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Abstract: Damage of retina due to diabetes is termed diabetic retinopathy. Hemorrhages and Microaneurysms are 

the first clinically visible symptoms of diabetic retinopathy. Detecting and treating diabetic retinopathy early can 

prevent vision loss. Accurate segmentation of retinal hemorrhage in color fundus image (CFI) has become a 

challenging task today; as retinal hemorrhages have varied size, shape and texture. We propose a connected 

component clustering method based on maximally stable extremal regions (MSER) for detecting many occurrences 

of hemorrhages with different shape and size in a fundus image. Proposed method has three main steps: firstly 

hemorrhage candidate generation, second is feature extraction and finally third step is hemorrhage detection. We 

have is evaluated our method on the DIARETDB1 and MESSIDOR dataset and experimental results show that the 

proposed system outperforms other state-of-the-art methods in detecting large and vessel connected hemorrhages. 

The proposed method achieves image level sensitivity, specificity of 96.45, 97.64 and lesion level sensitivity, 

specificity of 94.89, 98.9 respectively. 
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1. Introduction 

The last decades have witnessed a global hike in 

diabetes. Eye disorders in which bleeding occur in 

the light sensitive tissue of the retina is termed as 

retinal hemorrhage. One of the commonest causes 

for hemorrhage is diabetic retinopathy (DR), in 

which easily damageable weak, fragile vessels are 

formed, and ruptured due to insufficient oxygen 

supply. DR keeps on increasing with time and cause 

complete vision loss if left untreated. World health 

organization survey statistics reveal exponential rise 

in diabetes [1]. 

In the early stage of DR, the patient is usually 

not aware of its existence; however, in progressive 

stages, patients might experience blurred or 

distorted vision, floaters, etc. DR can be of broadly 

categorized into Non-proliferative DR and 

Proliferative DR.  

 
Figure. 1 Fundus image with retinal landmarks 

 

Symptoms of NPDR include red lesions (RL) 

like Microaneurysms (MA): The earliest clinical 

sign of DR; appear like small, red dots in retina’s 
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superficial layer and hemorrhages (HM). Dot and 

blot HM: look alike MAs when small; caused by 

rupturing of MAs in the deep layers of the retina as 

seen in Fig.1. Dot and blot HMs are usually found in 

the inmost nuclear or superficial plexiform layers. 

Their organization is because of intraregional 

compression, limiting the HMs in the certain 

position. Intraretinal HMs need more time to settle 

than superficial HMs as they are deeper inside than 

flame-shaped HMs.  

 Flame-shaped HMs arises in external nerve 

fiber layer (NFL).  These HMs are placed inside the 

NFL. The property of being flame shape is due to 

the nerve cell of the ganglion cells passing blood in 

it, indicating a form of NFL. Flame-shaped HMs is 

detected at back of pole and has a tendency of 

settling in short duration of about six weeks. 

Subhyaloid and preretinal HMs are often so difficult 

to distinguish these terms are used 

interchangeably. They are located on the surface of 

the retina. A subhyaloid HM is located between the 

posterior vitreous base and the internal limiting 

membrane (ILM). The preretinal hemorrhage is 

found at the back of ILM and the front of the NFL. 

These HMs appear as D or boat-shaped. 

One of the crucial areas of research in CFI 

analysis on which researcher across globe are 

working actively is detection of irregular shaped 

HMs [2]. Red lesions are the first clinically 

observable symptoms of NPDR so their early 

detection plays vital role in assuring successful 

diagnosis and effective treatment. The development 

of computer aided diagnosis (CAD) system for DR 

detection is of paramount significance for effective 

and timely treatment. In the past few years, so many 

algorithms are presented for detecting HMs. HMs 

have irregular shape and varying sizes; a few are 

also connected with retinal vasculature, its 

challenging task to detect all of them by a CAD 

system.  

Several methods for red lesion detection have 

been reported in the literature. Red lesion detection 

methods are often grouped into three main types: 

Pixel-Based, Lesion-based and Image-based 

detection. Pixel-based method only locates the HM 

in retinal images. Lesion-based method identifies as 

well as counts them using morphology [3-5]. Image-

based method only tells whether a retinal fundus 

image contains HM or not [6].  

