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Abstract: While the genome sequences of different crops have been published and annotated, relatively little is 

known about the transcriptional networks that regulate gene expression. There are different ways of finding 

significant motifs in genome sequences, evolutionary motif finding algorithms being one of them. The work 

presented in this paper uses Differential Evolution (DE) Algorithm to discover new motifs in rice genome sequences 

and aims to provide an intuitive wizard to analyse the micro-array analysis of expression patterns (motifs) for the 

queried genes. The used DE algorithm involves crossover operation with fine tuning. Further, to search for already 

known motifs parallel version of adaptive hash based pattern matching algorithm has been implemented. The study 

is conducted on rice genome sequences for twelve chromosomes each consisting of approximately 70000 genome 

sequences. In this paper, experimental results provide a comparison of serial and parallel version of the algorithm 

applied for the same dataset which shows that parallel implementation improves the performance by almost 25-30% 

to search the patterns in genome sequences and provide a list of newly discovered significant motifs. 
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1. Introduction 

Advancement of computational computer 

science greatly helps researchers to understand and 

explore the complex “omics” network in biological 

systems. The high-throughput – next generation 

sequencing (HT-NGS) technologies provides scope 

to generate huge amount of dataset to understand the 

central dogma (the coded genetic information hard-

wired into DNA which transcribed into mRNA and 

synthesis a particular protein) in living cell. 

Development of user friendly computational tools 

and approaches using computer languages and 

algorithms offers opportunities to analyse such big 

data for the interpretation of biologists. In any 

genomic sequence it comprises with 4 codes of 

letters that are A, G, C and T which represents four 

molecules named as Adenine, Guanine, Cytosine 

and Thymine respectively. In recent years, numbers 

of enriched genomic databases of agriculturally 

important crops have been developed for the 

genome wide expression analysis, whole genome 

sequence study, genome annotation, promoter 

identification, cis regulatory elements (small motifs 

of sequences which play role in gene expression) etc. 

A pattern search algorithm of small motifs of 

sequences in promoter region facilitates in 

identification of master regulatory genes which 

control the expression of thousands of downstream 

genes. However, there is a need of user-friendly 

intuitive wizard to analyze the available data for the 

subject concern. 

The problem of searching motifs from a given 

gene set is analogous to multiple string pattern 

matching algorithms. The aim of multiple search is 

to concurrently search presence of a set of 

consecutive strings know as patterns primarily 

present in large and noisy dataset. Various fields 

like data mining and ware housing [1], network IDS 

[2], DNA sequences matching [1,3] require 

innovative approaches to search, discover and 

analyze significant patterns from data.  

The problem of motif finding is defined as 

finding the repeating patterns in a given biological 
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data set. This repetitive behavior of patterns 

provides an indication that these patterns hold some 

significant structural or functional jobs [4]. 

Numerous algorithms have been developed to solve 

the sequential motif finding problem. The pattern 

discovery is an elementary problem that is 

associated with finding new motifs in DNA 

sequences [5]. Generally, the task of finding new 

motifs starts with a set of regulatory zone of genes 

which hold small DNA patterns (motifs), present 

statically. The size of motifs is generally short 

(<=30 nucleotides) and they don’t have gap between 

them which make them hard to discover amongst 

large amount of numerical noise. As one genome 

sequence can contain nucleotides from hundreds to 

thousands the problem of finding motifs in genome 

sequences becomes NP-complete problem. 

Therefore, to discover new motifs, evolutionary 

algorithms, provide a better way to solve the 

problem. 

The proposed work is to develop a wizard to 

allow users to search a collection of motifs 

belonging to rice chromosomes in specific locus id 

of rice. The wizard shall take patterns to be searched 

in the gene set as input from the user along with the 

locus id where search operation need to be 

performed and provide the user; percentage of each 

motif found in queried locus ids’. It concentrates on 

the rice genome, being founded on full-length DNAs, 

and is intended to get cis-components related with 

locus ids’ that users define. The details are given in 

Fig.1. The work also aims to discover new motifs 

present in the rice chromosomes using the DE 

Algorithm with fine tuning.  

