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Abstract: Recently, many research works have focused on fractional order control (FOC) and fractional systems. It 

has proven to be a good mean for improving the plant dynamics with respect to response time and disturbance 

rejection. In this paper we propose a new approach for robust control by fractionalizing an integer order integrator in 

the classical PID control scheme and  we use the Sub-optimal Approximation of fractional order transfer function to 

design the parameters of PID controller, after that  we study the performance analysis of fractionalized PID 

controller over integer order PID controller. The implementation of the fractionalized terms is realized by mean of 

well-established numerical approximation methods. Illustrative simulation examples show that the disturbance 

rejection is improved by 50%. This approach can also be generalized to a wide range of control methods. 
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1. Introduction 

Even if the great popularity of fractional 

calculus is very recent mainly regarding its 

application in science and engineering, its history 

goes 300 years back.  

Particularly, control theory and applications is 

one of the major fields of application of fractional 

order systems, with a quickly growing quantity of 

theoretical and experimental research production [1]. 

The reason for this success is due to the 

advantageous properties of fractional order control 

(FOC) systems and their interesting ability to 

improve the process robustness against disturbances 

and noises. A good confirmation is the fact that the 

first FOC scheme ever proposed in the literature, the 

so-called “Commande Robuste d’Ordre Non Entier” 

(CRONE) controller [2], deals with robust control. It 

uses the constant phase property of the ideal Bode’s 

transfer function 1/sα to obtain a robust feedback 

control against gain variations. 

Another factor is that using fractional order 

filters in feedback control applications, presents a 

certain advantageous action on the system 

dynamical behavior. This is due to the hereditary 

property of fractional order operators [3] offering an 

interesting robustness improvement versus external 

noises [4-6]. 

A great research effort is focused nowadays on 

the design and analysis of new robust fractional 

order controllers on the basis of the CRONE control 

approach [8]. Another pioneering contribution was 

the proposition of combining the classical well-

established PID controller with fractional order 

differentiation, introduced by Podlubny [7]. He 

developed a generalization of this controller called 

the PID controller, involving an integration action of 

order λ and a differentiation action of order µ. The 

problem of tuning and performance improvement of 

fractional order PID controllers was the new 

challenge towards practical usage of this generalized 

PID controller in industrial processes [8-10]. 

Consequently, the number of robust fractional order 

control applications is growing exponentially 

touching various physical processes as can be found 

in the fractional control literature [7, 11-13]. 
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Robustness is one of the main advantages of 

Fractional Order Control (FOC).  In the other hand, 

it has been proven that the use of fractional order 

systems which are long memory processes in 

feedback control systems, presents a certain benefit 

action on the system dynamical behavior and a good 

robustness effect against noises and perturbations 

[14-16]. 

Many research works have then focused on new 

robust fractional order controllers design mainly 

based on the CRONE strategy [8, 9]. 

In [16], the authors propose a new FOC design 

based on a robust Fractionalized Adaptive PI control 

tuning method. 

However, this also implies that the tuning of the 

controller can be much more complex. In order to 

address this problem, different methods for the 

design of a FOPID controller have been proposed in 

the literature [3, 12]. 

The concept of FOPID controllers was proposed 

by Podlubny in [22]. He also demonstrated the 

better response of this type of controller, in 

comparison with the classical PID controller, when 

used for the control of fractional order systems [23]. 

There are other papers published in the recent 

years where the tuning of PID controller via PSO 

such as [28], Lyapunov-Gain-Scheduled [29] and 

Harmony Search Algorithms [30] was investigated. 

The main contribution of this work is the use the 

fractionalized PID controller approach to reduce 

noise effect   by introducing fractional order filters 

in the classical feedback control loop PID controller 

without changing the overall equivalent closed loop 

transfer function. 

This paper is structured as follows: Section 2 is a 

fundamental of fractional calculus. Section 3 

presents numerical algorithm for Sub-optimal 

Rational Approximations, and the fractionalized PID 

controller and simulation results are given is given 

in section 4 and 5. Finally, the conclusion with 

future work is presented in section 6. 

