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Abstract: In the domain of software engineering many new techniques are deployed for identifying the fault in 

software modules. This part of software design plays a fundamental role cause of its assurance towards higher 

reliability and stability. Many existing techniques like Bayesian approach have been employed to minimize the 

software faults but they can’t able to predict efficiently within limited resources.  In this paper, a new classification 

and prediction methodology is put forth to progress the accuracy of defect forecast based on Cost Random Forest 

algorithm (CRF) which reduces the effects of faults in irrelevant software modules. The proposed algorithm predicts 

the quantity of faults present in the modules of software in less time and classify based on measures of similarity 

obtained from Robust Similarity clustering technique. The overall results inferred from this methodology proven that 

this CRF can be capable to rank the module’s faults in order to enhance the software development quality. 
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1. Introduction 

Software had become a crucial part of day to day 

activities and is very significant in technological in 

addition to economic development. A Software Life 

Cycle (SLC) consist of several major steps namely 

Planning and requirement analysis, defining, 

Designing, Developing product, Testing, and 

Maintenance. Among all that, testing stage is 

prioritized to be an important task. The software 

industry grows the size of software to be larger and 

fault prediction has become a significant task due to 

its necessity for lots of human effort as well as time 

in development of software [1]. A Software testing 

process is an important and indispensable stage to 

build high quality software and ensure software 

reliability in Software Development Process (SDP) 

[2]. For reduction of cost and the effort of testing 

process, methods for fault prediction are employed to 

evaluate the faulty software modules with the help of 

software testing metrics [3]. Software Defect 

Forecast (SDF) is said to be a prediction and 

classification process which recognizes a software 

module has defect or not by monitoring its 

characteristics. The major aim of SFP is to identify 

the fault prone software modules by using some 

underlying software metrics before the beginning of 

testing phase [4]. Since, humans are dependent on 

software in day to day life a fault in a software 

module may cause severe effects in human lives [5]. 

In order to avoid the software damages a reliable 

software fault monitoring technique should be 

adopted. Nowadays a lot of software modules are 

sold to the clients with unsolicited defects so, 

different software metrics are used to find the 

software defects (SD).    

Several methods are used for finding the software 

faults such as machine learning, statistical method 

and so on [6]. Several consistent approaches are 

solicited by the software developers to diminish the 

error in classification during the progress of forecast 

models to categorize the faulty modules, Neural 

network (NN) based techniques, which functions 

with better arithmetic approaches are introduced. 

Probabilistic NN is highly robust in nature which is 

reducing the misclassification rate in prediction 
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system [7]. To improve the software flaw prediction 

Artificial Neural Network is adopted, that helps to 

reduce the cost as well as time of the prediction 

system. This will achieve the high efficiency in 

training datasets in multiple domains [8]. Another 

existing method is Bayesian classification with spiral 

model-based for proficient prediction and 

classification of software fault. This method 

identifies dependability of software modules and 

testing the life cycles of each module. The Bayesian 

classifier exactly classifies the defective and good 

software modules [9]. A different fault prediction 

model is built with the help of Least Square Support 

Vector Machine (LSSVM) training method related to 

the kernel function, linear function and radial basis. 

This method identified the Object Oriented metrics of 

source code is able to forecast defective and good 

classes with more accuracy and reduced the value of 

misclassified errors [10]. In the earlier system 

software developers struggled in some issues such as 

spend more time for identifying the permanent 

defects in the software, high budget for recognizing 

the SD based on misclassified faults. In this paper, 

cost based Random Forest (CRF) algorithm is 

utilized to minimize the Error Rates(ER) and 

improves accuracy for SFP by means user specified 

feature budget. Using CRF user can able to include 

their affordable amount of features in their budget 

like for time, memory etc. With help of CRF 

conditions on pruning the trees of random forest the 

classification is constrained into affordable budgets 

and the risk forecast is done within user’s affordable 

criteria while existing forecast processes give out 

some risk values to a software for which user might 

not be able to afford some necessary features. 

The rest of the article is composed in the 

following manner. Section 2 comprises the analysis 

and survey of the recent existing SDF models. 