The novelty in this paper is the parallel 

implementation of the adaptive hash based pattern 

search algorithm (AHPS). The AHPS algorithm has 

sub-algorithms which involve pre-processing of 

patterns, memorization of discovered patterns, 

search operation. In this paper the search operation 

has been executed in parallel on different rice 

chromosomes locus id, thus reducing the time of 

searching patterns in different locus ids. 

 

Figure.1 Cis-regulatory elements acting on promoter 

regions 

With the help of multi-threading the execution 

time is reduced to a significant level. The final 

output is given as percentage of searched pattern 

present in each queried locus id. Not only this, the 

work has also focused on finding new motifs from 

rice chromosomes making use of DE algorithm. The 

DE algorithm evaluated the cis-elements by 

measuring the likelihood score. This score is defined 

by comparing the PSSM of user-defined gene set 

and a consensus motif. The wizard can search for a 

list of motifs defined by the user and also discover 

new motifs from gene sequences of rice. 

The paper is organized as follows. Section 2 

gives information about the work done in past to 

search patterns in strings and the algorithms used to 

discover motifs. It also talks about the limitations of 

the methods that led to discovery of new approaches. 

Section 3 provides the problem formulation. Further 

in Section 4, we have given the proposed 

architecture. In Section 5, the dataset and the 

proposed methodology is given in detail. In section 

6, we present the results and discussion followed by 

conclusion, future work and references.  

2. Literature review 

Various researchers have implemented several 

approaches to extract or search motifs from 

sequences. The broad categories are pattern-driven 

approach, statistical based approach and machine 

learning approaches.  

Pattern driven approaches enumerate all the 

patterns to find those appearing with a high 

frequency in the input sequence. Most commonly 

used techniques for pattern driven approaches 

include enumeration, suffix tree, graph, hash table 

and linked list. In this literature, we focus on 

algorithms that used hash functions for searching 

patterns. The reason behind choosing hash functions 

is its characteristics of fastness compared to other 

data structures like arrays and lists.   

Rabin Karp [6] introduced pattern matching 

algorithms using hash functions in order to reduce 

the complexity of the naïve algorithms. But this 

technique searched for patterns one by one, Knuth-

Morris came up with a pattern matching process 

named after him called as Knuth Morris Pratt 

(KMP) pattern processing where the focus is to 

reduce the number of comparisons while searching 

for patterns. The process followed in this concept is 

to skip the characters that are already matched. 

The time complexity of this algorithm was 

relatively very less compared to Rabin Karp 

algorithm. The advantage of KMP algorithm was 

that the pointer is never decremented in the text. The 
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pre-processing of the algorithm took O(m) time and 

space. The algorithm was mainly applicable for one 

pattern that needs to be searched multiple times as 

like in text editor search [7]. KMP was very well 

accepted algorithm to search patterns.  

Another algorithm proposed by Boyer Moore 

(BM) worked in similar way of scanning text in text 

editor but the only difference was in the start of 

pattern matching process which was from right to 

left in this approach [8].  As further extension, to 

simply BM approach, a Boyer Moore Horspool 

(BMH) algorithm was proposed where a different 

kind of heuristic was proposed to handle bad 

characters and it also helped in improving the 

accuracy of the search algorithm. In the pre-

processing phase, the algorithm generates a table 

which stores details of characters and the number of 

characters that can be skipped while performing 

match operation [9]. As the BMH algorithm largely 

depended on the size of the alphabet and the pattern 

length, it was further improved by Raita [10] by 

changing the search procedure of BMH search. The 

proposed strategy for searching is to compare the 

last character followed by first character and then 

the middle character before actually comparing the 

other characters. This further reduced the 

unnecessary comparisons. The drawback of this 

approach was later found to be that it has quadratic 

time complexity. Another algorithm called quick 

search algorithm [11] which is yet another 

simplification of BM was also suffering from 

quadratic time complexity during search phase in 

worst case, though it was more suitable for short 

patterns and large alphabets. 

