
Received: March 26, 2018 250

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

Software Cost Estimation by Optimizing COCOMO Model Using Hybrid

BATGSA Algorithm

Deepak Nandal1* Om Prakash Sangwan1

1Department of Computer Science and Engineering,

Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
* Corresponding author’s Email: dr.deepaknandalgju@gmail.com

Abstract: This paper estimates the effort for software by optimizing the COnstructive COst MOdel (COCOMO)

model parameters using hybrid BATGSA (Bat inspired Gravitational Search Algorithm) algorithm. The performance

of the COCOMO model completely depends upon its parameters which can be optimized by using meta-heuristic

algorithms. This paper uses hybrid BATGSA algorithm which hybrids the improved bat algorithm with the

gravitation search algorithm (GSA) to optimize the COCOMO model. The bat algorithm demonstrates the hunting

and routing behavior of the bat which is improved by using a random walk in the exploration phase. The exploration

phase is further improved by using GSA as gravitation force affects the velocity of the bat. The algorithm has been

analyzed on four NASA datasets downloaded from promise repository. The comparison of the algorithm has been

made with existing three states of art techniques i.e. COCOMO model, BAT algorithm, Improved BAT(IBAT)

algorithm by using normalized error as a parameter. The reduction in error ranges from 2% to 10% on different

dataset as compared other state of art algorithms proves the significance of proposed algorithm.

Keywords: NASA project dataset, COCOMO, BAT, GSA, Optimization.

1. Introduction

Software cost estimation is a critical process as it

is required to estimate the cost of the project at the

initial stage of the project. The cost estimation is

required to compute the budget and the resources

required for the project [1, 2]. The cost of the project

depends upon the efforts done which include the

number of reviews, efficiency during

implementation and pre-development processing,

etc [3]. The Constructive Cost Model (COCOMO) is

a model to determine the cost of the software. This

model uses a basic regression formula for estimating

cost, effort, and schedule for software projects based

on features of the project. The model calculates the

efforts as E=a × (KLOC)b, here KLOC shows the

kilo line of code and a, b are the constants which

depends upon the type of software [4]. This model

can be optimized by using meta-heuristic algorithm

[5]. Different authors have applied the various meta-

heuristic algorithm to improve the performance of

the COCOMO model. The author of [6] has applied

a genetic algorithm to optimize the parameters of

COCOMO model while the author of [1] has applied

differential evolution algorithm for the same. The

author of [7] has applied BAT algorithm to improve

the performance of cost estimation by COCOMO.

The author of [7] shows the reduction in error by

optimizing the COCOMO model using BAT

algorithm. The BAT algorithm shows the better

result as compared other existing state of the art

techniques but BAT algorithm search locally in the

exploration phase which opens scope for the

improvement. This paper optimizes the estimation

using COCOMO model by using hybrid BATGSA

algorithm. The hybrid BATGSA algorithm has

better convergence towards the global optima as it

has improved exploration phase as compared to

BAT algorithm, resulting in better optimization of

COCOMO model. This paper further has been

classified in five sections. The next section i.e.

section 2 describes the improved BAT algorithm

Received: March 26, 2018 251

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

which is followed by the description of Gravitation

search algorithm (GSA) in section 3. The Hybrid

BATGSA algorithm has been described in section 4

while the results and corresponding discussion is

done in section 5.

2. Improved BAT algorithm for cost

estimation

Bat algorithm performs well for the various

applications [8, 9]. This algorithm automatically

switches from the exploration phase i.e. global

search, to the exploitation phase i.e. local search.

The main limitation of the algorithm is that it mainly

searches locally even in the exploration phase [7, 9].

In the exploration phase change in the frequency is

the parameter for the global search which restricts

the search locally mainly. This behavior has been

changed by introducing the random move nature to

the bat resultant velocity updation is given by Eq.

(1). Suppose there are n bats with position vector

P[1 : n] and velocity vector V[1 : n] i.e.𝑃𝑎
𝑡 , 𝑉𝑎

𝑡

denotes the position and velocity of the ath bat at tth

time. Moreover, there is a frequency vector f[1 : n]

that denotes the frequency of each bat which lies

between fmin and fmax The velocity of each bat is

adjusted according to frequency using the equation

1 1

1 1

0.5()

()

t t b

t a a a

a t t r

a a

prV P P f
V

elseV P P pr

 (1)

Here pr is the probability which is generated

randomly by using a random function and Pr is

position at any random time stamp. This updation

strength the exploration phase and improves the

global search. Correspondingly position update can

be given by Eq. (2) to improve the impact of

velocity on the position.

