
Received: January 6, 2018 1

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

An Intuitive Wizard to Identify Pattern in Similarity

Expressed Gene Set of Rice

Preeti Ivy Barrow1 Swathi Jamjala Naryanan1*

1School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu, 632014, India

* Corresponding author’s Email: jnswathi@vit.ac.in

Abstract: While the genome sequences of different crops have been published and annotated, relatively little is

known about the transcriptional networks that regulate gene expression. There are different ways of finding

significant motifs in genome sequences, evolutionary motif finding algorithms being one of them. The work

presented in this paper uses Differential Evolution (DE) Algorithm to discover new motifs in rice genome sequences

and aims to provide an intuitive wizard to analyse the micro-array analysis of expression patterns (motifs) for the

queried genes. The used DE algorithm involves crossover operation with fine tuning. Further, to search for already

known motifs parallel version of adaptive hash based pattern matching algorithm has been implemented. The study

is conducted on rice genome sequences for twelve chromosomes each consisting of approximately 70000 genome

sequences. In this paper, experimental results provide a comparison of serial and parallel version of the algorithm

applied for the same dataset which shows that parallel implementation improves the performance by almost 25-30%

to search the patterns in genome sequences and provide a list of newly discovered significant motifs.

Keywords: Differential evolution, Genome sequences, Motifs, Micro-array analysis, Pattern matching.

1. Introduction

Advancement of computational computer

science greatly helps researchers to understand and

explore the complex “omics” network in biological

systems. The high-throughput – next generation

sequencing (HT-NGS) technologies provides scope

to generate huge amount of dataset to understand the

central dogma (the coded genetic information hard-

wired into DNA which transcribed into mRNA and

synthesis a particular protein) in living cell.

Development of user friendly computational tools

and approaches using computer languages and

algorithms offers opportunities to analyse such big

data for the interpretation of biologists. In any

genomic sequence it comprises with 4 codes of

letters that are A, G, C and T which represents four

molecules named as Adenine, Guanine, Cytosine

and Thymine respectively. In recent years, numbers

of enriched genomic databases of agriculturally

important crops have been developed for the

genome wide expression analysis, whole genome

sequence study, genome annotation, promoter

identification, cis regulatory elements (small motifs

of sequences which play role in gene expression) etc.

A pattern search algorithm of small motifs of

sequences in promoter region facilitates in

identification of master regulatory genes which

control the expression of thousands of downstream

genes. However, there is a need of user-friendly

intuitive wizard to analyze the available data for the

subject concern.

The problem of searching motifs from a given

gene set is analogous to multiple string pattern

matching algorithms. The aim of multiple search is

to concurrently search presence of a set of

consecutive strings know as patterns primarily

present in large and noisy dataset. Various fields

like data mining and ware housing [1], network IDS

[2], DNA sequences matching [1,3] require

innovative approaches to search, discover and

analyze significant patterns from data.

The problem of motif finding is defined as

finding the repeating patterns in a given biological

Received: January 6, 2018 2

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

data set. This repetitive behavior of patterns

provides an indication that these patterns hold some

significant structural or functional jobs [4].

Numerous algorithms have been developed to solve

the sequential motif finding problem. The pattern

discovery is an elementary problem that is

associated with finding new motifs in DNA

sequences [5]. Generally, the task of finding new

motifs starts with a set of regulatory zone of genes

which hold small DNA patterns (motifs), present

statically. The size of motifs is generally short

(<=30 nucleotides) and they don’t have gap between

them which make them hard to discover amongst

large amount of numerical noise. As one genome

sequence can contain nucleotides from hundreds to

thousands the problem of finding motifs in genome

sequences becomes NP-complete problem.

Therefore, to discover new motifs, evolutionary

algorithms, provide a better way to solve the

problem.

The proposed work is to develop a wizard to

allow users to search a collection of motifs

belonging to rice chromosomes in specific locus id

of rice. The wizard shall take patterns to be searched

in the gene set as input from the user along with the

locus id where search operation need to be

performed and provide the user; percentage of each

motif found in queried locus ids’. It concentrates on

the rice genome, being founded on full-length DNAs,

and is intended to get cis-components related with

locus ids’ that users define. The details are given in

Fig.1. The work also aims to discover new motifs

present in the rice chromosomes using the DE

Algorithm with fine tuning.

The novelty in this paper is the parallel

implementation of the adaptive hash based pattern

search algorithm (AHPS). The AHPS algorithm has

sub-algorithms which involve pre-processing of

patterns, memorization of discovered patterns,

search operation. In this paper the search operation

has been executed in parallel on different rice

chromosomes locus id, thus reducing the time of

searching patterns in different locus ids.

