
Received: August 25, 2017 10

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

Software Fault Prediction and Classification using Cost based Random Forest in

 Spiral Life Cycle Model

Hosahalli Mahalingappa Premalatha1* Chimanahalli Venkateshavittalachar Srikrishna2

1People's Education Society University, India

2People's Education Society Institute of Technology, India
* Corresponding author’s Email: premalathaphd2017@gmail.com

Abstract: In the domain of software engineering many new techniques are deployed for identifying the fault in

software modules. This part of software design plays a fundamental role cause of its assurance towards higher

reliability and stability. Many existing techniques like Bayesian approach have been employed to minimize the

software faults but they can’t able to predict efficiently within limited resources. In this paper, a new classification

and prediction methodology is put forth to progress the accuracy of defect forecast based on Cost Random Forest

algorithm (CRF) which reduces the effects of faults in irrelevant software modules. The proposed algorithm predicts

the quantity of faults present in the modules of software in less time and classify based on measures of similarity

obtained from Robust Similarity clustering technique. The overall results inferred from this methodology proven that

this CRF can be capable to rank the module’s faults in order to enhance the software development quality.

Keywords: Random forest, Robust similarity clustering, Spiral life cycle, Software module, Software defect forecast.

1. Introduction

Software had become a crucial part of day to day

activities and is very significant in technological in

addition to economic development. A Software Life

Cycle (SLC) consist of several major steps namely

Planning and requirement analysis, defining,

Designing, Developing product, Testing, and

Maintenance. Among all that, testing stage is

prioritized to be an important task. The software

industry grows the size of software to be larger and

fault prediction has become a significant task due to

its necessity for lots of human effort as well as time

in development of software [1]. A Software testing

process is an important and indispensable stage to

build high quality software and ensure software

reliability in Software Development Process (SDP)

[2]. For reduction of cost and the effort of testing

process, methods for fault prediction are employed to

evaluate the faulty software modules with the help of

software testing metrics [3]. Software Defect

Forecast (SDF) is said to be a prediction and

classification process which recognizes a software

module has defect or not by monitoring its

characteristics. The major aim of SFP is to identify

the fault prone software modules by using some

underlying software metrics before the beginning of

testing phase [4]. Since, humans are dependent on

software in day to day life a fault in a software

module may cause severe effects in human lives [5].

In order to avoid the software damages a reliable

software fault monitoring technique should be

adopted. Nowadays a lot of software modules are

sold to the clients with unsolicited defects so,

different software metrics are used to find the

software defects (SD).

Several methods are used for finding the software

faults such as machine learning, statistical method

and so on [6]. Several consistent approaches are

solicited by the software developers to diminish the

error in classification during the progress of forecast

models to categorize the faulty modules, Neural

network (NN) based techniques, which functions

with better arithmetic approaches are introduced.

Probabilistic NN is highly robust in nature which is

reducing the misclassification rate in prediction

Received: August 25, 2017 11

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

system [7]. To improve the software flaw prediction

Artificial Neural Network is adopted, that helps to

reduce the cost as well as time of the prediction

system. This will achieve the high efficiency in

training datasets in multiple domains [8]. Another

existing method is Bayesian classification with spiral

model-based for proficient prediction and

classification of software fault. This method

identifies dependability of software modules and

testing the life cycles of each module. The Bayesian

classifier exactly classifies the defective and good

software modules [9]. A different fault prediction

model is built with the help of Least Square Support

Vector Machine (LSSVM) training method related to

the kernel function, linear function and radial basis.

This method identified the Object Oriented metrics of

source code is able to forecast defective and good

classes with more accuracy and reduced the value of

misclassified errors [10]. In the earlier system

software developers struggled in some issues such as

spend more time for identifying the permanent

defects in the software, high budget for recognizing

the SD based on misclassified faults. In this paper,

cost based Random Forest (CRF) algorithm is

utilized to minimize the Error Rates(ER) and

improves accuracy for SFP by means user specified

feature budget. Using CRF user can able to include

their affordable amount of features in their budget

like for time, memory etc. With help of CRF

conditions on pruning the trees of random forest the

classification is constrained into affordable budgets

and the risk forecast is done within user’s affordable

criteria while existing forecast processes give out

some risk values to a software for which user might

not be able to afford some necessary features.

