
Received: March 26, 2018 97

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

A Mechanized Formal Refinement Proof of Modbus Communication

Using Event-B Proof System

Sanae El Mimouni 1* Mohamed Bouhdadi ˡ

1 Laboratory of Magnetism and Physics of High Energies,

Faculty of Sciences, Mohammed V University, Rabat, Morocco
* Corresponding author’s Email: sanae.elm@gmail.com

Abstract: Formal methods have been applied in the design of a great number of systems. Many protocols have been

specified and verified formally. Some protocol standards are even defined by means of a formal method. This paper

studies a based formal approach for testing associated properties of Modbus communication protocol with the Event-

B Method. Event-B is a formal method for systems modeling, founded on set theory and predicate logic. It has the

benefit of mechanized proof, and it is practicable to model a system in various levels of abstraction using refinement.

Our aims are constructing a model with a clear and accurate formulation of the protocol properties and discharge all

proof obligations. To satisfy these, attentive choice of invariants and machine theorems was important and eased the

proof effort. A major focus of our work has been to explore the use of the Event-B method for formally specifying

Modbus protocol. The supported language was sufficiently expressive and all proof obligations could be discharged.

We reached a good degree of automatic proof. All interactive proofs involved a small number of steps and were

straightforward to reach. The result of this approach was that we achieved a very high degree of automatic proof.

Keywords: Formal method, Modbus communication protocol, Refinement, Event-B method, Proofs, Rodin.

1. Introduction

Formal methods can be defined as

mathematically based techniques, which are used for

specifying and reasoning about software and

hardware systems. The essence of formal methods

comes down to proof: (i) formulating proof

obligations in terms of formal specifications and

models, (ii) verifying, via algorithmic proof search,

that a designed system meets its specifications, and

(iii) algorithmically synthesizing all or parts of a

system so as to satisfy its specifications. Unlike

traditional calculus-based engineering mathematics,

formal methods rely primarily on discrete

mathematics and computer science formalisms such

as finite state machines.

This paper studies a based formal approach for

testing associated properties for communication

protocol. Communication protocols define the set of

rules needed to exchange messages among

communicating entities. Networked and distributed

systems, built around communicating protocols, are

widely used nowadays. So, it is becoming more

significant that communication protocols be formally

specified and verified.

One of the most popular industrial data

communication protocol is Modbus, which is widely

used in industrial automation, for good reasons. It is

simple, inexpensive, universal and easy to use. The

Modbus protocol [1] is an element of the supervisory

control and data acquisition (SCADA) system, and

it's the foremost usually used protocol in industrial

systems, together with the oil and gas industries and

power industries [2]. It is nowadays the most

frequently accessible way of connecting industrial

electronic devices. It has become a standard

communications protocol in industry. It is employed

extensively by various manufacturers throughout

several industries. Modbus is usually used to transfer

signals from instrumentation and control devices

back to a central controller or data assembling system,

such as a system that measures temperature and

Received: March 26, 2018 98

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

humidity and transmits the results to a computer. This

article describes a formal model of the Modbus

protocol using the Event-B method. We have used

Event-B as proof-based development method which

integrates formal proof techniques for writing

specifications and building the model systematically

using formal refinement, the key point is to start with

a very abstract model of the system under

development. Details are gradually added to this first

model by building a sequence of more concrete ones.

This strategy eases the proof of the correctness of

requirements because only a small number of proof

obligations are generated at each step. The presented

formalization is based on the Modbus Application

Protocol Specification [1] and the Modbus over

Serial Line: Specification and Implementation Guide

[3].

Event-B [4,] is a formal method that applies the

concept of refinement [5] in modeling; it is founded

on set theory and predicate logic.

A great variety of formal specification techniques

exist, some of which are general purpose (such as Z,

Vienna Development Method (VDM) or Common

Object-oriented Language for Design (COLD)),

while others are generally used in a specific domain

of application (such as Language Of Temporal

Ordering Specification (LOTOS), Specification and

Description Language (SDL) and Process

Specification Formalism (PSF)). The mathematical

theories on which these languages are based range

from set theory and temporal logic to lambda-

calculus and process algebra. The reason to choose

Event-B, in particular, is motivated by several factors.

