.741 3 576 

70 689.2988 656.4974 578.5597 3 432 

71 133.8024 126.3883 103.6672 3 72 

72 428.5187 407.1519 351.4232 3 300 

73 366.4468 347.901 298.2313 3 300 

74 74.65834 70.3147 56.21907 3 240 

75 491.4179 467.2367 405.7102 3 600 

76 744.7064 709.5443 627.4299 3 756 

77 1748.063 1672.694 1535.436 3 1200 

78 759.8837 724.0786 640.8482 3 97 

79 249.8547 236.7529 199.5761 10.26826 409 

80 438.1441 416.3439 359.7068 10.26826 703 

81 125.1741 118.1984 96.66707 10.26826 1350 

82 217.9967 206.4237 172.9731 6.520409 480 

83 164.3846 155.4368 128.6483 6.520409 599 

84 91.23059 86.0095 69.37403 6.520409 430 

85 759.8837 724.0786 640.8482 10.26826 4178.2 

86 272.8409 258.6483 218.8754 10.26826 1772.5 

87 296.004 280.7215 238.4036 10.26826 1645.9 

88 204.468 193.5508 161.7318 10.26826 1924.5 

89 24.46381 22.9115 17.44494 10.26826 648 

90 1110.544 1060.239 954.092 10.26826 8211 

91 59.6202 56.08796 44.4047 10.26826 480 

92 20.59753 19.27386 14.56507 10.26826 12 

93 9.271836 8.641216 6.305753 10.26826 38 
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Figure. 3 Analysis of normalized error on Dataset 3 

 
Table 4. Analysis of effort estimation on Dataset 4 

Project 

Number 

Hybrid 

BATGSA 

Optimization 

IBAT 

Optimization 

BAT 

Optimization 
COCOMO  Actual 

1 2617.821 4759.931 5605.14 8564.197 287 

2 1102.3 1961.087 2138.508 3213.793 82.5 

3 6374.61 11853.65 15106.91 17526.39 1107.31 

4 2255.341 4085.472 4747.639 5266.707 86.9 

5 4273.649 7867.239 9676.503 9519.336 336.3 

6 981.854 1741.718 1879.869 2610.139 84 

7 203.2856 346.5822 325.2334 520.7564 23.2 

8 2583.915 4696.738 5524.325 6818.744 130.3 

9 4188.328 7706.258 9461.534 11576.37 116 

10 570.9059 998.9934 1027.525 1389.818 72 

11 4332.574 7978.464 9825.252 11723.8 258.7 

12 1820.726 3280.442 3740.319 5270.448 230.7 

13 1768.673 3184.33 3621.389 4542.2 157 

14 3664.985 6720.702 8154.226 9598.281 246.9 

15 2521.852 4581.12 5376.708 7214.489 69.9 

 

6. Conclusion 

This paper implements the hybrid BATGSA 

algorithm to optimize the performance of the 

COCOMO model to estimate the software cost. The 

algorithm has been analyzed on 4 datasets including 

two datasets of NASA projects downloaded from 

promise repository. The comparison of effort 

valueand normalized error on each dataset has been 

done with the Improved BAT, BAT and COCOMO 

model. The normalized error has been reduced by 

1% on dataset1, 3.5%on dataset2, 0.33% on dataset3 

and 46%on dataset4 by BATGSA algorithm as 

compared to the improved BAT algorithm. The 

reduction in the normalized error and the 

convergence of efforts towards the actual effort of  
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Figure. 4 Analysis of normalized error on Dataset 4 

 

the hybrid BATGSA algorithm as compared to other 

state of art algorithms proves the significance of the  

algorithm. In future this algorithm can be applied to 

optimize different software metrics. Moreover, 

algorithm can be modified to determine the software 

quality during the development of software. 
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