To overcome these shortages, Boyer Moore 

Smith (BMS) [12] proposed an approach using 

shifts to overcome the quadratic time complexity. 

This approach was the fastest when compared to all 

BM variants. As extensions, Berry [13] proposed 

hybridization of quick search and Zhu-Takoka string 

matching algorithm which used fastest loop or 

otherwise termed as character unrolling cycle. This 

algorithm is more suitable for long patterns and it 

uses two consecutive text characters to compute the 

bad character shift. The complexity of the algorithm 

is O(mn).  

Currently lot of motif finding algorithms were 

proposed to deal with small scale datasets such as 

PMS8 [14], and qPMS9 [15]. Few other algorithms 

like F-motif [16] used words to search for motifs 

instead of character wise search. The algorithm like 

MCES [17] adopted the process of mining the 

substrings in input sequences with high occurrence 

frequency and then combined them as motifs. 

Later the research direction shifted towards 

parallel search algorithms to reduce the time 

complexity. To keep searching time minimum, 

algorithms like bit parallel algorithms were 

developed.  These algorithms are capable to 

match multiple strings in parallel and hence these 

are categorized as multiple string matching 

algorithms.  

Researchers found that most of the traditional 

methods are not scaling for large datasets, Salmela 

[18] proposed a variant of Horspool Algorithm to 

handle the shortcomings of traditional methods in 

accommodating large datasets. The extended 

backward oracle matching algorithm [19] was also 

proposed to handle long patterns and small 

alphabets. But the memory utilization of these 

algorithms was huge. Wu-Manber [20] implemented 

parallel versions of pattern matching algorithms and 

released as a tool called agrep tool. There were 

many other tools that were released to discover 

motifs. The details are given in Table 1 with 

different acceptable parameters as given Tran and 

Huang [21].It can be seen from the table that 

different tools support different formats, sizes but 

none of them allow to search for different locus ids 

from any chromosomes for any number of patterns. 

Besides the availability of web tools, it is also 

difficult to customize the problem of motif finding 

because every tool is specific to certain size of 

BaseString or certain format of genome sequences. 

In the recent era, many evolutionary algorithms 

were used for motif discovery. The most commonly 

used algorithm are genetic algorithm and particle 

swarm optimization algorithm. In [22], an iterative 

approach was proposed to improve the 

computational efficiency of motif searching by 

using parallel random search. 

 
Table 1. Web tools for motif discovery 

Web 

tool 

Accept 

format 

File max 

size 

#of 

motifs 

option 

Motif’s 

size 

option 

MEME Fasta =60000 

characters 

Y Y 

RSAT 

peak-

motifs 

Raw, 

multi, 

fasta 

Unlimited Y Y 

GLAM

2 

Fasta =60000 

characters 

N N 

PScan 

Chip 

Bed 100-150 bp N N 

Cis 

Finder 

Fasta, 

plain 

text 

Un 

specified 

Y N 

https://www.hindawi.com/journals/bmri/2016/4986707/#B15
https://www.hindawi.com/journals/bmri/2016/4986707/#B16
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The proposed strategy was applied over 

genetic algorithm operations to find good starting 

positions and to find candidate motifs which help 

for identifying the best motifs. 

Miriam proposed De-Novo [23] which was used 

to perform optimal search operations to find 

probable solution for HMM model. Using genetic 

algorithm, they proved that some local maximas can 

be overcome easily. The major limitation of this 

approach was the costly behaviour heuristics they 

used to calculate the fitness function. 