2. Fundamentals of fractional calculus 

2.1 Definition of fractional calculus 

Fractional calculus is a subdivision of calculus 

theory which generalizes the derivative or integral 

of a function to non-integer order [5, 20]. The 

number of applications where fractional calculus has 

been used grows rapidly mainly for the reason that 

these mathematical phenomena allow to describe a 

real object more accurately than the classical 

methods. Approximation methods of fractional 

derivative and integral to rational functions 

permitted to use very easily fractional order systems 

in wide areas of applications such as control theory 

[5, 8, 12], economical systems [20], renewable 

energy, fractional chaotic systems [21], ... etc. 

The generalized fundamental operator which 

includes the differentiation and integration is given 

as: 

 

𝑎𝐷𝑡
𝑞
=

{
 

 
𝑑𝑞

𝑑𝑡𝑞
               , 𝑅(𝑞) > 0

1                  , 𝑅(𝑞) = 0

∫ (𝑑𝜏)−𝑞     , 𝑅(𝑞) < 0  
𝑡

𝑎

                   (1) 

 

Where,  

  a:  Lower limit of integration 

  t:  Upper limit of integration  

  q: Order of fractional differentiation or   integration  

 

q with negative value indicates integration while 

q with positive value indicates differentiation. The 

theory of fractional-order derivative was developed 

mainly in the 19th century. There are several 

definitions of fractional order derivative. Two 

important and widely applied definitions are 

Grunwald-Letnikov definition is perhaps the best 

known due to its most suitability for the realization 

of discrete control algorithms [1, 12]. The 

Grunwald-Letnikov definition is expresses as [21, 

24-27]: 

 

𝐷𝛼𝑓(𝑡) = lim
ℎ→0

ℎ−𝛼 ∑ (−1)𝑗𝑘
𝑗=0 (

𝛼
𝑗) 𝑓(𝑘ℎ − 𝑗ℎ)  (2) 

 

Where the coefficients are evaluated from: 

 

𝜔𝑗
(𝛼) = (

𝛼
𝑗) =

(𝛼+1)

(𝑗+1)(𝛼−𝑗+1)
                                    (3) 

 and h is the step  time . 

 

The Riemann-Liouville definition is expresses as: 

 

𝑓(𝑡) =
𝑑𝑛

𝑑𝑡𝑛
∫

𝑓(𝜏)

(𝑡−𝜏)𝛼−𝑛+1
𝑑𝜏

𝑡

𝑂
                             (4) 

 

For a wide class of functions which appear in real 

physical and engineering applications, the Riemann-

Liouville and the Grunwald-Letnikov definitions are 

equivalent [2, 25-27]. 

2.2 Fractional order systems  

Feedback control system is one of the major 

areas where the concept of fractional calculus is 

being applied to obtain an efficient system and also 

longevity and freedom. To the control engineer to 

compensate any shifts in the transfer function due to 
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parametric spreads, aging etc. a system is efficient if 

the controller is of the similar order to that of a plant 

being controlled. In reality the systems are of 

fractional order and therefore to have a fractional 

order controller will be efficient [3,12]. The transfer 

function of a fractional order system is given as: 

 

𝐺(𝑠) =
𝑏𝑚𝑠

𝛽𝑚+𝑏𝑚−1𝑠
𝛽𝑚−1+⋯+𝑏1𝑠

𝛽1+𝑏0

𝑎𝑛𝑠
𝛼𝑛+𝑎𝑛−1𝑠

𝛼𝑛−1+⋯+𝑎1𝑠
𝛼1+𝑎0

                 (5) 

 

where ai and bj are real numbers such that 

 

{
0 ≤ 𝛼0 ≤ 𝛼1 ≤ ⋯ ≤ 𝛼𝑛
0 ≤ 𝛽0 ≤ 𝛽1 ≤ ⋯ ≤ 𝛽𝑚

 

 

and s is the Laplace operator. 