1

1

0.5t t

t a a

a t t

a a a

prP V
P

elseP V f

(2)

The Eq. (2) updates the position of the bat according

to the velocity update. The local search phase of the

algorithm is powerful enough to exploit the search

space. The improved bat algorithm is as follow:

IBAT Algorithm (P, V, f, F, emr0, L):

Here, P, V, f are the position, velocity and

frequency vector for n bats respectively. The F is the

fitness function to evaluate the fitness of the solution

generated by the corresponding position. The L is

the loudness vector and emr0 is initial emission rate.

1. Initiate iteration=1

2. Pb=P1

3. For i=2:n

a. If F(Pi) > F(Pb)

b. Pb=Pi

c. End if

End

4. While iteration<max_iteration

a.
min max min()iterationf f f f

b.
pr=rand

c.
r=rand(1,n)

d.
1 1

1: 1:

1: 1 1

1: 1:

0.5()

()

iteration iteration b

iteration n n a

n iteration iteration r

n n

prV P P f
V

elseV P P pr

e.
1

1: 1:

1: 1

1: 1: 1:

0.5iteration iteration

iteration n n

n iteration iteration

n n n

prP V
P

elseP V f

f. If rand > emriteration-1
1

1: 1:

iteration iteration iteration

n nP P L

End if

g. If F(1:

iteration

nP) > F(
1

1:

iteration

nP
)

1:

iteration

nP
=

1

1:

iteration

nP

Else
1

1: 1:

iteration iteration

n nL L

0 (1)

1: 1: (1)iteration iteration

n nemr emr e

End if

h. For i=1:n

i. If F(Pi) > F(Pb)

ii. Pb=Pi

iii. End if

End

i. iteration++

End while

The above algorithm gives the process of

improved bat algorithm [10, 11]. This algorithm has

been applied to the cost estimation of software by

using the objective function given by Eq. (3)

Received: March 26, 2018 252

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

 1

() /
()

n

i i ii
actual predicted actual

F P
n

(3)

which calculates the mean relative error which

depends upon the actual and the predicted

estimation. The performance of the algorithm can be

improved discussed in next section.

3. Gravitational search algorithm

The gravitational search algorithm uses the law

of gravity given by Newton [12]. According to

Newton every particle attracts another particle with

a gravitational force that can be given by Eq. (4).

1 2

2

M M
F G

D
 (4)

Here, G is the gravitational constant, D is the

distance between two objects having masses M1 and

M2 respectively. The details of GSA are as follow.

Suppose we have n objects in d dimensions then

position matrix for objects can be given by Eq. (5).

𝑂 =

[

𝑂1

1 𝑂1
2 𝐿 𝑂1

𝑑

𝑂2
1 𝑂

2

2
𝐿 𝑂2

𝑑

𝑀
𝑂𝑛

1
𝑀
𝑂𝑛

2
𝑀
𝐿

𝑀
𝑂𝑛

𝑑]

 (5)

Here,
j

iO represents the position of ith object in the

jth dimension. At a particular time stamp say t the

force acting on object p from object q can be given

by Eq. (6).

 1: : 1:
() ()

() () () ()
()

a p

p qd i d d

pq i j

pq

M t M t
F t G t O t O t

D t

 (6)

Here 𝑀𝑝
𝑎(𝑡),𝑀𝑞

𝑝
(𝑡) are active and passive

gravitational masses of object p and q respectively. ɛ

is a small constant with value 2-52, Dpq(t) is the

distance between object p and object q which is

given by Eq. (7).

2

1

() ()
d

i i

pq p q

i

D t O O

 (7)

Overall the total force acting on any object p can be

given by Eq. (8)

1: 1:

1,

()
n

d d

p pi i

i i p

F t F rand

 (8)

So the acceleration is given by Eq. (9).

1:

1:
()

()
()

d

pd

p

p

F t
a t

O t
 (9)

Here, Op(t) is the inertia mass of object p.

This acceleration is used to update the velocity

of the object which affects the position of an object

demonstrated by Eqs. (10) and (11).

1: 1: 1:(1) () ()d d d

p p pv t v t rand a t (10)

and
1: 1: 1:(1) () (1)d d d

p p pO t O t v t (11)

The whole process is repeated for the updated

position for the given number of iterations or until

fulfilling the stopping criteria. The overall GSA

algorithm can be given as follow.

GSA (O, M, Fit)

The algorithm uses O as the object position

matrices with M as the mass metric containing mass

of each object. Fit is the fitness function.