Section 3 proposes the CRF based approach for an 

effective SDF system and its evaluation and results 

are discussed over at section 4. Section 5 concludes 

the CRF based SDF system along with the possibility 

to enhance at future. 

2. Literature review 

G. Abaei, A. Selamat, and H. Fujita [11] 

presented a SD recognition system using semi-

automatic Hybrid Self-Organizing Map (HySOM). 

The HySOM method is a semi-automatic model 

derived from SOM and ANN. The Benefit of this 

model is the capability to forecast the label of 

modules in a semi-automatic manner by means of 

software dimension threshold standards in the lack of 

eminent data. In semi-automatic HySOM, the 

responsibility of specialist for recognizing defective 

modules became less crucial and more helpful. This 

model efficiently recognizes the modules defects, 

enhanced the excellence of software building and did 

software testing in less time as well as budget. 

HySOM does not try to improve the precise forecast 

of software fault only focussed on resources. 

R. Moussa, and D. Azar [12] presented Particle 

Swarm Optimization (PSO) and Genetic Algorithm 

(GA) algorithm for classify the fault-prone software 

modules. The search direction in a particular region 

of search space is guided by the PSO then GA 

constructs a classifier recombination. This algorithm 

classifies the software model as defective or not. This 

hybrid algorithm balances the classification accuracy 

and reduces the misclassification rates over the 

particular class. This technique lags in the case of 

utilization of resources it wastes the available data 

and other resources to train for producing better 

results. 

P.S. Bishnu, and V. Bhattacherjee [13] predicted 

the faults in software modules using a Quad Tree-

based K-Means approach. Initial cluster centres were 

found by the Quad Tree which was the input to K-

Means algorithm. The amount of clusters for K-

Means Quad Tree-based algorithm can give K initial 

cluster centresare taken as input to the simple K-

Means algorithm. This is facilitated by varying the 

value of the threshold parameter which is input to the 

Quad Tree algorithm. The Overall Error Rate (OER) 

was decreased in SDF technique by QDK algorithm. 

This technique has a drawback of necessity for more 

data to train classifier. 

K. Dejaeger, T. Verbraken, and B. Baesens [14] 

presented the Bayesian network algorithm for SDF 

model. With the help of Markov Blanket (MB) 

Feature Selection technique selects the count of 

attributes in datasets. After that, MB effectively 

reduced the count of selected features. The outcome 

indicates that MB is able to reduce the count of 

variables while not negatively impacting 

performance. However, other feature assortment 

approaches are possibly able to select an even smaller 

set of well prognostic features. Bayesian approach 

was not able to limit its utilization of resources even 

though it is capable to perform precise prediction.  

C. Catal, U. Sevim, and B. Diri [15] presented 

Eclipse based SDF with the help of Naïve Bayes 

algorithm. Due to deficient in software tools to 

computerize this forecast process no one of these 

prediction systems have achieved applicability in the 

industry. Data regarding SD and a robust SDF tool, 

can allow eminent managers to target on defective 

modules. This tool limits the data utilization with the 

trade off in accuracy. 
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To resolve the above mentioned SDF issues the 

proposed CRF approach had been coined out for 

accurate forecast with limited resources and its 

method of functioning will be described in later 

section. 

3. Proposed methodology 

Software products are rising rapidly; Software 

SDF has become a vital task in software design stage. 

SDF is very essential for reducing fault effects in 

software modules and enhancing the efficiency of the 

SDF. In this paper, CRF algorithm is proposed to 

minimize the ER in SDF. In this process the software 

is initially identified based on their dependability in 

each stage of the design process. CRF is used to 

predict the amount of fault present in the software 

modules and classify regarding the similarity value 

among them and the proposed architecture described 

in Figure.1. 