In most cases, researchers who used genetic 

algorithm and particle swarm optimization 

technique [24] did not perform the fine tuning of 

parameters after cross over operations. This research 

gap is handled in our work by considering 

differential evolution algorithm which performs 

better for the research problem considered. The 

selection of DE algorithm over other optimization 

algorithms is due to DE’s capability to always direct 

the search towards the most probable region in the 

feasible region by using its select property. Different 

mutation schemes like mixed distribution are used to 

check the performance of the algorithm and for 

maintaining. The selection of the balance of 

exploration and exploitations.  There are other 

variants of DE [25-28] available in literature for 

various problem domains, where the variant differs 

interns of mutant strategy, objective functions and 

decision variables.  

3. Problem Formulation 

The project comprises of two kinds of problems: 

the first being searching for a particular pattern 

present in thousands of genome sequences and the 

second being DE [29] algorithm which involves 

crossover operation with fine tuning. The searching 

of motifs in genome sequences requires multiple 

pattern matching. Multiple pattern matching is a 

kind of string matching that is used to get all 

possible positions of a pattern present in an input 

string. 

Definition: Given a string S=s0s1s2s3….sn-1 of 

length n and a finite set of pattern 

P= {p0,p1,p2,…,pk-1} of size k, has each pattern 𝑝𝑡of 

length m i.e. pt=p
0
t p

1
t p

2
t …p

m
t defined over a finite set 

of characters ∑, the size of alphabet is indicated as | 

∑ |and the total number of patterns is denoted as | P 

|, the problem is to find all the occurrences of all the 

sequences in the given BaseString. 

The second problem is the discovery of DNA 

motifs in the given rice genome data sequences. The 

motifs are described as nucleic acid sequence 

patterns that have significant biological importance.  

Usually, the length of motifs ranges from ~5 to 40 

basepairs (bp) and are repeated across different 

genes or even in the same gene.  

 Definition: Given a set of DNA sequences 

(1000 bp upstream), the problem of motif finding is 

the job to detect overrepresented motifs and at the 

same time conserved motifs from orthologous 

sequences that are promising candidates for being 

DNA binding sites for a ruling protein. 

4. Architecture Diagram 

The proposed architecture is given in Fig. 2. The 

data set for the addressed problem is taken from 

online source http://rice.plantbiology.msu.edu/. The 

dataset comprises only of the upstream region and 

parsing of the dataset is done to extract genome 

sequence of each chromosome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.2 Architecture diagram 

Upstream region 

sequences 

User defined 

motif list  
Random 

population 

generation  

Pattern matching 

algorithm  

Differential 

evolution algorithm  

Output 

Gene list obtained from 

dataset 

Sequence ID LOC1010c_43g 

motif ACTTG 

  

Percent 3% 

New motifs ATG, TAGTACT 

 

http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/


Received:  January 6, 2018                                                                                                                                                   5 

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018           DOI: 10.22266/ijies2018.0831.01 

 

In the recent past there has been studies 

conducted to find the most activated nucleotides in 

stress conditions like drought, water flooding etc. 

Using those studies a list of already existing cis-

regulatory elements is created to help user in search 

process. The search process is performed in the 

pattern matching phase where multi-pattern 

matching hash based algorithm has been applied. 

With the help of differential evolution algorithm, the 

new motifs are discovered.  

The project comprises of two actions namely 

search and find motifs. The search phase takes a list 

of motifs from the user and then finds it all the 

chromosomes of rice. The final result is provided in 

form of present percentage of motifs in each 

chromosome. The discovery phase uses DE to find 

new cis-regulatory elements aka motifs. The DE 

algorithm focuses on maximizing the similarity of 

subsequences. The subsequence with maximum 

similarity is a potential motif candidate. The list of 

all such motifs is provided to the user in the end. 

The below diagrams shows the various processes 

involved in the project conducted on rice 

chromosomes. 

5. Experimental setup 

In this section, we present the sample dataset 

and the experimental set up of proposed 

methodology. The sample genome sequence of rice 

dataset is given in Fig. 3. From the given genome 

sequences, the objective is to find the user requested 

motifs in minimum time and to discover new motifs. 