Figure.1 Cis-regulatory elements acting on promoter

regions

With the help of multi-threading the execution

time is reduced to a significant level. The final

output is given as percentage of searched pattern

present in each queried locus id. Not only this, the

work has also focused on finding new motifs from

rice chromosomes making use of DE algorithm. The

DE algorithm evaluated the cis-elements by

measuring the likelihood score. This score is defined

by comparing the PSSM of user-defined gene set

and a consensus motif. The wizard can search for a

list of motifs defined by the user and also discover

new motifs from gene sequences of rice.

The paper is organized as follows. Section 2

gives information about the work done in past to

search patterns in strings and the algorithms used to

discover motifs. It also talks about the limitations of

the methods that led to discovery of new approaches.

Section 3 provides the problem formulation. Further

in Section 4, we have given the proposed

architecture. In Section 5, the dataset and the

proposed methodology is given in detail. In section

6, we present the results and discussion followed by

conclusion, future work and references.

2. Literature review

Various researchers have implemented several

approaches to extract or search motifs from

sequences. The broad categories are pattern-driven

approach, statistical based approach and machine

learning approaches.

Pattern driven approaches enumerate all the

patterns to find those appearing with a high

frequency in the input sequence. Most commonly

used techniques for pattern driven approaches

include enumeration, suffix tree, graph, hash table

and linked list. In this literature, we focus on

algorithms that used hash functions for searching

patterns. The reason behind choosing hash functions

is its characteristics of fastness compared to other

data structures like arrays and lists.

Rabin Karp [6] introduced pattern matching

algorithms using hash functions in order to reduce

the complexity of the naïve algorithms. But this

technique searched for patterns one by one, Knuth-

Morris came up with a pattern matching process

named after him called as Knuth Morris Pratt

(KMP) pattern processing where the focus is to

reduce the number of comparisons while searching

for patterns. The process followed in this concept is

to skip the characters that are already matched.

The time complexity of this algorithm was

relatively very less compared to Rabin Karp

algorithm. The advantage of KMP algorithm was

that the pointer is never decremented in the text. The

Received: January 6, 2018 3

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

pre-processing of the algorithm took O(m) time and

space. The algorithm was mainly applicable for one

pattern that needs to be searched multiple times as

like in text editor search [7]. KMP was very well

accepted algorithm to search patterns.

Another algorithm proposed by Boyer Moore

(BM) worked in similar way of scanning text in text

editor but the only difference was in the start of

pattern matching process which was from right to

left in this approach [8]. As further extension, to

simply BM approach, a Boyer Moore Horspool

(BMH) algorithm was proposed where a different

kind of heuristic was proposed to handle bad

characters and it also helped in improving the

accuracy of the search algorithm. In the pre-

processing phase, the algorithm generates a table

which stores details of characters and the number of

characters that can be skipped while performing

match operation [9]. As the BMH algorithm largely

depended on the size of the alphabet and the pattern

length, it was further improved by Raita [10] by

changing the search procedure of BMH search. The

proposed strategy for searching is to compare the

last character followed by first character and then

the middle character before actually comparing the

other characters. This further reduced the

unnecessary comparisons. The drawback of this

approach was later found to be that it has quadratic

time complexity. Another algorithm called quick

search algorithm [11] which is yet another

simplification of BM was also suffering from

quadratic time complexity during search phase in

worst case, though it was more suitable for short

patterns and large alphabets.

To overcome these shortages, Boyer Moore

Smith (BMS) [12] proposed an approach using

shifts to overcome the quadratic time complexity.

This approach was the fastest when compared to all

BM variants. As extensions, Berry [13] proposed

hybridization of quick search and Zhu-Takoka string

matching algorithm which used fastest loop or

otherwise termed as character unrolling cycle. This

algorithm is more suitable for long patterns and it

uses two consecutive text characters to compute the

bad character shift. The complexity of the algorithm

is O(mn).

Currently lot of motif finding algorithms were

proposed to deal with small scale datasets such as

PMS8 [14], and qPMS9 [15]. Few other algorithms

like F-motif [16] used words to search for motifs

instead of character wise search. The algorithm like

MCES [17] adopted the process of mining the

substrings in input sequences with high occurrence

frequency and then combined them as motifs.

Later the research direction shifted towards

parallel search algorithms to reduce the time

complexity. To keep searching time minimum,

algorithms like bit parallel algorithms were

developed. These algorithms are capable to

match multiple strings in parallel and hence these

are categorized as multiple string matching

algorithms.