The rest of the article is composed in the

following manner. Section 2 comprises the analysis

and survey of the recent existing SDF models.

Section 3 proposes the CRF based approach for an

effective SDF system and its evaluation and results

are discussed over at section 4. Section 5 concludes

the CRF based SDF system along with the possibility

to enhance at future.

2. Literature review

G. Abaei, A. Selamat, and H. Fujita [11]

presented a SD recognition system using semi-

automatic Hybrid Self-Organizing Map (HySOM).

The HySOM method is a semi-automatic model

derived from SOM and ANN. The Benefit of this

model is the capability to forecast the label of

modules in a semi-automatic manner by means of

software dimension threshold standards in the lack of

eminent data. In semi-automatic HySOM, the

responsibility of specialist for recognizing defective

modules became less crucial and more helpful. This

model efficiently recognizes the modules defects,

enhanced the excellence of software building and did

software testing in less time as well as budget.

HySOM does not try to improve the precise forecast

of software fault only focussed on resources.

R. Moussa, and D. Azar [12] presented Particle

Swarm Optimization (PSO) and Genetic Algorithm

(GA) algorithm for classify the fault-prone software

modules. The search direction in a particular region

of search space is guided by the PSO then GA

constructs a classifier recombination. This algorithm

classifies the software model as defective or not. This

hybrid algorithm balances the classification accuracy

and reduces the misclassification rates over the

particular class. This technique lags in the case of

utilization of resources it wastes the available data

and other resources to train for producing better

results.

P.S. Bishnu, and V. Bhattacherjee [13] predicted

the faults in software modules using a Quad Tree-

based K-Means approach. Initial cluster centres were

found by the Quad Tree which was the input to K-

Means algorithm. The amount of clusters for K-

Means Quad Tree-based algorithm can give K initial

cluster centresare taken as input to the simple K-

Means algorithm. This is facilitated by varying the

value of the threshold parameter which is input to the

Quad Tree algorithm. The Overall Error Rate (OER)

was decreased in SDF technique by QDK algorithm.

This technique has a drawback of necessity for more

data to train classifier.

K. Dejaeger, T. Verbraken, and B. Baesens [14]

presented the Bayesian network algorithm for SDF

model. With the help of Markov Blanket (MB)

Feature Selection technique selects the count of

attributes in datasets. After that, MB effectively

reduced the count of selected features. The outcome

indicates that MB is able to reduce the count of

variables while not negatively impacting

performance. However, other feature assortment

approaches are possibly able to select an even smaller

set of well prognostic features. Bayesian approach

was not able to limit its utilization of resources even

though it is capable to perform precise prediction.

C. Catal, U. Sevim, and B. Diri [15] presented

Eclipse based SDF with the help of Naïve Bayes

algorithm. Due to deficient in software tools to

computerize this forecast process no one of these

prediction systems have achieved applicability in the

industry. Data regarding SD and a robust SDF tool,

can allow eminent managers to target on defective

modules. This tool limits the data utilization with the

trade off in accuracy.

Received: August 25, 2017 12

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

To resolve the above mentioned SDF issues the

proposed CRF approach had been coined out for

accurate forecast with limited resources and its

method of functioning will be described in later

section.

3. Proposed methodology

Software products are rising rapidly; Software

SDF has become a vital task in software design stage.

SDF is very essential for reducing fault effects in

software modules and enhancing the efficiency of the

SDF. In this paper, CRF algorithm is proposed to

minimize the ER in SDF. In this process the software

is initially identified based on their dependability in

each stage of the design process. CRF is used to

predict the amount of fault present in the software

modules and classify regarding the similarity value

among them and the proposed architecture described

in Figure.1.