Event-B is a simplification of Classic-B, it promotes

a layered style of formal modeling, where a model is

developed as chains of abstract models, and level-by-

level concrete details are progressively introduced

via provably correct refinement steps. This style of

modeling, which called refinement, decomposing

machines into small, discrete events explicitly linked

to their abstractions. This encourages more

incremental refinement and easier verification by the

generation of more easily discharged POs (Proof

Obligations), enabling the practical construction of

larger systems. However, Event-B’s main advantage

is its flexibility, both in the notation itself and its

supporting tools.

 The Event-B refinement process authorizes us to

gradually add implementation details while

preserving functional correctness during stepwise

model transformation.

Along the refinement, a set of proof obligations is

discharged. The purposes of the proof obligations are

to verify the consistency of a specification and to

preserve the functionality from its abstract

specification. It is difficult to manually generate and

prove the proof obligations. Thus, the RODIN

platform [6] has been built to provide an automated

tool to generate and prove the proof obligations

automatically or interactively. Besides, The RODIN

platform can also support modeling in Event-B.

Event-B, together with the RODIN platform, has

been successfully applied to several practical safety-

critical systems. Some concrete examples are a train

controller system [7], hybrid systems [8], a spacecraft

system [9], and a metro system [10]. Event-B can be

regarded as a method for correct-by-construction

software development. Event-B has gained

widespread attention with it tool support which can

be employed to specify different communication

protocols as in [11], wireless communication [12],

Wireless Sensor Networks [13] or in hybrid

encryption technique [14].

The model verification effort and, in particular,

automatic generation and proving of the required

proof obligations, are significantly facilitated by the

provided tool support, the RODIN platform. In this

paper, we liberally used refinements. We give a great

deal of attention to proofs. Consequently, we now

have a specification of Modbus protocol where all

proof-obligations have been discharged.

The purpose of this paper is to provide with a

collection of protocol descriptions which illustrates

how to use formal specification techniques such as

the Event-B method in the field of communication

protocols. The specifications in this paper have a

level of abstraction that is appropriate for a clear

understanding of the Modbus protocol without

having to deal with implementation details.

This article follows a general pattern of moving

from the general and abstract to the specific model.

After discussing the introduction and motivation of

this work, the rest of the paper is organized as follows.

In Section 2,3 and 4, we recall the definition of both

Modbus communication protocol and the Event-B

method along with the Rodin Platform. We then

present master and slave behavior. Based on this

definition and properties, we define in Section 5 an

approach to model the Modbus protocol. Section 6

summarizes the results and draws a conclusion.

2. Event-B method

Event-B is a formal method for specifying,

modeling and reasoning about systems. Event-B is a

modeling framework derived from the B method

developed by Jean-Raymond Abrial. Event-B is now

centered on the general notion of events. Event-B is

a formal modeling method for developing systems

Received: March 26, 2018 99

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

Figure. 1 Machine and context

via step-wise refinement. In Event-B, the system, and

its properties are specified using set-theory and

predicate logic. It uses proof and refinement to show

that the properties hold as the development proceeds.

Event-B models are structured in terms of two main

components: contexts and machines (Fig. 1)

Contexts: Contexts specify the static part of a

model and may consist of carrier sets, constants,

axioms, and theorems. Carrier sets are same as types.

Axioms restrain carrier sets and constants, when in

fact theorems represent properties derivable from

axioms. The utility of a context is to isolate the

parameters of a formal model (carrier sets and

constants) and their properties, which are intended to

hold for all instances.

 Machine: Machines contain variables modeling

state data, invariants which restrict the possible

values of variables, and events which change the

values of variables. An event consists of guards,

which must be true in order for the event to occur,

and actions, in which the values of variables are

changed.

There are three kinds of relationships between

components of an Event-B model as shown in Fig. 2.

 A concrete machine can only “refine” at most

one more abstract machine.

 A concrete context can “extend” zero, one, or

several more abstract contexts.

 A machine can “see” zero, one, or several

contexts.

Figure. 2 Machine and context relationships

If a machine “sees” a context, then all the

components like constants, sets, and axioms defined

in the context and extended from other Contexts can

be used by the machine.

Events may be parameterized, and in general, an

event takes the form (≜ it’s a default symbol of an

event)

Event ≜ any p where G(p, v) then S(p, v) end (1)

Where p is the event’s parameters, G(p, v) is the

event’s guard (the conjunction of one or more

predicates), and S(p, v) is the event’s action. The

guard states the condition under which an event may

occur, and the action represents how the state

variables evolve when the event occurs. We use the

short form:

Event ≜ when G(v) then S(v) end (2)

When the event does not have any parameters,

and we write:

 Event ≜ begin S(v) end (3)

A dedicated event in the form of (3) without any

parameters or guard is used for initialization.