Researchers found that most of the traditional

methods are not scaling for large datasets, Salmela

[18] proposed a variant of Horspool Algorithm to

handle the shortcomings of traditional methods in

accommodating large datasets. The extended

backward oracle matching algorithm [19] was also

proposed to handle long patterns and small

alphabets. But the memory utilization of these

algorithms was huge. Wu-Manber [20] implemented

parallel versions of pattern matching algorithms and

released as a tool called agrep tool. There were

many other tools that were released to discover

motifs. The details are given in Table 1 with

different acceptable parameters as given Tran and

Huang [21].It can be seen from the table that

different tools support different formats, sizes but

none of them allow to search for different locus ids

from any chromosomes for any number of patterns.

Besides the availability of web tools, it is also

difficult to customize the problem of motif finding

because every tool is specific to certain size of

BaseString or certain format of genome sequences.

In the recent era, many evolutionary algorithms

were used for motif discovery. The most commonly

used algorithm are genetic algorithm and particle

swarm optimization algorithm. In [22], an iterative

approach was proposed to improve the

computational efficiency of motif searching by

using parallel random search.

Table 1. Web tools for motif discovery

Web

tool

Accept

format

File max

size

#of

motifs

option

Motif’s

size

option

MEME Fasta =60000

characters

Y Y

RSAT

peak-

motifs

Raw,

multi,

fasta

Unlimited Y Y

GLAM

2

Fasta =60000

characters

N N

PScan

Chip

Bed 100-150 bp N N

Cis

Finder

Fasta,

plain

text

Un

specified

Y N

https://www.hindawi.com/journals/bmri/2016/4986707/#B15
https://www.hindawi.com/journals/bmri/2016/4986707/#B16

Received: January 6, 2018 4

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

The proposed strategy was applied over

genetic algorithm operations to find good starting

positions and to find candidate motifs which help

for identifying the best motifs.

Miriam proposed De-Novo [23] which was used

to perform optimal search operations to find

probable solution for HMM model. Using genetic

algorithm, they proved that some local maximas can

be overcome easily. The major limitation of this

approach was the costly behaviour heuristics they

used to calculate the fitness function.

In most cases, researchers who used genetic

algorithm and particle swarm optimization

technique [24] did not perform the fine tuning of

parameters after cross over operations. This research

gap is handled in our work by considering

differential evolution algorithm which performs

better for the research problem considered. The

selection of DE algorithm over other optimization

algorithms is due to DE’s capability to always direct

the search towards the most probable region in the

feasible region by using its select property. Different

mutation schemes like mixed distribution are used to

check the performance of the algorithm and for

maintaining. The selection of the balance of

exploration and exploitations. There are other

variants of DE [25-28] available in literature for

various problem domains, where the variant differs

interns of mutant strategy, objective functions and

decision variables.

3. Problem Formulation

The project comprises of two kinds of problems:

the first being searching for a particular pattern

present in thousands of genome sequences and the

second being DE [29] algorithm which involves

crossover operation with fine tuning. The searching

of motifs in genome sequences requires multiple

pattern matching. Multiple pattern matching is a

kind of string matching that is used to get all

possible positions of a pattern present in an input

string.

Definition: Given a string S=s0s1s2s3….sn-1 of

length n and a finite set of pattern

P= {p0,p1,p2,…,pk-1} of size k, has each pattern 𝑝𝑡of

length m i.e. pt=p
0
t p

1
t p

2
t …p

m
t defined over a finite set

of characters ∑, the size of alphabet is indicated as |

∑ |and the total number of patterns is denoted as | P

|, the problem is to find all the occurrences of all the

sequences in the given BaseString.

The second problem is the discovery of DNA

motifs in the given rice genome data sequences. The

motifs are described as nucleic acid sequence

patterns that have significant biological importance.

Usually, the length of motifs ranges from ~5 to 40

basepairs (bp) and are repeated across different

genes or even in the same gene.

 Definition: Given a set of DNA sequences

(1000 bp upstream), the problem of motif finding is

the job to detect overrepresented motifs and at the

same time conserved motifs from orthologous

sequences that are promising candidates for being

DNA binding sites for a ruling protein.

4. Architecture Diagram

The proposed architecture is given in Fig. 2. The

data set for the addressed problem is taken from

online source http://rice.plantbiology.msu.edu/. The

dataset comprises only of the upstream region and

parsing of the dataset is done to extract genome

sequence of each chromosome.

Figure.2 Architecture diagram

Upstream region

sequences

User defined

motif list
Random

population

generation

Pattern matching

algorithm

Differential

evolution algorithm

Output

Gene list obtained from

dataset

Sequence ID LOC1010c_43g

motif ACTTG

Percent 3%

New motifs ATG, TAGTACT

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/

Received: January 6, 2018 5

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

In the recent past there has been studies

conducted to find the most activated nucleotides in

stress conditions like drought, water flooding etc.