Figure.1 Proposed Architecture

3.1 CM1 dataset

The CM1 dataset is used for the performance

diagnosis of the proposed system.CM1 is written in

C language which is a NASA spacecraft instrument

and composed of about 498 modules among them

10% are defective modules. Halstead and McCabe

features are used as extractors of source code to

obtain data. These features are already defined for

object oriented characterization of the code features

associated with software quality. In this process,

initially identify the dependability of software

modules. After that, the standardization, data

centering, whitening process is performed for

detecting faulty data. The software modules are tested

using the spiral cycle model during each cycle of the

SDP. In the earlier stage of SDP by spiral cycle model

the defective module is recognized.

3.2 Spiral model approach

The spiral cycle model of the SDP includes four

phases such as the functions of the software, identify

and resolve the risk, development and testing phase

and planning for the next iteration. The first stage of

the spiral cycle model starts with the recognition of

the functions of the software, its performance,

alternative steps of developing the particular section

of product and limitations given during performance

of those alternates. Second stage works with

diagnosis of alternates related to the constraints and

objectives. Evolution of the specification of the

overall nature of the product or plan for the next level

of the prototype is the next step, if the program

development risks are strongly dominated by the user

interface risks. In the third stage, progressive growth

is completed further if performance associated risks

are previously resolved by the preceding prototypes.

Planning for the next stage originates after the end of

this incremental approach. The risks and

requirements are analysed before the commencement

of the SDP. Through the comprehensive analysis of

the risks and requirements, it is highly guaranteed

that the system contains only feasible and possible

requirements. Furthermore, the developing phase of

the spiral cycle model does sequential investigation

of product. For identifying and evaluating software

project risks the spiral cycle model is implemented as

a risk based software testing model. By mitigating

these risks of the software project the overall cost is

reduced. Earlier detection of the risks is definite in

the spiral cycle model. Among other training models

the unambiguous risk administration is terminated in

spiral cycle model.

3.3 Cost based random forest prediction model

(CRF)

A cost based random forest (CRF) learning

algorithm to minimize prediction error for a user-

Received: August 25, 2017 13

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

specified average feature acquisition budget. Tree

structure which is grown by independent data

sampling & feature splitting, results in a set of

identical trees is called as Random Forest. Difference

between the count of lines in the correct and incorrect

code corresponds to the defect forecast of a software

module. Using this technique, the defective modules

are recognized accurately.

Suppose sample pairs (𝑥, 𝑦) are distributed

as(𝑥, 𝑦) 𝑑𝐻. The major aim is for training a classifier

𝑓 from a family of functions 𝐹 that minimizes

expected loss subject to a budget constraint,

𝑓𝑚𝑖𝑛 ∈ 𝐹𝐸𝑥𝑦[𝐿(𝑦, 𝑓(𝑥))], 𝐸𝑥[𝐶(𝑓, 𝑥)] ≤ 𝐵 (1)

Where 𝐿(𝑦, 𝑦ˆ)is a loss function, 𝐶 (𝑓, 𝑥) is the

cost of evaluating the function of f on example x and

B is a user specified budget constraint. In this

equation (1), the feature acquisition cost 𝐶 (𝑓, 𝑥) is a

modular function of the support of the features used

by function 𝑓 on example 𝑥, that is acquiring each

feature has a fixed constant cost. Then minimize the

empirical loss subject to a budget constraint:

𝑓𝑚𝑖𝑛 ∈ 𝐹 −
1

𝑛
𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)),

1

𝑛
∑ 𝐶(𝑓, 𝑥𝑖) ≤ 𝐵

𝑛

𝑖=1

(2)