3. Rational approximations to fractional 

integrators and differentiators:  

Outstaloup’s method 

The approximation of Oustaloup a generalized 

derivator, differential action which covers the 

frequency space, based on a recursive distribution of 

an infinite number of zeros and negative real poles 

(to ensure phase behavior minimum). As part of a 

realist synthesis (practice) based on a finite number 

of zeros and poles, it should reduce the differential 

behavior of a generalized bounded frequency range, 

chosen according to the needs of the application [17-

19]. 

The method is based on the function 

approximation from: 

 

𝐻(𝑠) = 𝑆𝛼              , 𝛼 ∈ 𝑅+                      (6) 

 

By a rational function [16]:  

 

𝐺𝑓(𝑠) = 𝐾∏
𝑠+𝑤𝑘

′

𝑠+𝑤𝑘

𝑁
𝑘=1                               (7) 

 

Where the poles, zeros, and gain are evaluated from: 

 

𝑤𝑘
′ = 𝑤𝑏 . 𝑤𝑢

2𝑘−1−𝛾

𝑁                                                 (8) 

  𝑤𝑘 = 𝑤𝑏 . 𝑤𝑢
(2𝑘−1+𝛾)/𝑁

 , 𝐾 = 𝑤ℎ
𝛾
                       (9) 

 

Where 𝑤𝑢  is the unity frequencies gain and the 

central frequency of a band of frequencies 

distributed geometrically.  Let 𝑤𝑢 = √𝑤ℎ𝑤𝑏, where 

𝑤ℎ   and 𝑤𝑏  are respectively the upper and lower 

frequencies.  γ is the order of derivative, and N is the 

order of the filter. 

 

4. A numerical algorithm for sub-optimal 

rational approximations 

Our target now is to find an approximate integer-

order model with a relative low order, possibly with 

a time delay in the following form: 

 

𝐺𝑟/𝑚,𝜏(𝑠) =
𝛽1𝑠

𝑟+⋯+𝛽𝑟𝑠+𝛽𝑟+1

𝑠𝑚+𝛼1𝑠
𝑚−1+⋯+𝛼𝑚−1𝑠+𝛼𝑚

𝑒−𝜏 𝑠         (10) 

 

An objective function for minimizing the H2-norm 

of the reduction error signal e(t) can be defined as: 

 

𝐽   ‖𝐺̂(𝑠) − 𝐺𝑟/𝑚,𝜏(𝑠)‖2𝜃
=𝑚𝑖𝑛                         (11) 

 

where θ is the set of parameters to be optimized 

such that 

 

𝜃 = [𝛽1, … , 𝛽𝑟, 𝛼1, … , 𝛼𝑚, 𝜏]                        (12) 

 

For an easy evaluation of the criterion J, the delayed 

term in the reduced order model Gr/m,τ(s) can be 

further approximated by a rational function Gr/m(s) 

using the Padé approximation technique [12]. Thus, 

the revised criterion can then be defined by 

 

𝐽   ‖𝐺̂(𝑠) − 𝐺𝑟/𝑚(𝑠)‖2𝜃
=𝑚𝑖𝑛                          (13) 

 

and the H2 norm computation can be evaluated 

recursively using the algorithm in [1,12,13]. 

Suppose that for a stable transfer function type  

 

𝐸(𝑠) = 𝐺(𝑠) − 𝐺𝑟/𝑚(𝑠) = 𝐵(𝑠)/𝐴(𝑠) 

 

the polynomials Ak(s) and Bk(s) can be defined such 

that 

 

𝐴𝑘(𝑠) = 𝑎0
𝑘 + 𝑎1

𝑘𝑠 + ⋯+ 𝑎𝑘
𝑘𝑠𝑘 ,   𝐵𝑘(𝑠) = 𝑏0

𝑘 +

𝑏1
𝑘𝑠 + ⋯+ 𝑏𝑘−1

𝑘 𝑠𝑘−1                                           (14) 