Using those studies a list of already existing cis-

regulatory elements is created to help user in search

process. The search process is performed in the

pattern matching phase where multi-pattern

matching hash based algorithm has been applied.

With the help of differential evolution algorithm, the

new motifs are discovered.

The project comprises of two actions namely

search and find motifs. The search phase takes a list

of motifs from the user and then finds it all the

chromosomes of rice. The final result is provided in

form of present percentage of motifs in each

chromosome. The discovery phase uses DE to find

new cis-regulatory elements aka motifs. The DE

algorithm focuses on maximizing the similarity of

subsequences. The subsequence with maximum

similarity is a potential motif candidate. The list of

all such motifs is provided to the user in the end.

The below diagrams shows the various processes

involved in the project conducted on rice

chromosomes.

5. Experimental setup

In this section, we present the sample dataset

and the experimental set up of proposed

methodology. The sample genome sequence of rice

dataset is given in Fig. 3. From the given genome

sequences, the objective is to find the user requested

motifs in minimum time and to discover new motifs.

The problem of finding user defined patterns on

the series of genome sequences is solved using

parallel adaptive hash based pattern matching

algorithm.

Figure. 3 Dataset Representation

The algorithm consists of four sub-modules to

solve the pattern matching problem. The experiment

is conducted on 12 chromosomes of rice plant where

each chromosome consists of approximately 70,000

genome sequences.

Let the genome sequences for each chromosome

be represented as BaseString. The first step is to

create a table to store the hash values of various

unique pairs across all patterns and the table is

named as Match table. The pairs across all patterns

are taken as successive character pairs. Let these

pairs be called as PatPair. The Match table is

divided into two sections one part containing the

hash value of each PatPair and second section

holding the corresponding quadruples set values of

each PatPair. The second section will have as many

quadruples sets as many times of the PatPair occurs

across all the patterns. The quadruples values are as

follows:

 Offset: Every pattern is identified by it offset

number that is nothing but 0, 1, 2 assigned to

each pattern. Add that offset number to each

PatPair corresponding in which pattern it is

found.

 Position: PatPair last character position.

 LDist: Distance of last character of PatPair

from extreme left of pattern.

 RDist: Distance of last character of PatPair

from extreme right of pattern.

The pattern’s first character is taken to start at

zero position. Once the Match table is prepared then

we need to have a window of size p-1 characters to

match hash values of p-1 characters starting from

the beginning of the BaseString. The variable p

represents the length of the smallest pattern.

Whenever a match is found processing of set values

present in Match table will be done and the window

slides after all quadruples sets for the corresponding

PatPair have been processed.

For each match, each set value undergoes steps

of checks which are described below:

1. LPos which is the start position of probable

match is checked for its validity. The validity of

LPos is defined that it must be greater than or

equal to LPosMin, where LPosMin=0 and

denotes the start of the BaseString. LPos is

calculated as CurPos-LDist where CurPos

points to current position in the BaseString.

2. RPos which is the end position of a possible

match is checked for its validity by

CurPos+RDist. The maximum value of RPos is

the length of the BaseString. Once the RPos

Received: January 6, 2018 6

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

reaches above that value the processing of that

set is stopped.

3. In order to avoid redundant data to enter into

final MatchRecord table because of same match,

a lay-off algorithm is used. If the set LPos and

RPos is already present in MatchRecord table no

more processing of that set is done.

4. The hash value of substring of BaseString of

length RPos-LPos+1 is matched with the hash

value of the pattern in sync with the offset. If a

match is found, then it signifies pattern is found

otherwise the processing moves to the next

available set.

5. Once a match is found, it is recorded in the

MatchRecord table and this structure holds all

the positions where the matched were found.

 A set value in the MatchRecord table signifies

the starting and ending positions of a pattern found

in the BaseString. For instance, if a set value (23,

27) indicates that pattern of length 5 is present at

location 23 to 27 in BaseString. The length of the

window is intentionally kept one size smaller than

the smallest pattern size to avoid elimination of

possible matches of smallest pattern.

The algorithm provides dynamic as well as

static search. The search can be dynamic in the

sense that patterns can be added on the fly and be

searched in ongoing search process. The pre-

processing phase involved in the algorithm is used

to create a Match table. This Match table plays a

very important role for repetitive search on the same

BaseString by the user with every time additional

patterns. The match table stores the PatPair of

already searched pattern so only newly added

pattern’s PatPair are added and thus the old Match

table is used for subsequent searches. This provides

adaptive nature to the algorithm and makes the

search process dynamic.