In our context the classifier f is a random forest,

𝑇, consisting of 𝐾 random trees, 𝐷1, 𝐷2, 𝐷3, … . . , 𝐷𝐾,

which are learnt while training data. Consequently,

the expected cost for an instance 𝑥 during prediction-

time can depicted as follows,

𝐸𝑓[𝐸𝑥[𝐶(𝑓, 𝑥)]] ≤ ∑ 𝐸𝐷𝑗

𝐾
𝑗=1 [𝐸𝑥[𝐶(𝐷𝑗, 𝑥)]] (3)

where, 𝐸𝐷𝑗
[𝐸𝑥[𝐶(𝐷𝑗, 𝑥)]]expected cost values in

the RHS are averages with respect to each of the

random trees. Since the trees of a random forest are

distributed identically, the RHS increases with the

count of trees. This upper limit restricts the complex

function of a random forest because of low feature

correlation between trees. With the help of CRF

approach, developers spend less time for detecting

the fixed fault in the software and reduce the cost of

SFP.

3.4 Robust similarity aware clustering (RSC)

RSC focus on categorizing the software modules

according to the measure of similarity between the

features. Thus the classification of the software

modules as defective and correct modules is

accomplished. RSC performs much faster than other

regular clustering algorithms and also it is robust

towards the outliers. RSC necessitates a measure of

similarity among the different collection of features.

According to the smallest amount of distance

measures, RSC creates several amounts of clusters.

Each cluster is represented by a cluster centroid. The

level of similarity among the sample module and

centroid is fixed, and distance within the features is

computed. The clusters are created according to the

distance between features. The smallest amount of

distance within the features should be considered, so

that they are located close to one another within each

cluster centroid. The samples present in the training

part of the dataset are assigned to the cluster

according to the similarity measurement.

The variance value 𝛽 is calculated as

𝛽 =
∑ ‖𝑥𝑗−𝑥̅‖

2𝑛
𝑗=1

𝑛
 (4)

where,

𝑥̅ =
∑ 𝑥𝑗

𝑛
𝑗=1

𝛽
 (5)

Temporary Variable is computed as,

𝑇𝑒𝑚𝑝 =
‖𝑥𝑗−𝑥𝑘‖

2

𝛽
 (6)

The similarity coefficient between the attributes

is calculated by using the following equation

𝑃𝑠𝑖𝑚(𝑥𝑎)𝜌𝑚 = ∑ (𝑒𝑥𝑝 − (𝑇𝑒𝑚𝑝))𝜌𝑚𝑛
𝑗=1 (7)

where, 𝑘 =1…, n and 𝜌𝑚 =5m.

For classification threshold coefficient is

compared against similarity coefficient. If the

similarity coefficient is above the threshold value,

then the clustering factors are determined. The cluster

centroid is calculated as,

𝑧𝑖
𝑘 =

∑ 𝑆𝑖𝑗
𝜌

𝑥𝑗
𝑐
𝑗=1

∑ 𝑆𝑖𝑗
𝜌𝑐

𝑗=1

 (8)

The level of similarity within the sample data and

cluster centroid is computed.

𝑆𝑖𝑗
𝑘 = 𝑆𝑘(𝑥𝑗, 𝑧𝑖) = (exp(−𝑇𝑒𝑚𝑝))𝑘 (9)

The maximum cluster centroid is given as

𝑍𝑖 = 𝑚𝑎𝑥‖𝑧𝑖
𝑘 − 𝑧𝑖

𝑘−1‖ (10)

Received: August 25, 2017 14

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

where, 𝑍𝑖 = 𝑍1, 𝑍2, 𝑍3 … … , 𝑍𝑛

The maximum cluster centroid is compared

against the classification threshold. The distance

within the features is computed as

𝑑𝑖 = 𝑍𝑖 − 𝑍𝑖−1 (11)

The clusters are formed with the least amount of

distance among the features. The distance between

the clusters are depicted as

𝐶𝑑𝑖 = 𝐶𝑖 − 𝐶𝑖+1 (12)

The minimum cluster distance is removed from

the cluster (C) and the minimum distance between the

clusters is computed as,

min(𝑚𝐶𝑑𝑖 , 𝑚𝐶𝑑𝑖+1) = 𝑚𝑖𝑛𝐶𝑑𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑖 𝑖𝑛 𝐶

 (13)

The proposed technique is reducing the

misclassification rate software modules and improves

the SDP quality. With the help of RSC easily classify

the defective and correct software modules separately.