 

Figure.1 Proposed Architecture 

 

3.1  CM1 dataset 

The CM1 dataset is used for the performance 

diagnosis of the proposed system.CM1 is written in 

C language which is a NASA spacecraft instrument 

and composed of about 498 modules among them 

10% are defective modules. Halstead and McCabe 

features are used as extractors of source code to 

obtain data. These features are already defined for 

object oriented characterization of the code features 

associated with software quality. In this process, 

initially identify the dependability of software 

modules. After that, the standardization, data 

centering, whitening process is performed for 

detecting faulty data. The software modules are tested 

using the spiral cycle model during each cycle of the 

SDP. In the earlier stage of SDP by spiral cycle model 

the defective module is recognized. 

3.2  Spiral model approach 

The spiral cycle model of the SDP includes four 

phases such as the functions of the software, identify 

and resolve the risk, development and testing phase 

and planning for the next iteration. The first stage of 

the spiral cycle model starts with the recognition of 

the functions of the software, its performance, 

alternative steps of developing the particular section 

of product and limitations given during performance 

of those alternates. Second stage works with 

diagnosis of alternates related to the constraints and 

objectives. Evolution of the specification of the 

overall nature of the product or plan for the next level 

of the prototype is the next step, if the program 

development risks are strongly dominated by the user 

interface risks. In the third stage, progressive growth 

is completed further if performance associated risks 

are previously resolved by the preceding prototypes. 

Planning for the next stage originates after the end of 

this incremental approach. The risks and 

requirements are analysed before the commencement 

of the SDP. Through the comprehensive analysis of 

the risks and requirements, it is highly guaranteed 

that the system contains only feasible and possible 

requirements. Furthermore, the developing phase of 

the spiral cycle model does sequential investigation 

of product. For identifying and evaluating software 

project risks the spiral cycle model is implemented as 

a risk based software testing model. By mitigating 

these risks of the software project the overall cost is 

reduced. Earlier detection of the risks is definite in 

the spiral cycle model. Among other training models 

the unambiguous risk administration is terminated in 

spiral cycle model. 

3.3  Cost based random forest prediction model 

(CRF) 

A cost based random forest (CRF) learning 

algorithm to minimize prediction error for a user-
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specified average feature acquisition budget. Tree 

structure which is grown by independent data 

sampling & feature splitting, results in a set of 

identical trees is called as Random Forest. Difference 

between the count of lines in the correct and incorrect 

code corresponds to the defect forecast of a software 

module. Using this technique, the defective modules 

are recognized accurately. 

Suppose sample pairs (𝑥, 𝑦) are distributed 

as(𝑥, 𝑦) 𝑑𝐻. The major aim is for training a classifier 

𝑓  from a family of functions 𝐹 that minimizes 

expected loss subject to a budget constraint, 

 

𝑓𝑚𝑖𝑛 ∈ 𝐹𝐸𝑥𝑦[𝐿(𝑦, 𝑓(𝑥))], 𝐸𝑥[𝐶(𝑓, 𝑥)] ≤ 𝐵   (1) 

 

Where 𝐿(𝑦, 𝑦ˆ)is a loss function, 𝐶 (𝑓, 𝑥) is the 

cost of evaluating the function of f on example x and 

B is a user specified budget constraint. In this 

equation (1), the feature acquisition cost 𝐶 (𝑓, 𝑥) is a 

modular function of the support of the features used 

by function 𝑓 on example 𝑥, that is acquiring each 

feature has a fixed constant cost. Then minimize the 

empirical loss subject to a budget constraint: 

 

𝑓𝑚𝑖𝑛 ∈ 𝐹 −
1

𝑛
𝐿(𝑦𝑖 , 𝑓(𝑥𝑖)),

1

𝑛
∑ 𝐶(𝑓, 𝑥𝑖) ≤ 𝐵

𝑛

𝑖=1

 

(2) 

 

In our context the classifier f is a random forest, 

𝑇, consisting of 𝐾 random trees, 𝐷1, 𝐷2, 𝐷3, … . . , 𝐷𝐾, 

which are learnt while training data. Consequently, 

the expected cost for an instance 𝑥 during prediction-

time can depicted as follows, 

 

𝐸𝑓[𝐸𝑥[𝐶(𝑓, 𝑥)]] ≤ ∑ 𝐸𝐷𝑗

𝐾
𝑗=1 [𝐸𝑥[𝐶(𝐷𝑗, 𝑥)]]    (3) 

 

where, 𝐸𝐷𝑗
[𝐸𝑥[𝐶(𝐷𝑗, 𝑥)]]expected cost values in 

the RHS are averages with respect to each of the 

random trees. Since the trees of a random forest are 

distributed identically, the RHS increases with the 

count of trees. This upper limit restricts the complex 

function of a random forest because of low feature 

correlation between trees. With the help of CRF 

approach, developers spend less time for detecting 

the fixed fault in the software and reduce the cost of 

SFP.  