Niemeijer et al. [7] presented a hybrid red lesion 

detection system based on pixel classification which 

separated foreground objects like a blood vessel 

(BV), red lesions from the background image. Later 

connected vasculature was removed, leaving out 

candidate red lesions. Extracted features were 

classified into true candidates by K-nearest 

Neighbor. Sensitivity, specificity of 100%, 87%, 

respectively is reported by this method which is 

found close to that of a human expert.  

Bae et al. [8] proposed hybrid method for HM 

detection. HM candidates were extracted by 

template matching with cross correlation. Tang et al. 

[9] presented splat feature classifier for HM 

detection in fundus images. A supervised method 

was used for partitioning image into non-

overlapping segments called splats, comprising of 

similar color pixels. Features were extracted from 

these splats which describes its characteristics. 

Optimal feature subset was selected by wrapper 

approach. Messidor dataset was used for evaluation. 

Kande et al. [10] presented the pixel 

classification approach for red lesion detection. The 

intensity details of red and green components are 

used along with matched filter and entropy 

thresholding. Both blood vasculature and lesion 

candidates are extracted at once. Later vasculature 

was segmented out from lesion candidates.  

Zhang and Chutatape [11] used two dimensional 

principal component analyses for extracting image 

patch features in order to locate HMs. But all these 

methods did not consider irregular shaped HMs. 

 Fleming et al. [12] applied maximum of 

multiple linear top-hats (MMLTH) to an inverted 

image for blot HM candidate’s extraction. MMLTH 

detected objects like HM at different scales.  BV 

candidates were segmented using thresholding and 

skeletonizing method. SVM classifier was used to 

classify blot HM. Sensitivity and specificity of 

98.60%, 95.50% was achieved by this method. 

 Marino et al. [13] presented a different 

resolution correlation filter set for extracting 

candidate red lesions. Then region growing was 

used for eliminating false positives.  

Kose et al. [14] developed a novel method to 

detect DR called inverse segmentation. It segments 

the healthy and unhealthy region from the retinal 

image. Healthy region's texture does not vary much 

as compared to the unhealthy regions, using this fact 

healthy regions can be extracted accurately. 

Segmentation is done based on intensity. Low 

intensities and high intensities are segmented by 

considering background image as dynamic threshold. 

Hatanaka et al. [15] proposed a method for HM 

detection in fundus image. Emphasis was on new 

preprocessing and FP elimination. The histogram of 

each RGB plane image were extended. HM 

candidates were detected using density analysis. 

And the FPs was eliminated by the rule-based 

method and three Mahalanobis distance classifiers. 
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125 images were examined and sensitivity and 

specificity of 80% and 88% were reported. 

Limitation of the proposed system is the ability to 

detect only small HMs. 

Srivastava et al. [16] proposed novel filters for 

discriminating blood vessels and red lesions.  For 

dealing with varied size of lesions the proposed 

novel filters were applied on patches formed by 

using grid instead of complete image. Use of 

Multiple Kernel Learning reported area under 

receiver operating characteristic curve of 0.97 and 

0.92 for MA and HM respectively. 

Seoud et al. [17] proposed red lesion detection 

system using dynamic shape features (DSF) without 

prior vessel segmentation. These DSF state evolved 

shape while flooding image, which allows 

discrimination between lesion and blood vessel 

segments. Six datasets were used for evaluation: 

per-lesion level and per-image level. Performance 

was found comparable with human experts. 

In all these methods, vessel-connected HMs and 

flame shaped HMs detection is still missing. As 

HMs is of blood, their appearance is similar to BVs 

due to which it’s difficult to distinguish them from 

retinal BVs with pixel features. In this paper, we 

propose an effective method to detect HMs which 

addresses these problems. We have tested our 

method on standard retinal datasets with diverse 

characteristics. 

We have been attempting to develop an 

automated system. We reported methods of 

detecting MA to help in the diagnosis of diabetic 

retinopathy [3-5]. In this study, we aim to develop a 

method which segments hemorrhages from fundus 

image irrespective of its shape, size and appearance, 

which includes large, isolated and vessel connected 

HMs as well. 

The remainder of the paper is organized as 

follows. Section 2 elaborates HM segmentation. 

Section 3 presents feature extraction and 

classification. Section 4 is about HM segmentation. 

Results and discussions of the proposed system are 

given in Section 5. We end with conclusion in 

Section 6. 

2. HM segmentation scheme  

The proposed system uses some image 

processing and computer vision techniques for the 

HM detection purpose. The flow of proposed system 

is shown in Fig. 2. It has three main steps: HM 

candidate generation, feature extraction and finally 

HM detection. Each block of the flowchart is 

explained briefly in the following subsections. 