4. Experimental Result

The proposed algorithm has been written as code

and evaluated in Java NetBeans 8.2 version and 32

bit operating system, 8GB RAM. The main aim of the

research work is to predict the amount of fault present

in the software modules and classify the faults

according to the measure of similarity among them.

The CM1 dataset is used for the performance analysis.

In order to compute efficiency of the proposed system

an evaluation metric is employed. It contains a set of

measures that pursue a general underlying evaluation

methodology. Some of the metrics are selected for

evaluation purpose, namely F-Measure, Recall,

Accuracy, Misclassification Rate, and OER.

Accuracy: For the effective forecast of the

software modules rapidly the classification technique

is employed. Accuracy is defined as the ratio of

forecasted defective modules (𝑇𝑃 + 𝑇𝑁) that are

found among all software modules (𝑇𝑃 + 𝑇𝑁 +
𝐹𝑃 + 𝐹𝑁). Accuracy is the ratio of the correct

forecast to the total forecast done by the SDF model

and formulated as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100 (14)

where, 𝑇𝑃 = True Positive 𝑇𝑁 =True Negative

 𝐹𝑃 =False Positive and 𝐹𝑁 -False Negative

F-Measure: Harmonic mean of precision and

recall values is said to be F-Measure. It is defined as,

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
× 100 (15)

Recall: Recall is referred as the count of modules

that are correctly forecasted as defective (𝑇𝑃) to the

total count of software modules (𝑇𝑃 + 𝐹𝑁).

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16)

False Positive Rate: FPR is called as the

proportion of correct modules that are forecasted as

defective module. The FPR is the relative amount of

the 𝐹𝑃 value to the summation of the 𝐹𝑃 and 𝑇𝑁

values.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 (17)

False Negative Rate: FNR is said to be the

proportion of defective modules that are forecasted as

correct module. FNR is the contribution of the 𝐹𝑁

value to the total of the 𝑇𝑃 and 𝐹𝑁 values.

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃++𝐹𝑁
 (18)

Precision: Precision is described as the relative

amount of the count of modules that are correctly

forecasted as defective (𝑇𝑃) to the total count of

modules that are forecasted as defective (𝑇𝑃 +
+𝐹𝑁). If the precision value is high, the time and

effort required for testing and inspecting the modules

is reduced.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
 (19)

Overall Error Rate(OER): In the SDF process, the

OER is referred as the proportion of the defect

forecast (𝐹𝑃 + 𝐹𝑁) to the total count of predictions
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) . ER of the defective

modules generally incurs much higher rate than the

ER of the correct modules. The overall rate is the

relative amount of the total of 𝐹𝑁 and 𝐹𝑃 values to

the sum of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 values. The OER is

used to diagnose the variation in the errors in the SDF

process.

𝑂𝐸𝑅 =
(𝐹𝑃+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100 (20)

Received: August 25, 2017 15

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

The below Table 1 represent the performance

evaluation of FNR, FPR and OER analysis report of

CRF technique and existing algorithm. The proposed

CRF approach is compared against the existing

techniques such as semi supervised ANN, Hybrid

SOM, and Semi-NB of the work done by C.G.

Dhanajayan, and S.A. Pillai [9].

The above table 1 indicates the OER, FPR and

FNR value is lower compare to the existing

techniques for the CM1dataset. Hence, the proposed

CRF technique can predict and classify the faulty

modules effectively than various existing techniques.