1. Initiate iteration=1

2. 𝑂 =

[

𝑂1

1 𝑂1
2 𝐿 𝑂1

𝑑

𝑂2
1 𝑂

2

2
𝐿 𝑂2

𝑑

𝑀
𝑂𝑛

1
𝑀
𝑂𝑛

2
𝑀
𝐿

𝑀
𝑂𝑛

𝑑]

3. While iteration< max_iteration

a. 𝐹𝑖𝑡(𝑡) =

[

𝐹𝑖𝑡(𝑂1
1(𝑡)) 𝐹𝑖𝑡(𝑂1

2(𝑡)) 𝐿 𝐹𝑖𝑡(𝑂1
𝑑(𝑡))

𝐹𝑖𝑡(𝑂2
1(𝑡)) 𝐹𝑖𝑡(𝑂2

2(𝑡)) 𝐿 𝐹𝑖𝑡(𝑂2
𝑑(𝑡))

𝑀
𝐹𝑖𝑡(𝑂𝑛

1(𝑡))
𝑀

𝐹𝑖𝑡(𝑂𝑛
2(𝑡))

𝑀
𝐿

𝑀
𝐹𝑖𝑡(𝑂𝑛

𝑑(𝑡))]

b. 2

1

() ()
d

i i

pq p q

i

D t O O

c. 1: : 1:
() ()

() () () ()
()

a p

p qd i d d

pq i j

pq

M t M t
F t G t O t O t

D t

d.
1: 1:

1,

()
n

d d

p pi i

i i p

F t F rand

Received: March 26, 2018 253

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

e.

1:

1:
()

()
()

d

pd

p

p

F t
a t

O t

f.
1: 1: 1:(1) () ()d d d

p p pv t v t rand a t

g.
1: 1: 1:(1) () (1)d d d

p p pO t O t v t

h. If Fit(t)<Fit(t+1)

1: 1:(1) ()d d

p pO t O t

end

End while

4. Return best(F)

The above algorithm performs the optimization.

The fitness has been given by Eq. (3) to determine

the software cost estimation. The improved bat

algorithm is hybridized by using gravitational search

algorithm discussed in next section.

4. Hybrid BATGSA algorithm

In the real-time the gravitational force as the

impact the velocity of the BAT. in this work to

improve the exploration phase of the algorithm the

velocity factor has been affected by the gravitational

force also. This improves the global search

capability of the algorithm resulting better

convergence for optimization. The concept can be

easily understood by following algorithm:

BATGSA Algorithm (P, V, M, f, Fit, emr0, L)

Here, P, V, M, f are the position, velocity, mass

and frequency vector for n bats respectively. The Fit

is the fitness function to evaluate the fitness of the

solution generated by corresponding position. The L

is the loudness vector and emr0 is initial emission

rate.

1. Initiate iteration=1

2. 𝑃 =

[

𝑃1

1 𝑃1
2 𝐿 𝑃1

𝑑

𝑃2
1 𝑃

2

2
𝐿 𝑃2

3

𝑀
𝑃𝑛

1
𝑀
𝑃𝑛

2
𝑀
𝐿

𝑀
𝑃𝑛

𝑑]

3. 𝐹𝑖𝑡(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛) =

[

𝐹𝑖𝑡(𝑃1

1(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 𝐹𝑖𝑡(𝑃1
2(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 𝐿 𝐹𝑖𝑡(𝑃1

𝑑(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))

𝐹𝑖𝑡(𝑃2
1(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 𝐹𝑖𝑡(𝑃2

2(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)) 𝐿 𝐹𝑖𝑡(𝑃2
𝑑(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))

𝑀

𝐹𝑖𝑡(𝑃𝑛
1(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))

𝑀

𝐹𝑖𝑡(𝑃𝑛
2(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))

𝑀

𝐿

𝑀

𝐹𝑖𝑡(𝑃𝑛
𝑑(𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛))]

4. Pb=P1

5. For i=2:n

a. If Fit(Pi) > Fit(Pb)

b. Pb=Pi

c. End if

End

6. While iteration<max_iteration

a. min max min()iterationf f f f

b.
pr=rand

c.

r=rand(1,n)

Received: March 26, 2018 254

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

d.

1 1

1: 1:

1: 1 1

1: 1:

0.5()

()

iteration iteration b

iteration n n a

n iteration iteration r

n n

prV P P f
V

elseV P P pr

e.

1

1: 1:

1: 1

1: 1: 1:

0.5iteration iteration

iteration n n

n iteration iteration

n n n

prP V
P

elseP V f

f. If rand > emriteration-1

1

1: 1:

iteration iteration iteration

n nP P L

End if

g. For p=1:n

i. For q=1:n

2

1

(1) ()
d

i i

pq p q

i

D iteration P P

 1: : 1:
() ()

(1) () () ()
()

a p

p qd i d d

pq p q

pq

M t M t
F iteration G iteration P iteration P t

D t

End

ii.
1: 1:

1,

(1)
n

d d

p pi i

i i p

F iteration F rand

iii.