The four sub-modules of the algorithm are:

1. Creation of hash table for each pattern. The

table consists of offset value for each pattern

and its corresponding hash value.

2. Creation of Match table which contains all the

PatPair along with their quadruple sets as

described earlier. The PatPair are stored in form

of their hash value to increase the execution

speed.

3. Lay-off algorithm to avoid duplication of match

sets in MatchRecord data structure. This

algorithm search for LPos, RPos pair in

MatchRecord and returns 1 when no match is

found.

4. Search algorithm which takes the BaseString as

input and perform search operation on all the

given input patterns while returning the

MatchRecord.

Since the data set is huge and serial processing

of files takes time, parallel implementation of the

algorithm is done. The search on each file is done in

parallel on dual core processor. This will greatly

decrease the time of execution as the files are

independent of each other. Multithreading concept is

used to run the files parallel and apply search

algorithm on each files concurrently.

The problem of multiple pattern matching is

implemented in Java. Java language is selected as it

has efficient data structures such as hash functions

for implementation. After running the application

several times, the mean execution time of all runs in

search phase is taken as the execution time. The

time of execution may differ with the nature of

patterns to be searched and also based on the

architecture of the machine on which the algorithm

is implemented. The length of patterns considered

lies between 5-40 characters as that is the

approximate length of motifs (5-40 bp). As the

search of motifs is done in promoter region, the

length of BaseString is taken 1000 characters which

is equivalent to 1000 bp upstream promoter region

of each genome sequence.

The second aim of the project is to find the new

motifs from the chromosome sequences using

Differential Evolution algorithm along with fine

tuning. The first step is to create the random

population of individuals where each individual is

represented by a matrix. The row corresponds to the

letter {A, C, G, T} and the column {1,….l}

represents the probability of each nucleotide at the

respective index of the motif. After each individual

is evaluated, a trial is created for each member of

the population. The selection of the individual for

next generation is done based on similarity fitness

function. The individual which attains higher fitness

value is moved to the next generation.

The aim is to select the individual with higher

similarity of sub sequences that forms the final motif.

To find the similarity, the first step is to compute the

rule value (rv) of each nucleotide per motif position.

Subsequently, for each motif position we select the

highest value using Eq. (1):

rv(i)=maxa{ f(a,i)} i=1,…..,l (1)

where f(a,i) is the rank of nucleotide a in column i in

the matrix of position and weight, rv(i)is the

nucleotide that rules over other nucleotide in column

i, and the length of the motif is defined by l.

Similarity is then finally calculated as average of all

the rule values as defined in Eq. (2).

Received: January 6, 2018 7

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

39 37
46

64

86
90

14

26

39

56
61

67

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

s)

No.of Patterns

Serial Parallel

Similarity(S)=
∑ rv(i)i

i=1

l
 (2)

The novelty of the algorithm lies in the fine

tuning added during the time of crossover. This

helps in creating more diverse population and hence

makes the subsequent population less in common to

the initial population. This methodology helps in

expansion of the solution space area. The process

involves random selection of one column and row

and selection of α in range of [0.2, 0.1]. Then α is

added to the randomly selected cell and also
1−∝

3
 is

subtracted from the rest of the cells of the selected

column. This still leaves the individual valid as the

sum of each column still adds up to one and each

cell is in the range [0, 1]. The rand/2/exponential

differential evolution scheme is chosen to make the

convergence towards the solution faster. The

scheme includes five different parameter vectors and

two different weighting factors are used during

mutation process for generating mutant vector form

the parameter vector of current iteration. The

strategy for generation of mutant vector is given in

Eq (3).

Vi(G+1)
rand 2⁄ =Xp1(G)+ F1.[Xp2(G)- Xp3(G)]

+ F2[Xp4(G)- Xp5(G)] (3)

The implementation of differential evolution

algorithm is done in MATLAB. The population size

is kept as 150 individuals and number of generations

as 3000. As per the literature, the length of motif is

set between 6-50 bps. The crossover ratio is set to

various values as 0.1, 0.25, 0.5, 0.75 and 0.9 but the

most optimized solutions are observed at 0.25. The

value of mutation factor is kept as 0.02 as studies

show it is the most optimal value of F. Algorithms

5.1 Motif pattern matching algorithm

Input: The number of motifs to be searched

Output: The percentage of motifs present in each

chromosome sequences

Start

 Generation of pattern hash table for each motif.

 Creation of Match table for each unique PatPairs

found in motifs

 Parallel execution of search algorithm on

different chromosomes sequences

 For each chromosome

 Calculate the count of each motif

Calculate the percentage of each motif

compared to other searched motifs.