The action of an event is composed of one or

more assignments of the form:

 act := E(x, v) (4)

or

 act :∈ E(x, v) (5)

or

 act:| P(x, v,a’) (6)

 Where x is a variable in v. E(x, v) is an

expression, and P(x, v,a’) is a predicate. Assignments

in Event-B may also be non-deterministic. All

assignments of an action S(p, v) occur

simultaneously.

Refinement: Refinement is a top-down

development method and is at the core of Event-B

modelling. We start by specifying the system at an

abstract level and gradually refine by adding further

details in each refinement step until the concrete

model is achieved. A machine M0 can refine another

machine M1. We call M1 the abstract machine and

M0 the concrete machine. The states of the abstract

machine are related to the states of the concrete

machine by gluing invariants J (v; w), where v are the

variables of the abstract machine and w are the

variables of the concrete machine. A special case of

refinement (called horizontal refinement) is when v

Received: March 26, 2018 100

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

is kept in the refinement, i.e. v ⊆ w. Intuitively, any

behavior of M0 can be simulated by a behavior of M1

with respect to the gluing invariant J (v; w).

Event-B is supported by several tools, currently,

in the form a platform called Rodin [6].

3. Rodin platform

Rodin is an Eclipse-based development

environment for Event-B. It is open source and

provides an environment for system modeling and

analyzes, including support for checking

specification correctness and for refinement proofs.

While constructing an Event-B program, Rodin will

automatically generate a set of POs for the program

under consideration. The list of proof obligations can

be found in [4]. Each PO is a logical formula, whose

validity implies that certain correctness properties are

satisfied with the program under consideration. In

Rodin, the correctness properties include:

1. The Event-B program is not in an invalid state

(i.e. a state where some invariant might not hold).

2. The behavior of a concrete Event-B program will

correspond to the behavior of its abstract program.

 The first property is ensured by proving that the

invariant is preserved and by proving the well-

definedness of predicates [4]. The second one, i.e. the

correspondence between abstract and concrete Event-

B programs, is usually called the refinement PO.

There are three kinds of POs which can be generated

from Rodin to guarantee that the refinement is correct

[4]:

 Guard strengthening (GRD)

 Action simulation (SIM)

 Equality of a preserved variable (EQL)

We present some important windows of the

platform as follows:

 Proving Perspective (Fig. 3): It provides all proof

obligations, which are automatically generated

for Event-B machines. These proof obligations

can be discharged automatically or interactively

with hypotheses and goal windows.

 Event-B Perspective (Fig. 4): This perspective

includes windows, which allow us to edit Event-

B machines and contexts. If users encode

incorrectly, problem windows will show the

error’s content.

Obligations are proved either automatically or

manually. In automatic mode, Rodin applies some

pre-set proof tactics made up of internal and external

provers to discharge the obligations. In interactive

mode, the user “orients” the proof attempts by using

some easy proof steps to simplify the obligations

Figure. 3 The Proof Obligation Perspective: on the left, it

is shown the proof tree of the selected PO, on the middle;

on the top window are the hypotheses of the selected PO

and just below the respective goal. Below the goal

window are the buttons used to interactively discharge a

PO, on the right, are the list of generated POs. Having all

the POs green, it means that all the POs are discharged

Figure. 4 The Event-B Perspective: on the left, the list of

projects where the Modbus_communication project is

expanded, showing several machines and a context, in the

middle window, a view of a machine M0 where the

sections of variables, invariants and events can be edited.

before bringing up some trusted external provers to

end the proofs. As interactive proofs require hand-

operated involvement, it is usually considered as

some costs of developing formal models.

4. Modbus Communication

Modbus is a serial communication protocol

developed by Modicon promulgated by Modicon in

1979 for employment with its programmable logic

controllers (PLCs). In an easy way, it is a method

applied for sending information over serial lines

between electronic devices. The Modbus protocol is

part of the supervisory control and data acquisition

(SCADA) system, and it is the most generally used

protocol in industrial systems, including the oil and

gas industries and power industries.