1:

1:
()

(1)
()

d

pd

p

p

F iteration
a iteration

P iteration

iv.
1: 1: 1:() (1) (1)d d d

p p pv iteration v iteration rand a iteration

v.
1: 1: 1:() (1) ()d d d

p p pP iteration P iteration v iteration

End

h. If Fit(1:

iteration

nP) > Fit(
1

1:

iteration

nP
)

1:

iteration

nP =
1

1:

iteration

nP

Else
1

1: 1:

iteration iteration

n nL L

0 (1)

1: 1: (1)iteration iteration

n nemr emr e

End if

i. For i=1:n

i. If F(Pi) > F(Pb)

ii. Pb=Pi

iii. End if

End

j. iteration++

End while

Received: March 26, 2018 255

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

The above algorithm updates the position of the

bat firstly on the basis of frequency of the sound

then this position is updated on the basis of the

gravitational force on bat for the global search while

the local search still depends upon the loudness of

the sound. This algorithm produces exploration as

well as exploitation search so the optimization must

converge towards the global optima. The objective

function given in Eq. (3) has been used for the cost

estimation. The implementation of algorithm and the

result analysis has been discussed in next section.

5. Results and discussion

The algorithm discussed in previous section has

been implemented using MATLAB. The analysis

has been done on 4 datasets, 2 are the NASA

datasets containing 60 and 93 projects respectively

and other two are COCOMO81 and kemerer. All

datasets has been downloaded from the promise data

repository. The actual cost of each software project

is available in the dataset which is compared with

the estimated cost to calculate the mean relative

error for each project. The comparison of the hybrid

BATGSA algorithm is done with the COCOMO

based cost estimation i.e. cost estimation without

optimization [3] with the BAT [7] and improved

BAT based optimization [11]. The remaining

section of the paper uses Dataset1 for the cocomo81

dataset, Dataset2 for NASA dataset having 60

projects, Dataset3 for NASA dataset with 93 project

and Dataset 4 for kemerer dataset. The software

effort estimation for Dataset1 has been analyzed in

Table1.

The effort estimation for each project in the

Dataset1 has been shown in the table 1. The analysis

Table 1 shows that the value of the effort converges

towards the actual effort but for some project the

estimation is producing higher error. This is because

the algorithm reduces the mean absolute error in

cost estimation by Eq. (8). The mean absolute error

in the Dataset1 has been to 433.215 from

437.537(Improved BAT), 444.405 (Bat algorithm)

which is reduced from 680.154 in COCOMO model.

The normalized error in each project of Dataset1 has

been analyzed in figure 1. The normalized error has

been calculated by Eq. (12).

() /i i i iNE abs actual predicted actual
 (12)

Here, NEi is the normalized error for i-th project

which has been calculated by using actual and

predicted effort of the project.

The Fig. 1 clearly shows that normalized error

has been reduced by using hybrid BATGSA is more

as compared to reduction by improving the bat

algorithm and bat algorithm. This is due to the

better optimization of COCOMO model by

BATGSA algorithm which is due to better

exploration phase of BATGSA algorithm.

The software cost/effort estimation for each

undertaking in the Dataset2 has been appeared in the

table 2. The mean absolute error in the Dataset2 has

been to 127.530 from 132.486 in improved BAT and

137.401 (Bat calculation) which is decreased from

400.985 in COCOMO display. The standardized

error in each project of Dataset2 has been

investigated in Fig. 2 which is computed by Eq. (12).

The Fig. 2 unmistakably connotes that

normalized error has been reduced by hybrid

BATGSA calculation is higher than the reduction

done by improved bat and bat calculation due to

avoidance of local minima by the BATGSA

algorithm.

The effort estimation for each project in the

Dataset3 has been shown in the Table 3. The

analysis table 3 shows that the value of the effort

converges towards the actual effort but for some

project the estimation is producing higher error. This

is because the algorithm reduces the mean absolute

error in cost estimation by Eq. (3). The mean

absolute error in the Dataset1 has been to 355.386

from 356.143(improved BAT), 365.164 (Bat

algorithm) which is reduced from 618.412 in

COCOMO model.

The Fig. 3 clearly shows that normalized error

has been reduced by using hybrid BATGSA is more

as compared to reduction by improving the bat

algorithm and bat algorithm. This is due to the better

optimization of COCOMO model by BATGSA

algorithm which is due to better exploration phase of

BATGSA algorithm.

The software cost/effort estimation for each

undertaking in the Dataset4 has been appeared in the

table 4. The mean absolute error in the Dataset4 has

been to 2398.141 from 4564.934 in improved BAT

and from 5528.158 (Bat calculation) which is

decreased from 6804.450 in COCOMO display. The

standardized error in each project of Dataset4 has

been investigated in figure 4 which is computed by

Eq. (12).