3.4  Robust similarity aware clustering (RSC) 

RSC focus on categorizing the software modules 

according to the measure of similarity between the 

features. Thus the classification of the software 

modules as defective and correct modules is 

accomplished. RSC performs much faster than other 

regular clustering algorithms and also it is robust 

towards the outliers. RSC necessitates a measure of 

similarity among the different collection of features. 

According to the smallest amount of distance 

measures, RSC creates several amounts of clusters. 

Each cluster is represented by a cluster centroid. The 

level of similarity among the sample module and 

centroid is fixed, and distance within the features is 

computed. The clusters are created according to the 

distance between features. The smallest amount of 

distance within the features should be considered, so 

that they are located close to one another within each 

cluster centroid. The samples present in the training 

part of the dataset are assigned to the cluster 

according to the similarity measurement. 

The variance value 𝛽 is calculated as 

 

𝛽 =
∑ ‖𝑥𝑗−𝑥̅‖

2𝑛
𝑗=1

𝑛
     (4) 

 

where, 

 

𝑥̅ =
∑ 𝑥𝑗

𝑛
𝑗=1

𝛽
      (5) 

 

Temporary Variable is computed as, 

 

𝑇𝑒𝑚𝑝 =
‖𝑥𝑗−𝑥𝑘‖

2

𝛽
     (6) 

 

The similarity coefficient between the attributes 

is calculated by using the following equation 

 

𝑃𝑠𝑖𝑚(𝑥𝑎)𝜌𝑚 = ∑ (𝑒𝑥𝑝 − (𝑇𝑒𝑚𝑝))𝜌𝑚𝑛
𝑗=1   (7) 

 

where, 𝑘 =1…, n and 𝜌𝑚 =5m. 

For classification threshold coefficient is 

compared against similarity coefficient. If the 

similarity coefficient is above the threshold value, 

then the clustering factors are determined. The cluster 

centroid is calculated as, 

 

𝑧𝑖
𝑘 =

∑ 𝑆𝑖𝑗
𝜌

𝑥𝑗
𝑐
𝑗=1

∑ 𝑆𝑖𝑗
𝜌𝑐

𝑗=1

     (8) 

 

The level of similarity within the sample data and 

cluster centroid is computed. 

 

𝑆𝑖𝑗
𝑘 = 𝑆𝑘(𝑥𝑗, 𝑧𝑖) = (exp(−𝑇𝑒𝑚𝑝))𝑘   (9) 

 

The maximum cluster centroid is given as 

 

𝑍𝑖 = 𝑚𝑎𝑥‖𝑧𝑖
𝑘 − 𝑧𝑖

𝑘−1‖              (10) 
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where, 𝑍𝑖 = 𝑍1, 𝑍2, 𝑍3 … … , 𝑍𝑛 

The maximum cluster centroid is compared 

against the classification threshold. The distance 

within the features is computed as 

 

𝑑𝑖 = 𝑍𝑖 − 𝑍𝑖−1               (11) 

 

The clusters are formed with the least amount of 

distance among the features. The distance between 

the clusters are depicted as 

 

𝐶𝑑𝑖 = 𝐶𝑖 − 𝐶𝑖+1               (12) 

 

The minimum cluster distance is removed from 

the cluster (C) and the minimum distance between the 

clusters is computed as, 

 

min(𝑚𝐶𝑑𝑖 , 𝑚𝐶𝑑𝑖+1) = 𝑚𝑖𝑛𝐶𝑑𝑖  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐𝑖 𝑖𝑛 𝐶 

                              (13) 

 

The proposed technique is reducing the 

misclassification rate software modules and improves 

the SDP quality. With the help of RSC easily classify 

the defective and correct software modules separately. 