 

The values of 𝑎𝑖
𝑘−1  and  𝑏𝑖

𝑘−1  can be evaluated 

recursively from 

 

𝑎𝑖
𝑘−1 = {

𝑎𝑖+1                      𝑖  𝑖𝑣𝑒𝑛 
𝑘

𝑎𝑖+1
𝑘 − 𝛼𝑘  𝑎𝑖+2

𝑘  ,   𝑖 𝑜𝑑𝑑
                    (15) 

𝑖 = 0,… , 𝑘 − 1     
and  

𝑏𝑖
𝑘−1 = {

𝑏𝑖+1                      𝑖  𝑖𝑣𝑒𝑛 
𝑘

𝑏𝑖+1
𝑘 − 𝛽𝑘  𝑎𝑖+2

𝑘  ,   𝑖 𝑜𝑑𝑑
                   (16) 

𝑖 = 0,… , 𝑘 − 1     
 

Where 𝛼𝑘 = 𝑎0
𝑘/𝑎1

𝑘  and    𝛽𝑘 = 𝑏1
𝑘/𝑎1

𝑘 . 
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The H2-norm of the approximate reduction error 

signal ê(t) can be evaluated from: 

 

𝐽 = ∑
𝛽𝑘
2

2𝛼𝑘

𝑛
𝑘=1 = ∑

(𝑏1
𝑘)2

2 𝑎0
𝑘 𝑎1

𝑘
𝑛
𝑘=1                        (17) 

 

The sub-optimal H2-norm reduced order model for 

the original high-order fractional-order model can be 

obtained using the following procedure [2]: 

 

1. Select an initial reduced model   𝐺𝑟/𝑚
0 (𝑠)    

2. Evaluate an error ‖𝐺̂(𝑠) − 𝐺𝑟/𝑚
0 (𝑠)‖

2
 from (9). 

3. Use an optimization algorithm (for instance, 

Powell’s algorithm]) to iterate one step for a 

better estimated model  𝐺𝑟/𝑚
1  (𝑠). 

4. Set 𝐺𝑟/𝑚
0  (𝑠)      𝐺𝑟/𝑚

1  (𝑠), go to Step 2 until 

an optimal reduced model 𝐺𝑟/𝑚
∗  (𝑠) is obtained. 

5. Extract the delay from 𝐺𝑟/𝑚
∗  (𝑠) , if any. 

5. Fractionalized-order PID controller 

The feedback control loop with an integer order 

controller is shown in Fig. 1, where UR(s) is an input 

signal, E(s) is an error signal, C(s) is a controller 

transfer function, G(s) is a system or plant transfer 

function, Y(s) is an output signal, and U(s) is a 

control signal 

The integer-order PID controller to be designed 

is in the following form: 

 

𝐶(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                     (18) 

 

The PID control scheme is modified here to get 

more robustness against noise and perturbation. The 

new PID control law is obtained by using the 

fractionalization of a control system element [1, 2, 

16], the integral operator 1/s is fractionalized as 

represented in Fig. 2, that is, 

 
1

𝑠
=
1

𝑠𝛼
1

𝑠(1−𝛼)
 

 

where α is a real number such that 0 < 𝛼 < 1. 

 

 

 

 

 

 

 
Figure.1 Feedback control loop with an integer order 

controller 

 

 

 

 

 

 

 

 

 
Figure.2 Fractionalization of integral operator. 

 

 

 

 

 

 
Figure.3 Feedback control loop with a fractionalized 

order controller 

 

Our proposed methodology does not change the 

original global stable control scheme, but may 

improve its robustness against external noise and 

perturbation, by taking benefit of the interesting 

properties of fractional order systems. This new idea 

even though simple and easy to implement, opens a 

new manoeuvring margin to the design engineers 

dealing with plants in realistic industrial conditions. 