The Fig. 4 unmistakably connotes that

normalized error has been reduced by hybrid

BATGSA calculation is higher than the reduction

done by improved bat and bat calculation. This is

due to the velocity variation done to explore the

search space appropriately. This shows that the

Received: March 26, 2018 256

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

hybrid BATGSA algorithm improves the estimation of the software effort.

Table 1. Analysis of effort estimation on Dataset 1

Project

Number

Hybrid

BATGSA

Optimization

IBAT

Optimization

BAT

Optimization
COCOMO Actual

1 500.0036 454.2916 474.5296 3.134719 2040

2 1446.034 1362.665 1443.515 3 1600

3 594.5699 543.4377 568.9498 3 243

4 246.9118 218.9643 226.593 3.134719 240

5 56.58902 47.70643 48.41535 3 33

6 12.0693 9.64865 9.593832 3 43

7 22.16179 18.09085 18.13331 3 8

8 80.70177 68.86921 70.22168 3.270061 1075

9 114.0294 98.4732 100.8675 3 423

10 109.801 94.69864 96.95262 3 321

11 122.5342 106.0797 108.7624 3 218

12 144.0569 125.4077 128.8548 3.270061 201

13 93.0598 79.80509 81.52591 3 79

14 8.758434 6.925093 6.856592 3.782814 60

15 11.73347 9.371089 9.314369 3.782814 61

16 19.31758 15.69484 15.70312 3 40

17 10.73201 8.54502 8.483278 3 9

18 1595.32 1508.428 1600.005 3.270061 11400

19 6638.286 6591.914 7125.294 3 6600

20 1479.077 1394.886 1478.089 3.270061 6400

21 1222.389 1145.283 1210.54 3 2455

22 524.7245 477.5438 499.1363 3.782814 724

23 326.0589 291.9289 303.2134 3.782814 539

24 387.982 349.452 363.7963 3 453

25 148.4032 129.3233 132.9303 3.270061 523

26 192.5427 169.2959 174.6185 3.270061 387

27 31.28028 25.83853 26.01757 3.270061 88

28 44.8975 37.55026 37.99172 3 98

29 6.01046 4.69124 4.621749 3.782814 7.3

30 5.51178 4.289229 4.220852 3.782814 5.9

31 256.1027 227.4003 235.4368 3 1063

32 1988.874 1894.85 2015.761 3 702

33 165.9165 145.1403 149.4089 3 605

34 84.80089 72.49063 73.9627 3.782814 230

35 44.8975 37.55026 37.99172 3 82

36 52.66131 44.28563 44.90095 3.134719 55

37 246.9118 218.9643 226.593 3 47

38 52.66131 44.28563 44.90095 3 12

39 19.67088 15.99184 16.00411 3 8

40 8.758434 6.925093 6.856592 3 8

Received: March 26, 2018 257

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

41 16.51591 13.34653 13.3259 3 6

42 181.3991 159.1714 164.0462 3.134719 45

43 108.1143 93.19433 95.39297 3.134719 83

44 116.5742 100.7472 103.2269 3.134719 87

45 135.4051 117.6252 120.7594 3.134719 106

46 307.2369 274.5156 284.9027 3.134719 126

47 84.80089 72.49063 73.9627 3.134719 36

48 2413.831 2315.072 2469.116 3.134719 1272

49 392.7899 353.9322 368.5205 3 156

50 88.92049 76.13621 77.73109 3 176

51 33.51367 27.74908 27.96687 3.134719 122

52 26.86333 22.07421 22.18244 3 41

53 16.51591 13.34653 13.3259 3.270061 14

54 13.42202 10.76931 10.72319 3 20

55 20.02484 16.28958 16.30592 3 18

56 101.3949 87.20966 89.19133 3.270061 958

57 60.54499 51.1601 51.96679 3.782814 237

58 93.0598 79.80509 81.52591 3 130

59 84.80089 72.49063 73.9627 3 70

60 21.44701 17.48765 17.5211 3.270061 57

61 105.5893 90.94392 93.06036 3 50

62 30.16963 24.89016 25.05064 3 38

63 33.51367 27.74908 27.96687 3 15

Figure. 1 Analysis of normalized error on Dataset 1

Received: March 26, 2018 258

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

Table 2. Analysis of effort estimation on Dataset 2

Project

Number

Hybrid

BATGSA

Optimization

IBAT

Optimization

BAT

Optimization
COCOMO Actual

1 287.2043 265.0441 247.4643 3 278

2 1167.179 1070.171 1132.798 3 1181

3 872.9328 801.4547 826.5829 3 1248