As defined by the Modbus Organization, Inc.:

Received: March 26, 2018 101

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

“Modbus is an application-layer messaging

protocol that provides client/server communication

among boards connected on different types of buses

or networks. Modbus is the de facto industrial serial

standard that enables automation boards to

communicate”

Modbus is a request-response protocol

implemented using a master-slave relationship. In a

master-slave relationship, only one device (the

master) can initiate transactions (queries). The

opposite devices (the slaves) reply by providing the

demanded data to the master, or by taking the action

asked for in the query. Typically, the master is a

human-machine interface (HMI) or Supervisory

Control and Data Acquisition (SCADA) system and

the slave is a sensor, programmable logic controller

(PLC), or programmable automation controller

(PAC). The master can address individual slaves or

can initiate a broadcast message to all slaves.

The master node issues a MODBUS request to the

slave nodes in two modes:

– Unicast mode: the master communicates a

singular slave. After the reception and the process of

the request, the slave resubmits a message (a ’reply’)

to the master. In that mode, a MODBUS transaction

is composed of two messages: a request from the

master, and a response from the slave.

– Broadcast mode: the master is able to transmit

a request to all slaves. No reply is returned to

broadcast inquiries transmitted by the master.

5. Modeling Modbus protocol

This modeling approach is based on Modbus

Protocol described in [1, 3]. Essentially, we aim at

constructing the model of a Modbus protocol. This

protocol determines the communication taking place

between a master and a slave. Both the master and

slave begin in a certain state, and through the

exchange of messages, they move from one state to

another.

In this work, the modeling is done using Event-B

and the specifications were verified with the Rodin

tool [6]. The proof obligations can be satisfied either

with the available automatic provers or interactively,

with direct interference from the user.

5.1 Initial model

In this initial model, we just formalize what the

participants can eventually do: One side sends a

request to the other and waits for a response. The

other side receives the request and sends a response.

The first side stops waiting for a response when it

receives it. For our abstract model, we use five

variables which are: Response (the response channel),

Correct (Whether Data is correct or not), MasterMsg

(Message Number seen by the master),

SlaveMsg(Message Number seen by the slave) and

MasterWait4Resp(State of Master).

INVARIANTS

inv1 : Response ∈ BOOL

inv2 : Correct ∈ BOOL

inv3 : MasterMsg ∈ N

inv4 : SlaveMsg ∈ N

inv5 : MasterWait4Resp ∈ BOOL

inv6:MasterWait4Resp=FALSE ⇒ Response=

FALSE

inv7:Correct=TRU⇒ MasterWait4Resp =TRUE

inv8 : Response = TRUE ⇒ Correct =FALSE

inv9:Correct = TRUE ∧ Response =FALSE ⇒

MasterMsg = SlaveMsg +1

inv10:Correct=FALS⇒MasterMsg =SlaveMsg

inv11 : MasterMsg = SlaveMsg ˅ MasterMsg =

SlaveMsg +1

We define the dynamics of the system by means

of three events:

 Event INITIALISATION: Initialize the

used variables.

 Event MasterSend: Master Sends

request.

 Event SlaveReceive: Slave gets request

and sends a response.

 Event MasterReceiveResponse: Slave

gets the response.

INITIALISATION ≜

BEGIN

act1 : Response := FALSE

act2 : Correct := FALSE

act3 : MasterMsg := 0

act4 : SlaveMsg := 0

act5 : MasterWait4Resp := FALSE

END

Event MasterSend ≜

WHEN

grd1 : MasterWait4Resp =FALSE

grd2 : Correct = FALSE

THEN

act1 : MasterWait4Resp := TRUE

act2 : Correct := TRUE

act3 : MasterMsg := MasterMsg +1

END

Event SlaveReceive ≜

WHEN

grd1 : Correct = TRUE

Received: March 26, 2018 102

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

THEN

act1 : Correct := FALSE

act2 : Response := TRUE

act3 : SlaveMsg := SlaveMsg +1

END

Event MasterReceiveResponse ≜

WHEN

grd1 : MasterWait4Resp = TRUE

grd2 : Response =TRUE

THEN

act1 : Response = FALSE

act2 : MasterWait4Resp := FALSE

END

Proof Obligation: When an Event-B model is

created or refined, a set of proof obligations must be

discharged in order to guarantee certain properties of

a model. We can define a proof obligation as a

mathematical formula to be proven, in order to ensure

that an Event-B component is correct. Proof

obligations have a two-fold purpose [15]:

 They show that a model is sound with respect

to some behavioral semantics.