2.1 Preprocessing  

CFI often has poor quality due to patient 

movement, light-reflections and variation in 

illumination. Pre-processing of CFI is thus required 

for shade correction and noise removal before 

subsequent image analysis. The green plane (Ig) of 

the original RGB input image is selected for further 

processing; since the green plane of retinal image 

clearly exhibits HMs and BVs well compared to 

other planes. Noise in Ig image is removed by 

applying a median filter of M × M kernel (M= 56) 

size due to its properties of degrading the edges 

minimally while removing noise effectively. The 

median filter is given by: 

 

𝑦[𝑝, 𝑞] = 𝑚𝑒𝑑𝑖𝑎𝑛{ 𝑥[𝑖, 𝑗], (𝑖, 𝑗) ∈ 𝑤 }          (1) 

Here w- represents a neighbourhood, centred at [p, 

q] in the image. The median filtered image is shade 

corrected by equalizing histograms. Taking 

difference of shade corrected and median filtered 

image results into new image Isc shown in Fig. 3b. 

Since proposed method is based on connected 

 

 

 

 

Figure. 2  Flow of proposed system 
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components(CC), Isc image needs to be binarized for 

extracting CC.   

The multilevel Otsu thresholding method is used 

for binarizing Isc. Assuming that image is a 

representation in gray levels (0, 1, ..., L-1). Pixel 

count at level i is given as fi; so all pixels count N= 

f0 + f1 +……+ fL-1. For segmenting gray image Isc into K 

clusters (C0+ C1…. CK-1 ), K-1 thresholds needs to be 

selected[18]. Optimal thresholds (t0
*, t1

*,…, tK-2
*) are 

decided by maximizing between-class variance as: 

 

{t0*, t1*,…, tK-2*} = 𝑎𝑟𝑔  0 ≤ 𝑡0,   𝑡1 ,...  ,𝑡𝐾−2 < 𝐿−1max 
{𝜎2B (t0, t1,,,, tK-2)}                                                        (2)                    

 
Where 𝜎2

B is between class-variance which we get 

by subtracting the within-class variance from the 

total variance: 𝜎2
𝐵(𝑇) = 𝜎2 − 𝜎2 𝑊 (𝑇), where 𝜎2 

is combined variance 𝜎2 𝑊 (𝑇)  is within class 

variance defined as the weighted sum of the 

variances of each cluster.  

 

𝜎2
W(T)  = 𝑛𝐵(𝑡)𝜎2

𝐵(𝑇) +  𝑛0(𝑇)𝜎2
𝑜(𝑇)        (3) 

 

Here 𝜎2
𝐵(𝑇)  is variance of pixels below 

threshold, 𝜎2
𝑜  is variance of pixels above 

threshold,  𝑛𝐵(𝑡) = ∑ 𝑝(𝑖)𝑇−1
𝑖=0 ;  𝑛0(𝑡) = ∑ 𝑝(𝑖)𝑁−1

𝑖=𝑇  

where [0, N-1] is the range of intensity levels. 

2.1 MSER connected component clustering  

After image binarization, maximally stable 

extremal regions (MSER) algorithm is used for 

extracting co-variant regions. Regions are also 

known as connected components, objects, or 

blobs. MSER is an intensity based detector that 

identifies regions satisfying certain uniqueness 

and stability criteria. The set of all extremal 

regions in the sequence is the set of all CC are 

partitioned into clusters[19]. 

Let Ǫ1….,Ǫi-1, Ǫi… be nested extremal 

regions, Ǫ1 ∁Ǫi+1. As seen in Fig. 5(a), MSERs 

are attached elliptical frames by fitting ellipses 

extremal regions.  

The color codes in MSER correspond to 

threshold t and frame t. Extremal property of 

MSER indicates pixels inside extremal regions, 

Ǫ are either high intensity that is bright or low 

intensity that is dark intensity than all outside it 

and is given as: 
𝑄 ∁ 𝐷 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑓𝑜𝑟 𝑎𝑙𝑙 
 

 𝑝 ∈ 𝑄, 𝑞 ∈ 𝜕𝑄: 𝐼(𝑝) > 𝐼(𝑞)𝑜𝑟𝐼(𝑝) < 𝐼(𝑞)     (4) 

 

For candidate normalization, we have computed 

convex hull to find the largest area bounded between 

them and binary region. Normalization is to portray 

a N: ℝ 2
ℝ 2 getting region Ǫ and reciprocate 

another region N (Ǫ) such that N (TǪ) = N (Ǫ) for 

any affine transformation T. The change of area, 

normalized by the area of the CC, is used as the 

stability criterion (𝜑) given as: 

 

𝜑(Ri) = 

𝑑

𝑑𝑡
 𝐴(𝑄)

𝐴(𝑄)
                              (5) 

 

Such a function prefers shapes with irregular 

boundaries, while being affine-invariant. Affine 

transformation from ellipses to circular regions plus 

intensity normalization. 