4 523.2879 481.5761 474.4389 3 480

5 102.5464 95.08511 80.96048 3 120

6 63.37579 58.8953 48.03242 3 60

7 270.6567 249.8417 232.0345 3 300

8 13.85218 12.96357 9.227148 3 18

9 29.59828 27.60263 21.0285 3 50

10 42.18202 39.27361 30.88377 3 60

11 49.45893 46.01497 36.70414 6.520409 114

12 16.90391 15.80499 11.45188 6.520409 42

13 38.61608 35.96821 28.06175 6.520409 60

14 21.65029 20.2197 14.9788 6.520409 42

15 387.5022 357.109 342.4826 6.520409 450

16 45.79719 42.62334 33.76551 6.520409 90

17 138.6684 128.3999 112.3196 6.520409 210

18 28.24655 26.34772 19.98866 6.520409 48

19 775.5962 712.4771 727.0806 3 815

20 185.4654 171.5012 153.979 3 239

21 115.5157 107.0519 92.12647 3 170

22 37.90906 35.31268 27.50479 3 62

23 47.25644 43.97509 34.93428 3 70

24 50.56617 47.0403 37.59643 3 82

25 127.8651 118.441 102.8585 3 192

26 87.81213 81.48128 68.42088 3 117.6

27 82.58465 76.65239 64.01337 3 117.6

28 20.68617 19.32334 14.25653 3 31.2

29 27.23952 25.41264 19.21672 3 25.2

30 4.647672 4.371511 2.821779 3 8.4

31 8.082867 7.58319 5.14345 3 10.8

32 22.29692 20.82077 15.46477 3 36

33 270.6567 249.8417 232.0345 3 352.8

34 712.3336 654.62 662.9693 6.520409 324

35 439.3494 404.6549 392.4677 6.520409 360

36 439.3494 404.6549 392.4677 6.520409 215

37 439.3494 404.6549 392.4677 6.520409 360

38 45.79719 42.62334 33.76551 6.520409 48

39 115.0935 106.6625 91.76123 6.520409 60

40 110.8853 102.7803 88.12707 6.520409 60

41 15.36584 14.37324 10.32592 6.520409 24

Received: March 26, 2018 259

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

42 32.67584 30.45876 23.41075 6.520409 36

43 64.52773 59.96081 48.98032 6.520409 72

44 64.52773 59.96081 48.98032 6.520409 48

45 20.04739 18.72936 13.77956 6.520409 72

46 1640.226 1501.541 1638.561 6.520409 2400

47 2089.383 1910.585 2130.591 6.520409 3240

48 1118.321 1025.576 1081.446 6.520409 2120

49 192.322 177.8117 160.1644 6.520409 370

50 444.5907 409.46 397.5498 10.26826 750

51 944.1499 866.5265 899.9904 6.520409 420

52 180.9169 167.3143 149.8864 10.26826 252

53 68.39128 63.53386 52.16987 6.520409 107

54 2450.814 2239.436 2533.23 10.26826 2300

55 331.7397 305.9395 289.3568 6.520409 400

56 1528.865 1400.05 1518.225 6.520409 973

57 1512.239 1384.895 1500.321 6.520409 1368

58 326.7409 301.3507 284.6296 10.26826 571.4

59 33.02077 30.7788 23.67897 10.26826 98.8

60 61.84511 57.47932 46.77514 10.26826 155

Figure. 2 Analysis of normalized error on Dataset 2

Table 3. Analysis of effort estimation on Dataset 3

Project

Number

Hybrid

BATGSA

Optimization

IBAT

Optimization

BAT

Optimization
COCOMO Actual

1 99.20243 93.56455 75.74521 3 117.6

2 93.74146 88.38874 71.37792 3 117.6

3 26.13845 24.48804 18.69947 3 31.2

4 28.0106 26.25112 20.10661 3 36

5 33.69317 31.6061 24.4048 3 25.2

Received: March 26, 2018 260

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

6 6.592658 6.133727 4.409609 3 8.4

7 10.98438 10.24602 7.532536 3 10.8

8 280.2345 265.693 225.1002 3 352.8

9 25.39293 23.78613 18.14048 6.520409 72

10 74.65834 70.3147 56.21907 6.520409 72

11 19.86814 18.58797 14.02459 6.520409 24

12 438.1441 416.3439 359.7068 6.520409 360

13 39.85181 37.41485 29.10324 6.520409 36

14 438.1441 416.3439 359.7068 6.520409 215

15 74.65834 70.3147 56.21907 6.520409 48

16 438.1441 416.3439 359.7068 6.520409 360

17 684.2813 651.6947 574.1434 6.520409 324

18 123.0252 116.1592 94.92732 6.520409 60

19 54.41322 51.16594 40.34614 6.520409 48

20 127.3263 120.241 98.41099 6.520409 60

21 73.42792 69.15009 55.2477 3 60

22 280.2345 265.693 225.1002 3 300