4. Experimental Result 

The proposed algorithm has been written as code 

and evaluated in Java NetBeans 8.2 version and 32 

bit operating system, 8GB RAM. The main aim of the 

research work is to predict the amount of fault present 

in the software modules and classify the faults 

according to the measure of similarity among them. 

The CM1 dataset is used for the performance analysis. 

In order to compute efficiency of the proposed system 

an evaluation metric is employed. It contains a set of 

measures that pursue a general underlying evaluation 

methodology. Some of the metrics are selected for 

evaluation purpose, namely F-Measure, Recall, 

Accuracy, Misclassification Rate, and OER. 

Accuracy: For the effective forecast of the 

software modules rapidly the classification technique 

is employed. Accuracy is defined as the ratio of 

forecasted defective modules (𝑇𝑃 + 𝑇𝑁) that are 

found among all software modules (𝑇𝑃 + 𝑇𝑁 +
𝐹𝑃 + 𝐹𝑁). Accuracy is the ratio of the correct 

forecast to the total forecast done by the SDF model 

and formulated as: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100              (14) 

 

where, 𝑇𝑃 = True Positive 𝑇𝑁 =True Negative 

      𝐹𝑃 =False Positive and 𝐹𝑁 -False Negative 

F-Measure: Harmonic mean of precision and 

recall values is said to be F-Measure. It is defined as, 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑅𝑒𝑐𝑎𝑙𝑙×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
× 100    (15) 

 

Recall: Recall is referred as the count of modules 

that are correctly forecasted as defective (𝑇𝑃) to the 

total count of software modules (𝑇𝑃 + 𝐹𝑁). 
 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
               (16) 

 

False Positive Rate: FPR is called as the 

proportion of correct modules that are forecasted as 

defective module. The FPR is the relative amount of 

the 𝐹𝑃  value to the summation of the 𝐹𝑃  and 𝑇𝑁 

values. 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
               (17) 

 

False Negative Rate: FNR is said to be the 

proportion of defective modules that are forecasted as 

correct module. FNR is the contribution of the 𝐹𝑁 

value to the total of the 𝑇𝑃 and 𝐹𝑁 values. 

 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃++𝐹𝑁
               (18) 

 

Precision: Precision is described as the relative 

amount of the count of modules that are correctly 

forecasted as defective (𝑇𝑃)  to the total count of 

modules that are forecasted as defective (𝑇𝑃 +
+𝐹𝑁). If the precision value is high, the time and 

effort required for testing and inspecting the modules 

is reduced. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
               (19) 

 

Overall Error Rate(OER): In the SDF process, the 

OER is referred as the proportion of the defect 

forecast (𝐹𝑃 + 𝐹𝑁) to the total count of predictions 
(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) . ER of the defective 

modules generally incurs much higher rate than the 

ER of the correct modules. The overall rate is the 

relative amount of the total of 𝐹𝑁 and 𝐹𝑃 values to 

the sum of 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 values. The OER is 

used to diagnose the variation in the errors in the SDF 

process. 

 

𝑂𝐸𝑅 =
(𝐹𝑃+𝐹𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
× 100             (20) 
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The below Table 1 represent the performance 

evaluation of FNR, FPR and OER analysis report of 

CRF technique and existing algorithm. The proposed 

CRF approach is compared against the existing 

techniques such as semi supervised ANN, Hybrid 

SOM, and Semi-NB of the work done by C.G. 

Dhanajayan, and S.A. Pillai [9]. 

The above table 1 indicates the OER, FPR and 

FNR value is lower compare to the existing 

techniques for the CM1dataset. Hence, the proposed 

CRF technique can predict and classify the faulty 

modules effectively than various existing techniques. 