 End For

End

5.2 Differential evolution algorithm to find new

motifs

Input: Genome Sequences

Output: Motifs with high score

Start

 Initialize the population of size N

 Population Evaluation

 For i= 1 to MaxGeneration

 For j=1 to N

Create a trial vector for each individual

 Apply fine tuning after crossover operation

 Evaluate Individual based on score function

 Select best individual for next generation

 End For

 End For

 Return best individual with maximum score

End

6. Results and discussion

In this section, we present both the results of

searching motifs and generation of new motifs. For

searching motifs, we conducted experiments in two

different form. First one, by varying the number of

patterns and keeping the BaseString constant. In the

second experiment, the number of patterns is kept

constant and the BaseString on which motif is to be

searched is varied. These results are recorded in Fig.

4 and Fig. 5. In the first experimental set up, the

BaseString constant is set to 1000 characters and the

adaptive hashing algorithm is executed to search for

the patterns specified by the user. The execution

time taken by the serial and parallel approach is

recorded in Fig. 4.

Figure.4 Adaptive hash algorithm’s serial vs parallel

computation time for searching patterns by varying

numbers of patterns

Received: January 6, 2018 8

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

Figure.5 Adaptive hash algorithm’s serial vs parallel

computation time for searching patterns by varying base

string size

The x-axis represents the number of patterns to

be searched and the y-axis is the execution time of

the algorithm. It is observed that parallel version of

the algorithm finds the patterns much quicker when

compared to the serial version of the algorithm. The

graph in Fig. 5 also shows that even when

BaseString is changed the parallel versions are able

to search for the patterns quickly when compared to

serial version.

The second set of results related to discovering

new motifs by DE algorithm is taken by using

subsequences ranging from length 5-40 bps and

having maximum similarity. The results in Table 2

gives list of some newly discovered motifs of rice

genome sequences. This information helps

biologists to carry out their research in which motifs

gets activated under different stress conditions.

Each individual in DE algorithm is denoted as a

vector of locations of motif in each sequence. Two

different methods are used to generate the initial

population. One is the initialization method and

second is completely random approach. The random

approach explores the maximum solution space to

generate initial population.

Table 2. List of discovered motifs

Discovered motifs Total no. of occurrence

CCGGATAAC

80

CAACGGTC

1012

ATTCGGGC

298

CGTAACGT

202

 AACGGTCG 580

Figure.6 DE algorithm PWM presentation for file

chr02.1kUpstream

But, this increases the convergence time. In

initialization method, each individual is created by

choosing a motif length l, obtaining its location

through search algorithm and adding some random

number α [1, 10] to that position to form new

positions.Fig. 6 shows the probability of each

nucleotide being present at each location in the

motif identified as AGAAAGATAAGAT.

Further, to get the best DE configuration,

experiments were conducted with different

crossover factor values and the results are taken for

25 runs to make sure that the results are statistically

correct. The population size is set as 200 individuals

and generation limit as 3000 as per the findings

from the literature. The threshold value is set to be

0.50 support for a motif from each sequence. The

experiment was conducted with same mutation

factors but with different crossover rates. Mutation

factor F is set to be 0.5 and selection scheme used is

best/1/binomial.

 The motif which scored maximum is selected at

the end of the process as it is found in maximum

sequences and its similarity index is high and motif

length is optimal too. To check on which crossover

ratio will work best Table 3 provides the success

rate of motifs found at rates ranging from 0.1 to 0.9.

From Table 3 we conclude that the best results

obtained in most of the cases is at crossover ratio

(CR) set at 0.25.

Table 3. Crossover factor

 0.1 0.25 0.75 0.9

yst03r 66.80% 67.00% 67.35% 68.93%

mus07r 73.29% 73.81% 72.41% 71.25%

dm01r 75.09% 75.19% 75.26% 75.91%

chr02 71.19% 72.35% 71.44% 71.28%

13

26 27 26 27

11

17
15 15

19

0

5

10

15

20

25

30

7 14 21 28 35

E
x
ec

u
ti

o
n
 T

im
e

(s
ec

s)

BaseString size (bps)

Serial Parallel

Received: January 6, 2018 9

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

Table 4. Similarity comparisons

 Similarity

Dataset Motif

length

DE Genetic

yst03r 10 0.85 0.82

 15 0.86 0.84

 8 0.96 0.84

chr02 8

12

15

0.85

0.87

0.89

0.82

0.79

0.80

hm03r 8

9

10

076

0.80

0.87

0.76

0.81

0.83

 In Table 4, the performance of the algorithm in

terms of similarity is shown for both genetic

algorithm and DE algorithm when length of the

motif is kept constant. The observation made is due

to the tuning process of parameters after the cross

over operation, the DE algorithm provides better

population to find patterns which are most similar.