The problem of finding user defined patterns on 

the series of genome sequences is solved using 

parallel adaptive hash based pattern matching 

algorithm. 

Figure. 3 Dataset Representation 

The algorithm consists of four sub-modules to 

solve the pattern matching problem. The experiment 

is conducted on 12 chromosomes of rice plant where 

each chromosome consists of approximately 70,000 

genome sequences. 

Let the genome sequences for each chromosome 

be represented as BaseString. The first step is to 

create a table to store the hash values of various 

unique pairs across all patterns and the table is 

named as Match table. The pairs across all patterns 

are taken as successive character pairs. Let these 

pairs be called as PatPair. The Match table is 

divided into two sections one part containing the 

hash value of each PatPair and second section 

holding the corresponding quadruples set values of 

each PatPair. The second section will have as many 

quadruples sets as many times of the PatPair occurs 

across all the patterns. The quadruples values are as 

follows: 

 Offset: Every pattern is identified by it offset 

number that is nothing but 0, 1, 2 assigned to 

each pattern. Add that offset number to each 

PatPair corresponding in which pattern it is 

found. 

 Position: PatPair last character position. 

 LDist: Distance of last character of PatPair 

from extreme left of pattern. 

 RDist: Distance of last character of PatPair 

from extreme right of pattern. 

The pattern’s first character is taken to start at 

zero position. Once the Match table is prepared then 

we need to have a window of size p-1 characters to 

match hash values of p-1 characters starting from 

the beginning of the BaseString. The variable p 

represents the length of the smallest pattern. 

Whenever a match is found processing of set values 

present in Match table will be done and the window 

slides after all quadruples sets for the corresponding 

PatPair have been processed. 

For each match, each set value undergoes steps 

of checks which are described below: 

1. LPos which is the start position of probable 

match is checked for its validity. The validity of 

LPos is defined that it must be greater than or 

equal to LPosMin, where LPosMin=0 and 

denotes the start of the BaseString. LPos is 

calculated as CurPos-LDist where CurPos 

points to current position in the BaseString. 

2. RPos which is the end position of a possible 

match is checked for its validity by 

CurPos+RDist. The maximum value of RPos is 

the length of the BaseString. Once the RPos 
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reaches above that value the processing of that 

set is stopped. 

3. In order to avoid redundant data to enter into 

final MatchRecord table because of same match, 

a lay-off algorithm is used. If the set LPos and 

RPos is already present in MatchRecord table no 

more processing of that set is done. 

4. The hash value of substring of BaseString of 

length RPos-LPos+1 is matched with the hash 

value of the pattern in sync with the offset. If a 

match is found, then it signifies pattern is found 

otherwise the processing moves to the next 

available set.  

5. Once a match is found, it is recorded in the 

MatchRecord table and this structure holds all 

the positions where the matched were found. 

 A set value in the MatchRecord table signifies 

the starting and ending positions of a pattern found 

in the BaseString. For instance, if a set value (23, 

27) indicates that pattern of length 5 is present at 

location 23 to 27 in BaseString. The length of the 

window is intentionally kept one size smaller than 

the smallest pattern size to avoid elimination of 

possible matches of smallest pattern. 

The algorithm provides dynamic as well as 

static search. The search can be dynamic in the 

sense that patterns can be added on the fly and be 

searched in ongoing search process.  The pre-

processing phase involved in the algorithm is used 

to create a Match table. This Match table plays a 

very important role for repetitive search on the same 

BaseString by the user with every time additional 

patterns. The match table stores the PatPair of 

already searched pattern so only newly added 

pattern’s PatPair are added and thus the old Match 

table is used for subsequent searches. This provides 

adaptive nature to the algorithm and makes the 

search process dynamic. 

The four sub-modules of the algorithm are: 

1. Creation of hash table for each pattern. The 

table consists of offset value for each pattern 

and its corresponding hash value. 