 

Table 1. Performance evaluation of FNR, FPR and OER 

of proposed and existing technique 

Techniques FNR  FPR  OER 

HySOM [9] 0.625 0.500 0.181 

Semi-ANN [9] 1.000 0.340 0.198 

Semi-NB [9] 0.729 0.271 0.135 

Proposed CRF 0.520 0.05 0.102 

 

 

Figure.2 FNR, FPR and OER evaluation of the proposed CRF approach and some of the existing techniques 

 

The Fig.2 depicts the performance evaluation of 

FNR, FPR and OER of prospered and existing. C.G. 

Dhanajayan, and S.A. Pillai [9] presented methods 

such as HySOM, Semi-ANN (Semi-Artificial Neural 

Network), and Semi-NB (Semi- Naïve Bayes). The 

proposed CRF technique represents the less ER 

compare to the existing technique and reduces the ER 

of software modules. So, overall performance of 

proposed technique is relatively higher than the 

existing approaches. 

The Table 2 depicts the precision recall, F-

measure and accuracy of CRF and existing technique. 

The existing HySOM and Semi-ANN precision is 

approximately same and better accuracy. As, the 

Semi-NB consists of precision is very low, so the 

accuracy is decreased. Finally, our proposed CRF 

technique represents the better results compared to 

the existing approaches like Bayesian technique etc. 

The Fig.3 depicts results of the recall and 

precision of the CRF and existing technique. The 

comparison graph of the precision and recall of the 

proposed CRF technique and existing approaches 

performance are shown in the above figure. Better 

fault prediction performance than the existing 

techniques is achieved with higher precision and 

recall.  The Fig.4 indicates the comparative graph of 

the F-Measure and accuracy of the CRF and existing 

approaches from C.G. Dhanajayan, and S.A. Pillai 

study [9]. From the graph, it is clearly inferred that 

the accuracy of the CRF approach is higher than other 

existing methodologies.  F-measure value is also 

inferred to be higher than the existing systems such 

that it indicates that the exact prediction of software 

modules by CRF methodology. 

 

Table 2. Precision, recall, accuracy and F-measure of proposed and existing technique 

Techniques Precision Recall Accuracy (%) F-Measure (%) 

HySOM [9] 0.890 0.820 88 80 

Semi-ANN [9] 0.895 0.854 89.3 85 

Semi-NB [9] 0.765 0.894 87.3 90.3 

ProposedCRF 0.973 0.926 92 92.7 
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Figure.3 Precision and Recall performance of proposed and existing techniques 

 

Figure.4 Accuracy and F-measure performance of proposed and existing techniques 
 

From the performance analysis results, it is 

evident that the majority of the software does not 

cause faults in software systems, and only less of all 

modules is found to be the faulty modules. The 

majority of the modules belong to the correct 

software group and the rest belong to the faulty group. 

It is also observed that the classification and 

prediction performance of our proposed technique 

achieves better accuracy and low ER with the help of 

getting the prior knowledge what risk the user can 

take via a user-defined feature budget. CRF has the 

capability of pruning itself into the fixed range of 

features and classify the risk value of those features 

with higher concentration for the firm budget fixed 

by user. On the other hand, existing SDP systems 

they try to concentrate on all the possibilities without 

any knowledge about user requirements and gives out 

a risk value without any concern that whether that 

quoted features for affording that predicted risk can 

be possessed or not. So, they fell in a drawback of 

less accuracy and higher ER. CRF tackles this 

limitation effectively with the concept of user-

defined feature budget and produce efficient SDP 

with better accuracy and less ER. 

5. Conclusion 

Software fault forecast is important in improving 

the quality of a software system. The spiral cycle 

model and cost based random forest classification 

models effectively predict the software faults and 

classify the SD. In this process initially, the 

dependability of software modules is recognized by 

spiral model. The spiral model is used for testing the 

software in each cycle of the SDP. Based on the 

measure of the similarity of features in the dataset, 

the RSC algorithm performs categorization of the 

defective and correct modules. The proposed 

technique accurately predicts and classifies the faulty 

modules. The experimental analysis demonstrated 

that the proposed algorithm is better than various 

existing approaches with respect to Accuracy, 

Precision, Recall, and F-measure. In future, the CRF 

approach can be enhanced in a further way that 

requires only lesser training data and short span of 

time to perform SDF. 