Though the genetic algorithm works better in most

optimization problem here DE outperformed due to

several reasons. Firstly, unlike genetic algorithm,

DE doesn’t use any operators based on the

representation of the solution, rather it evolves the

set of the vectors during its own process itself. The

other reason behind DE working well is its nature of

stability whereas the GE suffers from premature

convergence. The method of differential evolution

can be applied to real-valued problems over a

continuous space with much more ease than a

genetic algorithm. The algorithm which is run on i5

processor with 2.33 GHz CPU and 4 GB RAM in

Windows environment shows the execution time of

DE with fine tuning is much less compared to

general genetic algorithm. The strength of

differential evolution’s approach is that it often

displays better results and can be easily applied to a

wide variety of real valued problems despite noisy,

multi-modal, multi-dimensional spaces, which

usually make the problems very difficult for

optimization.

7. Conclusion and future work

 In the paper multiple string matching algorithm

has been used for finding percentage of existing

motifs that can be combined with the protein

sequence to activate a gene. The paper also provides

certain new motifs discovered by applying

differential evolution algorithm on rice

chromosomes. Using the percentage of motifs

present in a particular chromosome the user will be

able to find which gene can be activated using those

motifs and mapping the motif to its transcription

factor values will help in identifying what biological

effects will occur if that motif is combined with

particular gene. The experiment conducted show

about approximately 30% reduction in time to

search a particular motif using the parallel version of

the algorithm. DE is also observed to converge

faster and provide getter similarity index than

genetic algorithm. As part of future work, we have

the intention to compare the AHPS algorithm with

other hash based algorithms and also DE with fine

tuning with other evolutionary algorithms. Also, we

would like to know the changes in behavior of the

algorithm based on the selection schemes.

References

[1] L.A.E. Silva, "A Data Mining Approach for

Standardization of Collectors Names in

Herbarium Database", IEEE Latin America

Transactions, Vol.14, No. 2, pp.805-810, 2016.

[2] M. Alicherry, M. Muthuprasanna, and V. Kumar,

"High speed pattern matching for network

IDS/IPS", In: Proc. of 14th IEEE International

Conf. On Network Protocols, California, USA,

pp.187-196, 2006.

[3] P. Kanuga, and A. Chauhan, "Adaptive hashing

based multiple variable length pattern search

algorithm for large data sets", In: Proc. of

International Conf. On Data Science &

Engineering, Kochi, India, pp.130-135, 2014.

[4] D. L.González-Álvarez, M. A. Vega-Rodríguez,

and A. Rubio-Largo, "Finding patterns in

protein sequences by using a hybrid

multiobjective teaching learning based

optimization algorithm", IEEE/ACM

Transactions on Computational Biology and

Bioinformatics, Vol.12, No.3, pp.656-666, 2015.

[5] R. Shamloo-Dashtpagerdi, H. Razi, M.

Aliakbari, A. Lindlöf, M. Ebrahimi, and E.

Ebrahimie, "A novel pairwise comparison

method for in silico discovery of statistically

significant cis-regulatory elements in eukaryotic

promoter regions: Application to Arabidopsis",

Journal of Theoretical Biology, Vol.364, No.1,

pp.364-376, 2015.

[6] G.H. Gonnet, and R.A. Baeza-Yates, "An

analysis of the Karp-Rabin string matching

algorithm", Journal of Information Processing

Letters, Vol.34, No. 5, pp. 271-274, 1990.

[7] D.M. Sunday, "A very fast substring search

algorithm", Communications of the ACM,

Vol. 33, No. 8, pp. 132-142, 1990.

[8] K. Al-Khamaiseh, and S. ALShagarin, "A

Survey of String Matching

Algorithms", International Journal of

Received: January 6, 2018 10

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018 DOI: 10.22266/ijies2018.0831.01

Engineering Research and Applications, Vol.1,

No. 4, pp.144-156, 2014.

[9] R.A. Baeza-Yates, and M. Régnier, "Average

running time of the Boyer-Moore-Horspool

algorithm", Journal of Theoretical Computer

Science, Vol. 92, No. 1, pp.19-31, 1992.

[10] L. Bergroth, H. Hakonen, and T. Raita, "A

survey of longest common subsequence

algorithms", In: Proc of IEEE Seventh

International Symposium on String Processing

and Information Retrieval, Coruna, Spain, pp.

39-48, 2000.