2. Creation of Match table which contains all the 

PatPair along with their quadruple sets as 

described earlier. The PatPair are stored in form 

of their hash value to increase the execution 

speed. 

3. Lay-off algorithm to avoid duplication of match 

sets in MatchRecord data structure. This 

algorithm search for LPos, RPos pair in 

MatchRecord and returns 1 when no match is 

found. 

4. Search algorithm which takes the BaseString as 

input and perform search operation on all the 

given input patterns while returning the 

MatchRecord. 

Since the data set is huge and serial processing 

of files takes time, parallel implementation of the 

algorithm is done. The search on each file is done in 

parallel on dual core processor. This will greatly 

decrease the time of execution as the files are 

independent of each other. Multithreading concept is 

used to run the files parallel and apply search 

algorithm on each files concurrently. 

The problem of multiple pattern matching is 

implemented in Java. Java language is selected as it 

has efficient data structures such as hash functions 

for implementation. After running the application 

several times, the mean execution time of all runs in 

search phase is taken as the execution time. The 

time of execution may differ with the nature of 

patterns to be searched and also based on the 

architecture of the machine on which the algorithm 

is implemented. The length of patterns considered 

lies between 5-40 characters as that is the 

approximate length of motifs (5-40 bp). As the 

search of motifs is done in promoter region, the 

length of BaseString is taken 1000 characters which 

is equivalent to 1000 bp upstream promoter region 

of each genome sequence.  

The second aim of the project is to find the new 

motifs from the chromosome sequences using 

Differential Evolution algorithm along with fine 

tuning. The first step is to create the random 

population of individuals where each individual is 

represented by a matrix. The row corresponds to the 

letter {A, C, G, T} and the column {1,….l} 

represents the probability of each nucleotide at the 

respective index of the motif. After each individual 

is evaluated, a trial is created for each member of 

the population. The selection of the individual for 

next generation is done based on similarity fitness 

function. The individual which attains higher fitness 

value is moved to the next generation. 

The aim is to select the individual with higher 

similarity of sub sequences that forms the final motif. 

To find the similarity, the first step is to compute the 

rule value (rv) of each nucleotide per motif position. 

Subsequently, for each motif position we select the 

highest value using Eq. (1): 

rv(i)=maxa{ f(a,i)}          i=1,…..,l                         (1) 

where f(a,i) is the rank of nucleotide a in column i in 

the matrix of position and weight, rv(i)is the 

nucleotide that rules over other nucleotide in column 

i, and the length of the motif is defined by l. 

Similarity is then finally calculated as average of all 

the rule values as defined in Eq. (2). 



Received:  January 6, 2018                                                                                                                                                   7 

International Journal of Intelligent Engineering and Systems, Vol.11, No.4, 2018           DOI: 10.22266/ijies2018.0831.01 

 

39 37
46

64

86
90

14

26

39

56
61

67

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8 10 12

E
x
ec

u
ti

o
n
 T

im
e 

(s
ec

s)

No.of Patterns 

Serial Parallel

Similarity(S)=
∑ rv(i)i

i=1

l
                                          (2) 

The novelty of the algorithm lies in the fine 

tuning added during the time of crossover. This 

helps in creating more diverse population and hence 

makes the subsequent population less in common to 

the initial population. This methodology helps in 

expansion of the solution space area. The process 

involves random selection of one column and row 

and selection of α in range of [0.2, 0.1]. Then α is 

added to the randomly selected cell and also 
1−∝

3
 is 

subtracted from the rest of the cells of the selected 

column. This still leaves the individual valid as the 

sum of each column still adds up to one and each 

cell is in the range [0, 1]. The rand/2/exponential 

differential evolution scheme is chosen to make the 

convergence towards the solution faster. The 

scheme includes five different parameter vectors and 

two different weighting factors are used during 

mutation process for generating mutant vector form 

the parameter vector of current iteration. The 

strategy for generation of mutant vector is given in 

Eq (3). 