The feedback control loop with a fractionalized 

order controller is shown in Fig. 3, where Cf(s) is a 

fractionalized controller transfer function. 

The fractionalized of the integer-order PID 

controller to be designed is in the following form: 

 

 𝐶𝑓(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                               

            =
1

𝑠
(
(𝑘𝑝𝑇𝑑𝑠

2+𝑘𝑝𝑇𝑖𝑠+𝑘𝑝

𝑇𝑖
) 

            =
1

𝑠𝛼
1

𝑠(1−𝛼)
(
(𝑘𝑝𝑇𝑑𝑠

2+𝑘𝑝𝑇𝑖𝑠+𝑘𝑝

𝑇𝑖
)                   (19) 

Were, 0 < 𝛼 < 1. 

6. Simulation results and discussion 

Let us consider the following FO-LTI plant 

model: 

 

𝐺(𝑠) =
1

𝑠2.3+3.2𝑠1.4+2.4𝑠0.9+1
                    (20) 

 

Let us first approximate it with Oustaloup’s 

method and then fit it with a fixed model structure 

known as first-order lag plus dead time (FOLPD) 

model, where 

 

𝐺𝑟 =
𝐾

𝑇𝑠+1
𝑒−𝐿𝑠                                      (21) 

 

 

UR(s) 
 Cf(s)      G(s) 

Y(s) E(s) U(s) 

UR(s) 
    G (s)     G(s) 

Y(s) E(s) U(s) 

1

𝑠
 

1

𝑠1−𝛼
 

1

𝑠𝛼
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Figure.4 Step response comparison of the optimum 

FOLPD and the original model 

 

 
Figure.5 Closed-loop step response of the fractionalized 

PID and the integer-order PID controller 

 

Figure.6 The PID and fractionalized order PID controllers 

with random output noise of 5% of the reference signal 

amplitude (α=0.4) 
 

can perform this task and the optimal FOLPD model 

obtained is given as follows: 

  

𝐺𝑟(𝑠) =
0.9951

3.5014 𝑆+1
𝑒−1.634 𝑆                       (22) 

 

The comparison of the open-loop step response is 

shown in Fig. 4. It can be observed that the 

approximation is fairly effective. 

Designing a suitable feedback controller for the 

original FO-LTI system G can be a formidable task. 

Now let us consider designing an integer-order PID 

controller for the optimally reduced model Gr(s) and 

let us see if the designed controller still works for 

the original system. 

The integer-order PID controller to be designed 

is in the following form [3, 4]: 

 

𝐶(𝑠) = 𝐾𝑝(1 +
1

𝑇𝑖𝑠
+

𝑇𝑑𝑠
𝑇𝑑
𝑁
𝑠+1
)        (23) 

 

The optimum ITAE criterion-based PID tuning 

formula [4] can be used: 

 

𝐾𝑝 =
(0.7303+

0.5307 𝑇

𝐿
)(𝑇+0.5 𝐿)

𝐾(𝑇+𝐿)
                   (24) 

𝑇𝑖 = 𝑇 + 0.5 𝐿                                         (25) 

 𝑇𝑑 =
0.5 𝐿 𝑇

𝑇+0.5 𝐿
                                              (26) 

  

The parameters of the PID controller are then         

Kp =3.4160, Ti =3.8164, Td =0.2890, and the PID 

controller can be written as 

 

𝐶(𝑠) =
1.086𝑠2+3.442 𝑠+0.8951

0.0289 𝑠2+𝑠
                    (27) 

 

The parmeters of the Fractionalized PID controller 

are then Kp =3.4160, Ti =3.8164, Td =0.2890, 

α=0.4 and the fractionalized PID controller can be 

written as: 

 

𝐶𝑓(𝑠) =
1

sα
1

s(1−α)
(1.086𝑠2 + 3.442 𝑠 + 0.8951)

(0.0289 𝑠 + 1)
 

=
1

s0.4
1

s0.6
(1.086𝑠2+3.442 𝑠+0.8951)

(0.0289 𝑠+1)
                 (28) 

 

Fig. 5 shows the time response characteristics of 

the PID and fractionalized order PID controllers 

without Noise. Fig. 6 shows the time response 

characteristics of  The PID and fractionalized order 

PID controllers with random output noise of 5% of 

the reference signal amplitude (α=0.4) and The 

characteristics are compared in table 1. 