Table 1. Performance evaluation of FNR, FPR and OER

of proposed and existing technique

Techniques FNR FPR OER

HySOM [9] 0.625 0.500 0.181

Semi-ANN [9] 1.000 0.340 0.198

Semi-NB [9] 0.729 0.271 0.135

Proposed CRF 0.520 0.05 0.102

Figure.2 FNR, FPR and OER evaluation of the proposed CRF approach and some of the existing techniques

The Fig.2 depicts the performance evaluation of

FNR, FPR and OER of prospered and existing. C.G.

Dhanajayan, and S.A. Pillai [9] presented methods

such as HySOM, Semi-ANN (Semi-Artificial Neural

Network), and Semi-NB (Semi- Naïve Bayes). The

proposed CRF technique represents the less ER

compare to the existing technique and reduces the ER

of software modules. So, overall performance of

proposed technique is relatively higher than the

existing approaches.

The Table 2 depicts the precision recall, F-

measure and accuracy of CRF and existing technique.

The existing HySOM and Semi-ANN precision is

approximately same and better accuracy. As, the

Semi-NB consists of precision is very low, so the

accuracy is decreased. Finally, our proposed CRF

technique represents the better results compared to

the existing approaches like Bayesian technique etc.

The Fig.3 depicts results of the recall and

precision of the CRF and existing technique. The

comparison graph of the precision and recall of the

proposed CRF technique and existing approaches

performance are shown in the above figure. Better

fault prediction performance than the existing

techniques is achieved with higher precision and

recall. The Fig.4 indicates the comparative graph of

the F-Measure and accuracy of the CRF and existing

approaches from C.G. Dhanajayan, and S.A. Pillai

study [9]. From the graph, it is clearly inferred that

the accuracy of the CRF approach is higher than other

existing methodologies. F-measure value is also

inferred to be higher than the existing systems such

that it indicates that the exact prediction of software

modules by CRF methodology.

Table 2. Precision, recall, accuracy and F-measure of proposed and existing technique

Techniques Precision Recall Accuracy (%) F-Measure (%)

HySOM [9] 0.890 0.820 88 80

Semi-ANN [9] 0.895 0.854 89.3 85

Semi-NB [9] 0.765 0.894 87.3 90.3

ProposedCRF 0.973 0.926 92 92.7

Received: August 25, 2017 16

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

Figure.3 Precision and Recall performance of proposed and existing techniques

Figure.4 Accuracy and F-measure performance of proposed and existing techniques

From the performance analysis results, it is

evident that the majority of the software does not

cause faults in software systems, and only less of all

modules is found to be the faulty modules. The

majority of the modules belong to the correct

software group and the rest belong to the faulty group.

It is also observed that the classification and

prediction performance of our proposed technique

achieves better accuracy and low ER with the help of

getting the prior knowledge what risk the user can

take via a user-defined feature budget. CRF has the

capability of pruning itself into the fixed range of

features and classify the risk value of those features

with higher concentration for the firm budget fixed

by user. On the other hand, existing SDP systems

they try to concentrate on all the possibilities without

any knowledge about user requirements and gives out

a risk value without any concern that whether that

quoted features for affording that predicted risk can

be possessed or not. So, they fell in a drawback of

less accuracy and higher ER. CRF tackles this

limitation effectively with the concept of user-

defined feature budget and produce efficient SDP

with better accuracy and less ER.

5. Conclusion

Software fault forecast is important in improving

the quality of a software system. The spiral cycle

model and cost based random forest classification

models effectively predict the software faults and

classify the SD. In this process initially, the

dependability of software modules is recognized by

spiral model. The spiral model is used for testing the

software in each cycle of the SDP. Based on the

measure of the similarity of features in the dataset,

the RSC algorithm performs categorization of the

defective and correct modules. The proposed

technique accurately predicts and classifies the faulty

modules. The experimental analysis demonstrated

that the proposed algorithm is better than various

existing approaches with respect to Accuracy,

Precision, Recall, and F-measure. In future, the CRF

approach can be enhanced in a further way that

requires only lesser training data and short span of

time to perform SDF.