 

Vi(G+1)
rand 2⁄ =Xp1(G)+ F1.[Xp2(G)- Xp3(G)] 

+ F2[Xp4(G)- Xp5(G)]               (3) 
 

The implementation of differential evolution 

algorithm is done in MATLAB. The population size 

is kept as 150 individuals and number of generations 

as 3000. As per the literature, the length of motif is 

set between 6-50 bps. The crossover ratio is set to 

various values as 0.1, 0.25, 0.5, 0.75 and 0.9 but the 

most optimized solutions are observed at 0.25. The 

value of mutation factor is kept as 0.02 as studies 

show it is the most optimal value of F. Algorithms 

5.1 Motif pattern matching algorithm  

Input: The number of motifs to be searched 

Output: The percentage of motifs present in each 

chromosome sequences 

Start 

    Generation of pattern hash table for each   motif. 

    Creation of Match table for each unique PatPairs 

found in motifs 

     Parallel execution of search algorithm on     

different chromosomes sequences 

     For each chromosome 

       Calculate the count of each motif 

Calculate the percentage of each motif 

compared to other searched motifs. 

     End For  

End 

5.2 Differential evolution algorithm to find new 

motifs 

Input: Genome Sequences 

Output: Motifs with high score 

Start 

   Initialize the population of size N 

   Population Evaluation 

   For i= 1 to MaxGeneration 

   For j=1 to N 

Create a trial vector for each individual 

      Apply fine tuning after crossover operation 

      Evaluate Individual based on score function 

      Select best individual for next generation 

    End For 

    End For 

    Return best individual with maximum score 

End 

6. Results and discussion 

In this section, we present both the results of 

searching motifs and generation of new motifs.  For 

searching motifs, we conducted experiments in two 

different form. First one, by varying the number of 

patterns and keeping the BaseString constant. In the 

second experiment, the number of patterns is kept 

constant and the BaseString on which motif is to be 

searched is varied. These results are recorded in Fig. 

4 and Fig. 5. In the first experimental set up, the 

BaseString constant is set to 1000 characters and the 

adaptive hashing algorithm is executed to search for 

the patterns specified by the user. The execution 

time taken by the serial and parallel approach is 

recorded in Fig. 4. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.4 Adaptive hash algorithm’s serial vs parallel 

computation time for searching patterns by varying 

numbers of patterns  
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Figure.5 Adaptive hash algorithm’s serial vs parallel 

computation time for searching patterns by varying base 

string size  

The x-axis represents the number of patterns to 

be searched and the y-axis is the execution time of 

the algorithm.  It is observed that parallel version of 

the algorithm finds the patterns much quicker when 

compared to the serial version of the algorithm. The 

graph in Fig. 5 also shows that even when 

BaseString is changed the parallel versions are able 

to search for the patterns quickly when compared to 

serial version.  

The second set of results related to discovering 

new motifs by DE algorithm is taken by using 

subsequences ranging from length 5-40 bps and 

having maximum similarity. The results in Table 2 

gives list of some newly discovered motifs of rice 

genome sequences. This information helps 

biologists to carry out their research in which motifs 

gets activated under different stress conditions. 

Each individual in DE algorithm is denoted as a 

vector of locations of motif in each sequence. Two 

different methods are used to generate the initial 

population.  One is the initialization method and 

second is completely random approach. The random 

approach explores the maximum solution space to 

generate initial population.  

 
Table 2. List of discovered motifs 

Discovered motifs Total no. of occurrence 

CCGGATAAC 
 

80 

CAACGGTC 
 

1012 

ATTCGGGC 
 

298 

CGTAACGT 
 

202 

     AACGGTCG 580 

 
 

Figure.6 DE algorithm PWM presentation for file 

chr02.1kUpstream 

 

But, this increases the convergence time.  In 

initialization method, each individual is created by 

choosing a motif length l, obtaining its location 

through search algorithm and adding some random 

number α [1, 10] to that position to form new 

positions.Fig. 6 shows the probability of each 

nucleotide being present at each location in the 

motif identified as AGAAAGATAAGAT. 