The PID and fractionalized PID controllers with 

random output noise of 20 % of the reference signal 

amplitude (α=0.5) is given in the following figure:  
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Figure.7 The PID and fractionalized PID controllers with 

random output noise of 20 % of the reference signal 

amplitude (α=0.4) 

6.1 Robustness analysis  

    The evaluation of the control system performance 

will be realized by dining a quadratic error criterion 

J given by,  

 

𝐽𝛼 = ∫ (𝑈𝑅(𝑡) − 𝑌(𝑡))
2𝑑𝑡

𝑡𝐹
𝑡𝐼

                   (29) 

 

The Quadratic error criterion with random output 

noise of 5%, 10%, 15% and 20% are given in 

Table1, Table 2, Table 3 and Table 4 respectively: 

 

Table 1. Quadratic error criterion with random 

output noise of 5 % 

α 0.1 0.2 0.3 0.4 0.5 1 

J 0.036 0.031 0.029 0.053 0.028 0.065 

 
Table 2. Quadratic error criterion with random output 

noise of 10% 

α 0.1 0.2 0.3 0.4 0.5 1 

J 0.13 0.12 0.12 0.14 0.11 0.25 

 
Table 3. Quadratic error criterion with random output 

noise of 15 % 

α 0.1 0.2 0.3 0.4 0.5 1 

J 0.20 0.19 0.18 0.21 0.17 0.39 

 
Table 4. Quadratic error criterion with random output 

noise of 20% 

Α 0.1 0.2 0.3 0.4 0.5 1 

J 0.26 0.23 0.25 0.27 0.22 0.52 

 

Tables 1, 2, 3, and 4 provides the quadratic error 

criterion with random output noise of 5%, 10%, 

15%, and 20% respectively, comparing the 

fractionalized and the integer  responses of PID 

control, we remark the fractionalized control give 

them a certain diminution of the noise effect of 

about 50% comparatively to the classical PID results. 

 6.2 Discussion and remarks 

The proposed fractionalization technique is 

based on the replacement of rational (integer order) 

transfer function by a cascaded fractional order 

elements. The global feedback control system must 

be equivalent to the original one, for a tolerated 

approximation error and a working frequency 

bandwidth. It opens new perspectives for designing 

more robust and reliable control systems. The 

following comments can emerge from the 

examination of the two illustrative applications 

examples. 

The examination of the numerical example 

results shows that the use of the fractionalization 

approach is advantageous for disturbance rejection 

because as it appears in (2), the calculus of the 

fractional derivative is dependent on all the history 

of the signal, which moderates the effect of 

variations and external random noises [4, 6]. 

This robustification leaded to an improvement in 

noise rejection of about 50% for PID control. 

This new robustification approach can be 

implemented in a larger class of adaptive and non-

adaptive control systems as PID controllers 

(fractionalization of the integer order integrator). 

7. Conclusion 

In present work, we propose a new approach for 

PID robust control by introducing fractional order 

filters in the classical feedback control loop without 

changing the overall equivalent closed loop transfer 

function. 

The  idea  was  to  get  benefit  from  the  high 

performance quality of fractional order systems 

confirmed in many  precedent  research  works. 

The  simulations  results show  the  best  

performances  obtained  by  using  the  

Fractionalized PID comparatively to the classical 

PID controller and the Fractionalization approach 

allows improving the noises rejection and the 

robustness of the control scheme. 

Further research will concern the extension of 

this technique to the fractionalization of more 

general integer order functions, in order to obtain 

desired fractional dynamics in the closed loop 

feedback control system. 
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