23 114.4643 108.0369 88.01115 3 120

24 54.41322 51.16594 40.34614 6.520409 90

25 151.2085 142.9179 117.8548 6.520409 210

26 34.84069 32.68804 25.27728 6.520409 48

27 56.01076 52.67581 41.5894 3 70

28 197.7336 187.1444 156.1494 3 239

29 59.6202 56.08796 44.4047 3 82

30 45.70538 42.94007 33.60213 3 62

31 127.7571 120.6499 98.76027 3 170

32 140.307 132.5641 108.9592 3 192

33 18.05542 16.88392 12.68562 3 18

34 36.37604 34.13594 26.44682 3 50

35 50.43812 47.40997 37.26043 3 60

36 21.69598 20.30703 15.38079 6.520409 42

37 46.49121 43.6821 34.20833 6.520409 60

38 390.2161 370.5845 318.552 6.520409 444

39 27.26034 25.54449 19.54213 6.520409 42

40 58.41479 54.94832 43.46355 6.520409 114

41 825.4542 786.8871 698.9662 3 1248

42 1477.063 1412.18 1286.772 6.520409 2400

43 1370.405 1309.713 1189.493 6.520409 1368

44 1384.298 1323.059 1202.144 6.520409 973

45 338.1075 320.866 274.0882 6.520409 400

46 2139.425 2049.264 1897.824 10.26826 2400

47 887.3909 846.238 754.0714 6.520409 420

48 193.2555 182.885 152.4424 10.26826 252

49 78.77285 74.20987 59.47296 6.520409 107

Received: March 26, 2018 261

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

50 333.4047 316.3806 270.0911 10.26826 571.4

51 40.23975 37.78091 29.40045 10.26826 98.8

52 71.79028 67.60018 53.95606 10.26826 155

53 442.964 420.9472 363.8582 10.26826 750

54 1037.398 990.0667 888.2906 6.520409 2120

55 204.468 193.5508 161.7318 6.520409 370

56 1079.141 1030.109 925.815 3 1181

57 296.004 280.7215 238.4036 3 278

58 2.467429 2.28434 1.573054 3 8.4

59 5388.899 5185.847 5000.907 10.26826 4560

60 1737.146 1662.194 1525.38 6.520409 720

61 296.004 280.7215 238.4036 6.520409 458

62 1311.233 1252.883 1135.682 6.520409 2460

63 390.2161 370.5845 318.552 6.520409 162

64 159.9815 151.2528 125.0365 6.520409 150

65 619.3632 589.5723 517.151 6.520409 636

66 684.2813 651.6947 574.1434 6.520409 882

67 1677.211 1604.562 1470.228 6.520409 444

68 1147.283 1095.493 987.223 6.520409 192

69 654.2464 622.9494 547.741 3 576

70 689.2988 656.4974 578.5597 3 432

71 133.8024 126.3883 103.6672 3 72

72 428.5187 407.1519 351.4232 3 300

73 366.4468 347.901 298.2313 3 300

74 74.65834 70.3147 56.21907 3 240

75 491.4179 467.2367 405.7102 3 600

76 744.7064 709.5443 627.4299 3 756

77 1748.063 1672.694 1535.436 3 1200

78 759.8837 724.0786 640.8482 3 97

79 249.8547 236.7529 199.5761 10.26826 409

80 438.1441 416.3439 359.7068 10.26826 703

81 125.1741 118.1984 96.66707 10.26826 1350

82 217.9967 206.4237 172.9731 6.520409 480

83 164.3846 155.4368 128.6483 6.520409 599

84 91.23059 86.0095 69.37403 6.520409 430

85 759.8837 724.0786 640.8482 10.26826 4178.2

86 272.8409 258.6483 218.8754 10.26826 1772.5

87 296.004 280.7215 238.4036 10.26826 1645.9

88 204.468 193.5508 161.7318 10.26826 1924.5

89 24.46381 22.9115 17.44494 10.26826 648

90 1110.544 1060.239 954.092 10.26826 8211

91 59.6202 56.08796 44.4047 10.26826 480

92 20.59753 19.27386 14.56507 10.26826 12

93 9.271836 8.641216 6.305753 10.26826 38

Received: March 26, 2018 262

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

Figure. 3 Analysis of normalized error on Dataset 3

Table 4. Analysis of effort estimation on Dataset 4

Project

Number

Hybrid

BATGSA

Optimization

IBAT

Optimization

BAT

Optimization
COCOMO Actual

1 2617.821 4759.931 5605.14 8564.197 287

2 1102.3 1961.087 2138.508 3213.793 82.5

3 6374.61 11853.65 15106.91 17526.39 1107.31

4 2255.341 4085.472 4747.639 5266.707 86.9

5 4273.649 7867.239 9676.503 9519.336 336.3

6 981.854 1741.718 1879.869 2610.139 84