Further, to get the best DE configuration, 

experiments were conducted with different 

crossover factor values and the results are taken for 

25 runs to make sure that the results are statistically 

correct. The population size is set as 200 individuals 

and generation limit as 3000 as per the findings 

from the literature. The threshold value is set to be 

0.50 support for a motif from each sequence. The 

experiment was conducted with same mutation 

factors but with different crossover rates. Mutation 

factor F is set to be 0.5 and selection scheme used is 

best/1/binomial. 

 The motif which scored maximum is selected at 

the end of the process as it is found in maximum 

sequences and its similarity index is high and motif 

length is optimal too. To check on which crossover 

ratio will work best Table 3 provides the success 

rate of motifs found at rates ranging from 0.1 to 0.9. 

From Table 3 we conclude that the best results 

obtained in most of the cases is at crossover ratio 

(CR) set at 0.25. 

 
Table 3. Crossover factor 

 0.1 0.25 0.75 0.9 

yst03r 66.80% 67.00% 67.35% 68.93% 

mus07r 73.29% 73.81% 72.41% 71.25% 

dm01r 75.09% 75.19% 75.26% 75.91% 

chr02 71.19% 72.35% 71.44% 71.28% 
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Table 4.  Similarity comparisons 

  Similarity 

Dataset Motif 

length 

DE Genetic 

yst03r 10 0.85 0.82 

 15 0.86 0.84 

 8 0.96 0.84 

chr02 8 

12 

15 

0.85 

0.87 

0.89 

0.82 

0.79 

0.80 

hm03r 8 

9 

10 

076 

0.80 

0.87 

0.76 

0.81 

0.83 

 In Table 4, the performance of the algorithm in 

terms of similarity is shown for both genetic 

algorithm and DE algorithm when length of the 

motif is kept constant. The observation made is due 

to the tuning process of parameters after the cross 

over operation, the DE algorithm provides better 

population to find patterns which are most similar. 

Though the genetic algorithm works better in most 

optimization problem here DE outperformed due to 

several reasons. Firstly, unlike genetic algorithm, 

DE doesn’t use any operators based on the 

representation of the solution, rather it evolves the 

set of the vectors during its own process itself.  The 

other reason behind DE working well is its nature of 

stability whereas the GE suffers from premature 

convergence. The method of differential evolution 

can be applied to real-valued problems over a 

continuous space with much more ease than a 

genetic algorithm. The algorithm which is run on i5 

processor with 2.33 GHz CPU and 4 GB RAM in 

Windows environment shows the execution time of 

DE with fine tuning is much less compared to 

general genetic algorithm. The strength of 

differential evolution’s approach is that it often 

displays better results and can be easily applied to a 

wide variety of real valued problems despite noisy, 

multi-modal, multi-dimensional spaces, which 

usually make the problems very difficult for 

optimization.  

7. Conclusion and future work 

    In the paper multiple string matching algorithm 

has been used for finding percentage of existing 

motifs that can be combined with the protein 

sequence to activate a gene. The paper also provides 

certain new motifs discovered by applying 

differential evolution algorithm on rice 

chromosomes. Using the percentage of motifs 

present in a particular chromosome the user will be 

able to find which gene can be activated using those 

motifs and mapping the motif to its transcription 

factor values will help in identifying what biological 

effects will occur if that motif is combined with 

particular gene. The experiment conducted show 

about approximately 30% reduction in time to 

search a particular motif using the parallel version of 

the algorithm. DE is also observed to converge 

faster and provide getter similarity index than 

genetic algorithm. As part of future work, we have 

the intention to compare the AHPS algorithm with 

other hash based algorithms and also DE with fine 

tuning with other evolutionary algorithms. Also, we 

would like to know the changes in behavior of the 

algorithm based on the selection schemes. 
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