 They serve to verify the properties of the

model.
The proof obligations define what is to be proved

for an Event-B model. These proofs concern invariant

preservation, Feasibility, Fusion,…They are

automatically generated by RODIN platform tool

called the proof obligation generator, just to check

contexts and machines texts and decide what is to

prove in these texts, there are eleven rules for the

proof obligation all defined and labeled inside the

RODIN platform. We will just define one proof used

in our model.

Invariant Establishment and Preservation

(Noted as INV): An essential feature of an Event-B

machine M is its invariant I(v). It shows properties

that hold in every reachable state of the machine.

Obviously, this does not hold a priori for any

machines and invariants, and therefore must be

proved. A common technique for proving an

invariant property is to prove it by induction: (1) to

prove that the property is established by the

initialisation init (invariant establishment), and (2) to

prove that the property is maintained whenever

variables change their values (invariant preservation).

Invariant establishment states that any possible

state after initialisation given by the after predicate

K(v’) must satisfy the invariant I. The proof

obligation rule is as follows:

 K(v’) ˫ I(v’) (INV)

The statement of the above form is called a

sequent. The symbol ˫ is named the turnstile. The part

situated on the left side of the turnstile, denotes a

finite set of predicates called the hypotheses (or

assumptions). The part situated on the right side of

the turnstile, here I(v’), denotes a predicate called the

goal (or conclusion). The intuitive meaning of such a

statement is that the goal I(v’) is provable under the

set of assumptions K(v’). In other words, the turnstile

can be read as the verb “entail,” or “yield”; the

assumptions K(v’) yield the conclusion I(v’).

Invariant preservation makes it necessary to

prove that every event occurrence re-establishes the

invariants I. More precisely, for every event evt,

assuming the invariants I and evt’s guard G, we must

prove that the invariants still hold in any possible

state after the event execution given by the before-

after predicate Q(x, v, v’). The proof obligation rule

is as follows:

Figure. 5 POs of the initial model (M0)

Received: March 26, 2018 103

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

 I(v),G(x, v),Q(x,v,v’) ˫ I(v’) (INV)

Fig. 5 shows proof obligations of the initial model

(M0) the Modbus protocol. In this initial model, we

have 26 invariants preservation proofs, with two of

them proved interactively.

5.2 First refinement: Master behavior

For the first refinement, we introduce the

behavior of Modbus master (shown in Fig. 6) into the

scene whereby the slave does not interact at all. After

power-up, the initial state of the master is “Idle”

which means there is no pending request. A request

can be exclusively transmitted in “Idle” state. The

Master changes the previous state which is ”Idle”,

just after transmitting a request, and won’t be able to

transmit a second request at the same time. As we

specify only the unicast mode in this paper, the

master goes into ”Waiting for reply” state after

sending the request to a slave and starts a response

time-out, to prevents the Master from remaining

indefinitely in ”Waiting for reply” state. Upon

receiving a response, the Master examines the reply

before initiating the data processing. In a situation

where an error is discovered on the frame, a retry may

be executed. If no response is obtained, the Response

time-out expires, and an error is produced. Then the

Master goes into”Idle” state, allowing a repeat of the

request.

Figure. 6 Master state diagram

This behavior is modeled as follows: First, we

introduce the concept of state. For this, we define a

carrier set named STATE. It contains four constants

(Idle, Wait4Reply, Processing_Reply, and

Processing_Err) defined by axioms (axm1-axm7).

AXIOMS

axm1:partition(STATE,Idle,Wait4Reply,Proces-

sing_Reply, Processing_Err)

axm2 : Idle ≠ Wait4Reply

axm3 : Idle ≠ Processing_Err

axm4 : Idle ≠ Processing_Reply

axm5 : Wait4Reply ≠ Processing_Err

axm6 : Wait4Reply ≠ Processing_Reply

axm7 : Processing_Err ≠ Processing_Reply

For the maximum time that a request can be

transmitted, we define it by constant Max request,

which is a natural number and strictly positive.

AXIOMS

 axm1 : Max_request ∈ N

 axm2 : Max_request > 0

Then we can use three variables: state, time and

retries defining respectively the state of the master,

current time and the number of retries of

retransmission of request.

The events: Event MasterSend and

MasterReceiveRespons are refined from the previous

machine.