[11] D. Cantone, and S. Faro, "Fast-Search: A new

efficient variant of the Boyer-Moore string

matching algorithm", In: Proc of International

Workshop on Experimental and Efficient

Algorithms, Springer, Berlin, Heidelberg,

pp.47-58, 2003.

[12] R.S. Boyer, and J.S. Moore, A Computational

Logic Handbook: Formerly Notes and Reports

in Computer Science and Applied Mathematics,

Vol.1, Academic Press, New York, N.Y.1988.

[13] J.M. Carlson, A. Chakravarty, C.E. DeZiel, and

R.H. Gross, "SCOPE: a web server for practical

de novo motif discovery", Journal of Nucleic

Acids Research, Vol.35, No.2, pp.W259-W264,

2007.

[14] M. Nicolae, and S. Rajasekaran. "Efficient

sequential and parallel algorithms for planted

motif search", BMC bioinformaticsi, Vol.15,

No. 1, pp.15-34, 2014.

[15] M. Nicolae, and S. Rajasekaran, "qPMS9: an

efficient algorithm for quorum planted motif

search", Scientific reports, Vol. 5, pp.7813,

2015.

[16] C. Jia, M. B. Carson, Y. Wang, Y. Lin, and H.

Lu, "A new exhaustive method and strategy for

finding motifs in ChIP-enriched regions", PLoS

One, Vol. 9, No. 1, pp.e86044, 2014.

[17] Q. Yu, H. Huo, X. Chen, H. Guo, J.S. Vitter,

and J. Huan, "An efficient algorithm for

discovering motifs in large DNA data

sets", IEEE transactions on nanobioscience,

Vol. 14, No. 5, pp.535-544, 2015.

[18] L. Salmela, J. Tarhio, and J. Kytöjoki,

"Multipattern string matching with q-grams",

Journal of Experimental Algorithmics, Vol.11,

pp.1-1, 2007.

[19] S. Faro, and T. Lecroq, "Efficient variants of

the backward-oracle-matching algorithm,

International Journal of Foundations of

Computer Science, Vol. 20, No.6, pp.967-984,

2009.

[20] X. Ke, and C. Yong, "An improved Wu-

Manber multiple patterns matching algorithm",

In: Proc. of 25th IEEE International Conf. On

Performance, Computing, and Communications,

Phoenix, Arizona, pp.6, 2006.

[21] N.T.L Tran, and C.H. Huang, "A survey of

motif finding Web tools for detecting binding

site motifs in ChIP-Seq data", Journal

of Biology Direct, Vol.9, No. 1, pp.4, 2014.

[22] Y. Fan, W. Wu, R. Liu, and W. Yang, "An

Iterative Algorithm for Motif Discovery",

Procedia Computer Science, Vol. 24, pp.25-29,

2013.

[23] M. Manevitz, and M. Samson, "De-Novo motif

finding using genetic algorithm", In: Proc of

IEEE 28th Convention of Electrical &

Electronics Engineers, Eilat, Israel, pp.1-5,

2014.

[24] J. Serrà, and J.L. Arcos, "Particle swarm

optimization for time series motif discovery",

Journal of Knowledge-Based Systems, Vol.92,

pp.127-137, 2016.

[25] M. Ramadas, A. Abraham, and S. Kumar,

"ReDE-A revised mutation strategy for

differential evolution algortihm International

Journal of Intelligent Engineering and Systems,

Vol. 9, No. 4, pp.51-58,2016.

[26]G. Balaji, R. Balamurugan, and L.

Lakshminarasimman, "Fuzzy clustered multi

objective differential evolution for thermal

generator maintenance

scheduling" , International Journal of

Intelligent Engineering and Systems, Vol. 9, No.

1, pp.1-13, 2016.

[27] M. Zainudin, M. Sulaiman, N. Mustapha, T.

Perumal, A. Nazri, R. Mohamed, and S. Manaf,

"Feature Selection Optimization using Hybrid

Relief-f with Self-adaptive Differential

Evolution", International Journal of Intelligent

Engineering and Systems, Vol. 10, No. 3,

pp.21-29, 2017.

[28] A. M. Singh, and Singh Jatinder, "Hybrid

Optimization Algorithm for Community and

Fraud Detection in Complex Networks for High

Immunity Towards Link and Node Failures",

International Journal of Intelligent Engineering

and Systems, Vol. 11, No.1, pp.211-220, 2018

[29] L. Shao, Y. Chen, and A. Abraham, "Motif

discovery using evolutionary algorithms." In:

Proc. of International Conf. of Soft Computing

and Pattern Recognition, Malacca, Malaysia,

pp.420-425, 2009.