7 203.2856 346.5822 325.2334 520.7564 23.2

8 2583.915 4696.738 5524.325 6818.744 130.3

9 4188.328 7706.258 9461.534 11576.37 116

10 570.9059 998.9934 1027.525 1389.818 72

11 4332.574 7978.464 9825.252 11723.8 258.7

12 1820.726 3280.442 3740.319 5270.448 230.7

13 1768.673 3184.33 3621.389 4542.2 157

14 3664.985 6720.702 8154.226 9598.281 246.9

15 2521.852 4581.12 5376.708 7214.489 69.9

6. Conclusion

This paper implements the hybrid BATGSA

algorithm to optimize the performance of the

COCOMO model to estimate the software cost. The

algorithm has been analyzed on 4 datasets including

two datasets of NASA projects downloaded from

promise repository. The comparison of effort

valueand normalized error on each dataset has been

done with the Improved BAT, BAT and COCOMO

model. The normalized error has been reduced by

1% on dataset1, 3.5%on dataset2, 0.33% on dataset3

and 46%on dataset4 by BATGSA algorithm as

compared to the improved BAT algorithm. The

reduction in the normalized error and the

convergence of efforts towards the actual effort of

Received: March 26, 2018 263

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.25

Figure. 4 Analysis of normalized error on Dataset 4

the hybrid BATGSA algorithm as compared to other

state of art algorithms proves the significance of the

algorithm. In future this algorithm can be applied to

optimize different software metrics. Moreover,

algorithm can be modified to determine the software

quality during the development of software.

References

[1] B. W. Boehm, “Software cost estimation meets

software diversity”, In: Proc. of the 2017

IEEE/ACM 39th International Conference on

Software Engineering Companion, ICSE-C 2017,

pp. 495–496, 2017.

[2] S. Aljahdali and A. F. Sheta, “Software effort

estimation by tuning COOCMO model

parameters using differential evolution”, In:

Proc. of the ACS/IEEE Int. Conf. Comput. Syst.

Appl. - AICCSA 2010, pp. 1–6, 2010.

[3] I. M. Keshta, “Software Cost Estimation

Approaches: A Survey”, J. Softw. Eng. Appl.,

Vol. 10, No. 10, pp. 824–842, 2017.

[4] R. Wang, P. Peng, L. Xu, X. Huang, and X. Qiao,

“A Novel Algorithm for Software Development

Cost Estimation Based on Fuzzy Rough Set”, J.

Eng. Sci. Technol. Rev., Vol. 9, No. 4, pp. 217–

223, 2016.

[5] A. H. Gandomi, X. S. Yang, S. Talatahari, and A.

H. Alavi, “Metaheuristic Algorithms in

Modeling and Optimization”, Metaheuristic

Applications in Structures and Infrastructures,

pp. 1–24, 2013.

[6] A. F. Sheta, “Estimation of the COCOMO model

parameters using genetic algorithms for NASA

software projects”, J. Comput. Sci., Vol. 2, No. 2,

pp. 118–123, 2006.

[7] N. Gupta, “Optimizing Intermediate COCOMO

Model Using BAT Algorithm”, In: Proc. of the

2nd Int. Conf. Comput. Sustain. Glob. Dev., p.

1649, 2015.

[8] J. D. Altringham, Bats: biology and behaviour.

Oxford Univesity Press, 1996.

[9] X. S. Yang, “A new metaheuristic Bat-inspired

Algorithm”, Studies in Computational

Intelligence, Vol. 284, pp. 65–74, 2010.

[10] K. Kiełkowicz and D. Grela, “Modified Bat

Algorithm for Nonlinear Optimization”,

IJCSNS Int. J. Comput. Sci. Netw. Secur., Vol.

16, No. 10, pp. 46–50, 2016.

[11] S. Girotra and K. Sharma, “Tuning of Software

Cost Drivers using BAT Algorithm”, In: Proc.

of the 10th INDIACOM - 2016 3rd international

conference on computing for sustainable global

development, pp. 1051–1056, 2016.

[12] E. Rashedi, H. Nezamabadi-pour, and S.

Saryazdi, “GSA: A Gravitational Search

Algorithm”, Inf. Sci. (Ny)., Vol. 179, No. 13, pp.

2232–2248, 2009.