Event MasterSend ≜

REFINES

Event MasterSend

ANY
 tm

WHERE

grd1 : MasterWait4Resp =FALSE

grd2 : Correct = FALSE

grd3 : tm ∈ N

grd4 : state = Idle

THEN

act1 : MasterWait4Resp := TRUE

act2 : Correct := TRUE

act3 : MasterMsg := MasterMsg +1

act4 : state := Wait4Reply

END

Event MasterReceiveRespons ≜

REFINES

Event MasterReceiveRespons

ANY

 tm

WHERE

grd1 : MasterWait4Resp = TRUE

grd2 : Response =TRUE

Received: March 26, 2018 104

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

grd3 : tm ∈ N

grd4 : state = Processing Reply

grd5 : time ≥ time +1

THEN

act1 : Response := FALSE

act2 : MasterWait4Resp:= FALSE

act3 : state := Idle

END

We define now our new events of this refinement:

The event Time which progress the time.

Event Time ≜

BEGIN

act1 : time := time +1

END

Event Master fail ^=

WHEN

grd1 : state = Idle

grd2 : retries= Max request

THEN

act1 : retries := retries +1

END

Event Master Resend ≜

WHEN

grd1 : state =Idle

grd2 : retries > Max request

THEN

act1 : state := Wait4Reply

END

Event Error ≜

ANY

tm

WHERE

grd1 : tm ∈ N

grd2 : state = Wait4Reply

grd3 : tm ≥ time+1

THEN

act1 : state := Idle

END

Proof Obligation: Fig. 7 shows proof obligations of

the first refinement (M1) which describes the master

behavior. In the first refinement, the Rodin Platform

generates four invariants preservation proofs, with

two of them proved interactively.

5.3 Second refinement: Slave behavior

In this refinement, we model the behavior of

Modbus slave (shown in Fig. 8).

As like the master, the state of the slave is ”Idle”

after power-up, which means there is no pending

request. At the time a request is received, the slave

checks the packet before performing the action

requested in the packet. Several errors may occur. In

case of error, a reply must be sent to the master. After

receiving and processing the request, a reply must be

formatted and sent to the master. Once the required

action has been completed since we cover the unicast

mode. If the slave detects an error in the received

frame, no response is returned to the master.

In this refinement, the slave also has a state, so

we will add three constants (Checking_Request,

Formatting_Reply, and Processing_Request) to our

previous STATE SET.

axm8: Checking_Request ∈ STATE

axm9: Processing_Request ∈ STATE

axm10: Formatting_Reply ∈ STATE

Figure. 7 POs of the first refinement (M1)

Figure. 8 Slave state diagram

Received: March 26, 2018 105

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

In addition, we add two variables state slave and

Error.

INVARIANTS

inv1: state slave ∈ STATE

inv2: Error ∈ BOOL

inv3:(state_slave=Checking_Request˅state_slave

= Formatting_Reply ⇒ state_slave = Idle

inv4:state_slave=Idle⇒state_slave=Checking_Re

quest

inv5: Error= TRUE ⇒ state_slave=Idle

inv6:state_slave = Checking_Request ⇒

state_slave= Formatting_Reply ˅ state_slave =Idle

For this refinement, we have two new events:

SlaveReceive ≜

REFINES SlaveReceive

WHEN

grd1 : Correct = TRUE

grd2 : state slave = Idle

THEN

act1 : Correct := FALSE

act2 : Response := TRUE

act3 : SlaveMsg := SlaveMsg +1

act4 : state_slave := Checking_Request

END

Error Slave ≜

WHENs

grd1: state_slave= Checking_Request ˅ state

slave = Formatting_Reply

grd2: Error =TRUE

THEN

act1: state slave := Idle

END

Figure. 9 POs of the second refinement (M2)

Table 1. Proof statistics for the Modbus protocol

development

Model
Total

POs

Automatic

proof

Interactive

proof

Abstract

model
26 24 2

First

refinement
4 2 2

Second

refinement
12 11 1

Total 42 37 5

Proof Obligation: Fig. 9 shows proof obligations of

the second refinement (M2) which describes the slave

behavior. This refinement requires 12 proofs; all

proved automatically only one of them proved

interactively.

Proofs Statistics: The proof statistics for the

development of the Modbus protocol is in Table 1.

The complete development of the Modbus

communication protocol results in 42 POs, within

which 37 are proved automatically by the Rodin tool.