Received: August 25, 2017 17

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018 DOI: 10.22266/ijies2018.0430.02

Acknowledgments

The authors would like to thank PES university for

allowing to do research and would like to thank Dr.

K N B Murthy, vice chancellor, PES university for

his encouragement to do research.

References

[1] C. Jin, and S.W. Jin, “Parameter optimization of

software reliability growth model with S-shaped

testing-effort function using improved swarm

intelligent optimization”, Applied Soft

Computing, Vol.40, pp.283-291, 2016.

[2] L. Chen, B. Fang, and Z. Shang, “Software

Defect Forecast based on one-class SVM”, In:

Proc. of International Conf. On Machine

Learning and Cybernetics (ICMLC), pp.1003-

1008, 2016.

[3] Y. Abdi, S. Parsa, and Y. Seyfari, “A hybrid one-

class rule learning approach based on swarm

intelligence for Software Defect Forecast”,

Innovations in Systems and Software

Engineering, Vol.11, No.4, pp.289-301, 2015.

[4] S.S Rathore, and S. Kumar, “Towards an

ensemble based system for predicting the count

of software faults”, Expert Systems with

Applications, Vol.82, pp. 357-382, 2017.

[5] Z.A. Rana, M.A. Mian, and S. Shamail,

“Improving Recall of software defect prediction

models using association mining”, Knowledge-

Based Systems, Vol.90, pp.1-13, 2015.

[6] R. Mahajan, S.K. Gupta, and R.K. Bedi, “Design

of Software Defect Forecast model using BR

technique”, Procedia Computer Science, Vol.46,

pp.849-858, 2015.

[7] S. Kanmani, V.R. Uthariaraj, V.

Sankaranarayanan, andP. Thambidurai, “Object-

oriented Software Defect Forecast using neural

networks”, Information and software technology,

Vol.49, No.5, pp.483-492, 2007.

[8] T. Sethi, “Improved approach for software

defect prediction using artificial neural

networks”, In: Proc. of International Conf. On

Reliability, Infocom Technologies and

Optimization, pp. 480-485, 2016.

[9] R.C.G. Dhanajayan, and S.A. Pillai, “SLMBC:

spiral life cycle model-based Bayesian

classification technique for efficient Software

Defect Forecast and classification”, Soft

Computing, Vol.21, No.2, pp.403-415, 2017.

[10] L. Kumar, S.K. Sripada, A. Sureka, andS.K.

Rath, “Effective fault prediction model

developed using Least Square Support Vector

Machine (LSSVM)”, Journal of Systems and

Software, pp.1-28, 2017.

[11] G. Abaei, A. Selamat, and H. Fujita, “An

empirical study based on semi-supervised

hybrid self-organizing map for Software Defect

Forecast”, Knowledge-Based Systems, Vol.74,

pp. 28-39, 2015.

[12] R. Moussa, and D. Azar, “A PSO-GA approach

targeting fault-prone software modules”,

Journal of Systems and Software, Vol.132, pp.

41-49, 2017.

[13] P.S. Bishnu, and V. Bhattacherjee, “Software

Defect Forecast using quad tree-based k-means

clustering algorithm”, IEEE Transactions on

knowledge and data engineering, Vol.24, No.6,

pp.1146-1150, 2012.

[14] K. Dejaeger, T. Verbraken, and B. Baesens,

“Toward comprehensible Software Defect

Forecast models using bayesian network

classifiers”, IEEE Transactions on Software

Engineering, Vol.39, No.2, pp.237-257, 2013.

[15] C. Catal, U. Sevim, and B. Diri, “Practical

development of an Eclipse-based Software

Defect Forecast tool using Naive Bayes

algorithm”, Expert Systems with Applications,

Vol.38, No.3, pp.2347-2353, 2013.