3. Feature extraction  

To segment out HMs we need to extract blood 

vasculature which is done by region filtering. MSER 

region descriptors are used as features for 

segmenting BV. After sorting extremal regions top 

six regions were selected by experimentation. Fig. 

3(c) shows results of BV segmentation. After 

eliminating BV from CC, leftovers are considered as 

HM candidates. But not all leftover components are 

true HMs.  

Based on the characteristics extracted from this 

CC, rules were applied for removal of small noisy 

components and left out vessel components, which 

usually have long shapes. Many features can be 

extracted from CC. However, if a selected feature is 

not good, it does not benefit classification. As shape 

and context are very important features with which 

retinal we extract features from size, shape 

information, and position of CC. 

We have selected set of following features 

which are listed here: 

 
Feature Description 

1 Area:  𝐴𝑟𝑒𝑎(𝜃𝑘) is number of pixels included 

in MSER region. Area of HM is not important 

for HM detection, but it depicts disease 

severity. 

2 Min_Int: The minimum gray value of the 

MSER. 

3 Max_Int:The maximum gray value of the 

MSER.   

4 C_M: Center of mass. 

5 Stability: Evaluating criterion for regions 

relative change in size. 

6 Bounding box: smallest surrounding rectangle 

position. 
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7 Covariance: statistical distribution of shape. 

8 Texture: Information of underlying image. 

9 Shape: defined by included pixels. 

10 Perimeter: total number of objects pixels 

having one or more background pixels.  

P8 = {{𝑟, 𝑐) ∈ 𝑅|𝑁4(𝑟, 𝑐) − 𝑅 ≠ ∅ 

11 Elongated components,  Ielong= 
𝐴𝑟𝑒𝑎(𝜃𝑘

𝐿𝑒𝑛(𝜃𝑘)
 

12 
Compactness,  Icomp=  

−2.√𝜋.𝐴𝑟𝑒𝑎(𝜃𝑘)

𝑃𝑒𝑟𝑖(𝜃𝑘)
 

13 Aspect ratio: ratio of major - minor axis 

length,  
𝑙

ℎ
. 

14-18 Response of the five Difference of Gaussian 

(DoG) filter. Take difference of one version 

of the image from another version. 

Convolution of six different Gaussian kernels 

of standard deviation (σ) 0.5, 1, 2, 4, 8.  

19 Standard Deviation SD= ∑  𝑄𝑖,𝑗𝑖,𝑗 (𝑖 − 𝜇𝑖) 

 

     Feature selection if done well can reduce the 

number of false positives thereby reducing the 

computational cost. Fig. 4 shows examples of some 

feature extracted from the image and the value of 

feature extracted from candidate MA pixel which 

are used as an input to the classifier. 

4. Author name(s) and affiliation(s) 

HMs are either isolated or they are connected to 

vessel. The vessel connected HMs will have totally 

different size and shape compared to isolated ones 

making it more crucial for extraction. On the basis 

of observation so far BV normally has certain ranges 

of diameter. 

At places where HM is connected with BV it 

becomes larger than normal diameter range. So an 

iterative CC extraction step is applied to deal with 

this problem of HM segmentation. The proposed 

method extracts vessel connected HM as well (see 

Fig. 3(d) encircled in red).  

A structure based compactness test of CC is 

performed for HM candidate selection. 

5. Results and discussion  

Retinal images from publicly available standard 

datasets were used for evaluation of the proposed 

method. DIARETDB1 dataset is provided by 

Finnish research group with an intention to provide 

common public database for researchers in this area. 

It has 89 images of size 1500 x 1152 and 500 

field of view. Out of 89, 84 are abnormal and 5 

images are normal. In DIARETDB1 lesions are 

manually highlighted by four experts forming 

ground truth [20]. 