6. Conclusion

This paper models the Modbus protocol using the

Event-B formal language. Modbus is a

communication protocol that transfers information

between the electronic devices in data gathering

systems. It works based on the Master/Slave

architecture. It means that always a device that is

Master requests a data or an action from the Slave

devices and Slave devices response to the Master

device. This article provides an abstract model of the

Modbus protocol using the Event-B formalism and

then refines it to a model with more details. Which

allows us to attain a very high level of automatic

proof. We have used Rodin tool for writing Event-B

specifications. Event-B uses the proof obligations

generated by axioms and theorems to ensure the

consistency among different layers. It indicates the

model meets software requirements through the fully

proved obligations. The presented model generates

42 proof obligations out of which 37 are discharged

automatically by the prover of the tool while 5 proof

obligations are discharged manually. The proof

obligations generated by the model give the rigorous

reasoning about the design of model. During

execution of the model, all invariants are preserved

which ensures that our model is correct.

As for future work, the formal verification

technique applied to routing algorithms for wireless

networks has been a quite unexplored field yet, and

therefore there are many opportunities for new

Received: March 26, 2018 106

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.10

research. Indeed, the field is in need of more specific

techniques and tools.

References

[1] Modbus-IDA: Modbus Application Protocol

SpecificationV1.1a, http://www.modbus.org.

[2] K. Stouffer and K. Kent, Guide to Supervisory

Control and Data Acquisition (SCADA) and

Industrial Control Systems Security,

Recommendations of the National Institute of

Standards and Technology, 2006.

[3] Modbus-IDA: Modbus over Serial Line:

Specification and Implementation Guide V1.0,

http://www.modbus.org.

[4] J.R. Abrial, Modeling in Event-B, System and

Software Engineering, Cambridge University

Press, 2010.

[5] A. S. Fathabadi, M. J. Butler, and A. Rezazadeh,

“Language and tool support for event refinement

structures in event-b”, Formal Aspects of

Computing, Vol.27, No.3, pp.499-523, 2015.

[6] J. R. Abrial, M. J. Butler, S. Hallerstede, T. S.

Hoang, F. Mehta, and L. Voisin, “Rodin: an open

toolset for modelling and reasoning in event-b”,

International Journal on Software Tools for

Technology Transfer, Vol.12, No.6, pp.447-466,

2010.

[7] W. Su, J.R. Abrial, R. Huang, and H. Zhu, “From

requirements to development: Methodology and

example”, In: Proc. of Formal Methods and

Software Engineering - 13th International

Conference on Formal Engineering Methods,

pp.437-455, 2011.

[8] L. Petre and E. Sekerinski, From Action Systems

to Distributed Systems - The Refinement

Approach, Chapman and Hall/CRC, 2016.

[9] A. S. Fathabadi, A. Rezazadeh, and M. J. Butler,

“Applying atomicity and model decomposition

to a space craft system in event-b”, In: Proc. of

NASA Formal Methods - Third International

Symposium, pp.328-342, 2011.

[10] R. Silva, “Lessons learned/sharing the

experience of developing a metro system case

study”, CoRR, Vol.abs/1210.7030, 2012.

[11] S.E. Mimouni and M. Bouhdadi, “An

Incremental Proof-Based Process of the NetBill

Electronic Commerce Protocol”, In: Proc. of the

4th International Conference of Networked

Systems, pp.209-213, 2016.

[12] B. L. Malleswari and S. Parnapalli,

“Performance of MIMO MC-CDMA for STBC

Communication System Using OKHA Based

Optimal Channel Estimation”, International

Journal of Intelligent Engineering and Systems.

Vol.10, No.4, pp.1-10, 2017.

[13] E. H. Houssein and Y. M. Wazery, “Vortex

Search Topology Control Algorithm for

Wireless Sensor Networks”, International

Journal of Intelligent Engineering and Systems,

Vol.10, No.6, pp.87-97, 2017.

[14] S. R. M. Halagowda, and S. K.

Lakshminarayana, “Image Encryption Method

based on Hybrid Fractal-Chaos Algorithm”,

International Journal of Intelligent Engineering

and Systems, Vol.10, No.6, pp.221-229, 2017.

[15] S. Hallerstede, “On the purpose of event-b proof

obligations”, Formal Aspects of Computing,

Vol.23, No.1, pp.133-150, 2011.