Received:  August 25, 2017                                                                                                                                                  17 

International Journal of Intelligent Engineering and Systems, Vol.11, No.2, 2018           DOI: 10.22266/ijies2018.0430.02 

 

Acknowledgments 

The authors would like to thank PES university for 

allowing to do research and would like to thank Dr. 

K N B Murthy, vice chancellor, PES university for 

his encouragement to do research. 

References 

[1] C. Jin, and S.W. Jin, “Parameter optimization of 

software reliability growth model with S-shaped 

testing-effort function using improved swarm 

intelligent optimization”, Applied Soft 

Computing, Vol.40, pp.283-291, 2016. 

[2] L. Chen, B. Fang, and Z. Shang, “Software 

Defect Forecast based on one-class SVM”, In: 

Proc. of International Conf. On Machine 

Learning and Cybernetics (ICMLC), pp.1003-

1008, 2016. 

[3] Y. Abdi, S. Parsa, and Y. Seyfari, “A hybrid one-

class rule learning approach based on swarm 

intelligence for Software Defect Forecast”, 

Innovations in Systems and Software 

Engineering, Vol.11, No.4, pp.289-301, 2015. 

[4] S.S Rathore, and S. Kumar, “Towards an 

ensemble based system for predicting the count 

of software faults”, Expert Systems with 

Applications, Vol.82, pp. 357-382, 2017. 

[5] Z.A. Rana, M.A. Mian, and S. Shamail, 

“Improving Recall of software defect prediction 

models using association mining”, Knowledge-

Based Systems, Vol.90, pp.1-13, 2015. 

[6] R. Mahajan, S.K. Gupta, and R.K. Bedi, “Design 

of Software Defect Forecast model using BR 

technique”, Procedia Computer Science, Vol.46, 

pp.849-858, 2015. 

[7] S. Kanmani, V.R. Uthariaraj, V. 

Sankaranarayanan, andP. Thambidurai, “Object-

oriented Software Defect Forecast using neural 

networks”, Information and software technology, 

Vol.49, No.5, pp.483-492, 2007. 

[8] T. Sethi, “Improved approach for software 

defect prediction using artificial neural 

networks”, In: Proc. of International Conf. On 

Reliability, Infocom Technologies and 

Optimization, pp. 480-485, 2016. 

[9] R.C.G. Dhanajayan, and S.A. Pillai, “SLMBC: 

spiral life cycle model-based Bayesian 

classification technique for efficient Software 

Defect Forecast and classification”, Soft 

Computing, Vol.21, No.2, pp.403-415, 2017. 

[10] L. Kumar, S.K. Sripada, A. Sureka, andS.K. 

Rath, “Effective fault prediction model 

developed using Least Square Support Vector 

Machine (LSSVM)”, Journal of Systems and 

Software, pp.1-28, 2017. 

[11] G. Abaei, A. Selamat, and H. Fujita, “An 

empirical study based on semi-supervised 

hybrid self-organizing map for Software Defect 

Forecast”, Knowledge-Based Systems, Vol.74, 

pp. 28-39, 2015. 

[12] R. Moussa, and D. Azar, “A PSO-GA approach 

targeting fault-prone software modules”, 

Journal of Systems and Software, Vol.132, pp. 

41-49, 2017. 

[13] P.S. Bishnu, and V. Bhattacherjee, “Software 

Defect Forecast using quad tree-based k-means 

clustering algorithm”, IEEE Transactions on 

knowledge and data engineering, Vol.24, No.6, 

pp.1146-1150, 2012. 

[14] K. Dejaeger, T. Verbraken, and B. Baesens, 

“Toward comprehensible Software Defect 

Forecast models using bayesian network 

classifiers”, IEEE Transactions on Software 

Engineering, Vol.39, No.2, pp.237-257, 2013. 

[15] C. Catal, U. Sevim, and B. Diri, “Practical 

development of an Eclipse-based Software 

Defect Forecast tool using Naive Bayes 

algorithm”, Expert Systems with Applications, 

Vol.38, No.3, pp.2347-2353, 2013. 

 