MESSIDOR database is available publicly since 

2008. It contains 1200 images captured by Topcon 

TRC NW6 with field of view 450. Every image is 

provided with DR grade and edema risk. In our 

study, we have used DR grades [21]. A set of 24 

DIARETDB1 and 10 MESSIDOR images were used 

for training. Set of 65 DIARETDB1 and some 

randomly selected MESSIDOR images were used 

for testing the classifier. Features are extracted from 

the MSER components (Fig. 5 (a)).  

Earlier state-of-the art methods [14, 15, 23] were 

having limitation in extracting large and vessel 

connected HMs it is overcome in proposed method 

based on connected component clustering.  

Proposed method results show that it is able to 

extract out vessel-connected, flame-shaped, 

irregular-shaped and isolated HMs from the retinal 

fundus image (as seen in Figs. 3 and 6).  

 We have used a Random Forest (RF) classifier 

to classify true HM candidates. RF is more widely 

used in computer vision in past few years, because 

of its convenience for non-linear classification. It 

has been found robust for outliers. RF is a 

combination of decision trees trained independently 

from the training set [22]. 

Performance measures such as sensitivity and 

specificity were used for system evaluation. 

Sensitivity (SE) is measure of true lesions identified 

as lesions and is given as: 

 

𝑆𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑃+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑁
               (6) 

 

Specificity (SP) is a measure of false identified as 

false. 

 

𝑆𝑃 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑁+𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑃
               (7) 

 

Where TP, TN, FP, FN are true positive/negative 

and false positive/negative. 

ROC plot of proposed method on DIARETDB1 

and MESSIDOR dataset is shown in Fig.7. 

Our proposed system achieves image level 

sensitivity of 96.45% and specificity of 97.64 

respectively. We have also compared our proposed 

system with earlier existing state-of-the-art methods 

(Table 1). Proposed method outperforms existing 

methods. 
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                 (a)                                  (b)                                   (c)                                   (d)                                   (e) 

Figure. 3  Steps of the proposed system on four DIARETDB1 dataset images: (a) RGB fundus images, (b) Preprocessed 

image, (c) Blood vessel segmentation results, (d) Hemorrhages detected by the proposed system, and  (e) Detected 

hemorrhages superimposed on ground truth to depict confidence intervals 

  
 

Table 1: Comparison of proposed method with existing methods 

Method Dataset Used Image level Lesion level 

SE SP SE SP 

Hatanaka et al.[15] Local dataset 80 80 -- -- 

Junior et al. [23] DIARETDB1 87.69 92.44 -- -- 

Tang et al. [9] Messidor 93 66 -- -- 

Proposed method DIARETDB1, Messidor 96.45 97.64 94.89 98.9 

*  SE-Sensitivity, SP- Specificity 
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                   (a)                                                        (b)                                                      (c)  

     
                   (d)                                                        (e)                                                      (f) 

    
                                             (g)                                                                 (h)                                                    

Figure. 4 Examples of some feature extracted: (a) Standard deviation of green band image, (b) DoG1, (c) DoG2, (d) 

DoG3, (e) DoG4, (f) DoG5, (g) DoG6, and (h) Color coded MSER 

 

 
(a)                                                                                     (b) 

Figure. 5 Illustration of the connected components: (a) Color coded MSER components for a sample image from 

DIARETDB1 dataset and (b) HMs extracted by the proposed method shown in white color is superimposed on ground 

truth image for showing confidence interval 
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(a) 

 
(b) 

Figure. 6 Proposed method HM detection results: (a). 

Original color fundus image and (b). True HMs detected 

by proposed method 

 

 
Fig.7. ROC plots of proposed method on DIARETDB1 

and MESSIDOR dataset. 

6. Conclusions  

HM detection is a crucial task in DR. We 

propose a method based on MSER for extraction of 

CC which is a dominant technique in blob detection. 

The proposed method results demonstrate its 

satisfactory performance in detecting isolated, large 

and vessel connected HMs. The method outperforms 

several other state-of-the-art techniques by 

achieving lesion level sensitivity of 94.89% and 

specificity of 98.90% and image level sensitivity of 

96.45% and specificity of 97.64% which is quiet 

encouraging to be used in practice. Hence, proposed 

method will help experts by acting as a supporting 

tool in screening programs thereby minimizing their 

load and filtering patients with DR. As future work, 

same method can be applied for detection of other 

lesions and retinal diseases. 
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