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Abstract: Medical image fusion is a powerful tool in the medical oriented applications such as diagnosis, treatment 

planning and image-guided radiotherapy. In this paper, a new medical image fusion approach is proposed based on 

Non-Subsampled Contourlet Transform (NSCT) and Adaptive sub band filtering. Though there are so many 

approaches proposed in earlier to find a more and clear fused image, they didn’t focus on the computational 

complexity. Since the computational complexity directly related to the feature count, the rise in the level number of 

sub band images rises the computational complexity. The adaptive sub band filtering mechanism retrieves the 

informative sub band images only form all the obtained high frequency sub band images. Further to improve the 

fusion performance, the proposed approach fuses the low frequency subband images based on phase congruency rule 

and the high frequency subband images based on Log-Gabor energy rule. Visually and quantitatively experimental 

results indicate that the proposed fusion method can obtain more effective and accurate fusion results of medical 

images than other algorithms. 

Keywords: Medical image fusion, NSCT, Sub band filtering, Phase congruency, Log-Gabor energy, Mutual 

information, 𝑄(𝐴𝐵 𝐹⁄ ). 

 

 

1. Introduction 

Medical imaging attracts more and more 

attention due to the increasing requirements of clinic 

investigation and disease diagnosis. Owing to 

different imaging mechanisms, medical images of 

different modals provide a variety of complementary 

information about the human body in a limited 

domain. For example, the computed tomography 

(CT) images provide better information on dense 

tissue, the positron emission tomography (PET) 

images supply better information on blood flow and 

tumor activity with low space resolution, and the 

magnetic resonance (MR) images show better 

information on soft tissue. Moreover, the MR-T1 

images give more detailed information about 

anatomical structures; whereas the MR-T2 images 

contain a greater contrast between the normal and 

abnormal tissues. However, single multiple modality 

cannot satisfy the demand of images with high 

resolution and visualization for disease diagnosis. In 

this regard, medical image fusion [1-4] is a useful 

and powerful technique for integrating 

complementary information from multimodality 

images to improve the diagnostic accuracy. Besides, 

the fused images are more suitable for assisting the 

doctors in diagnosis and treatment planning: fusing 

MR and CT images can generate the images which 

can describe the soft tissue and bone in order to 

concurrently represent anatomical and physiological 

features of the human body. MR-T1 and MR-T2 

images are fused to segment white matter lesions 
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and guide neurosurgical resection of epileptogenic 

lesions. In oncology, the combined PET/CT imaging 

is helpful to view the anatomical, physiological 

characteristics and the tumor activity. More than that, 

medical image fusion not only helps in diagnosing 

diseases but also reduces the storage cost. 

Image fusion methods are usually divided into 

transform domain [5-7] and spatial domain [8-10] 

techniques. Fusion methods in the spatial domain 

are directly on pixel graylevel or color space from 

the source images for fusion operation, so the spatial 

domain fusion methods are also known as single-

scale fusion method. For transform domain based 

methods, each source image is first decomposed into 

a sequence of images through a particular 

mathematical transformation.Then; the fused 

coefficients are obtained through some fusion rules 

for combination. Finally, the fusion image is 

obtained by means of a mathematical inverse 

transform. Thus, the transform domain fusion 

methods are also known as Multi-scale fusion 

methods.There is evidence that Multi Scale 

Transform (MST) with signal decomposition is 

similar to the human visual system (HVS). 

Compared with spatial-based methods, the methods 

using MST successfully overcome the disadvantages. 

The reason for this is that the decomposition 

coefficients of MST.consider the detail of the input 

images and selects them out to compose fused image. 

The recent studies over medical image fusion 

declared that the Non-Subsampled Contourlet 

Transform obtained an outstanding performance, 

both quantitatively and qualitatively. Though the 

Non-Subsampled Contourlet Transform based 

medical image fusion achieved an effective fusion 

results, the computational complexity observed to be 

more due to the architectural configuration. The 

earlier approaches considered the entire feature set 

of all the sub band images for the fusion, for both 

low frequencies and high frequencies. This makes 

the fused image more informative but the 

complexity will increase substantially. If the entire 

feature set is not considered for fusion, the fused 

image results is poor informative by which the 

medical image analysis will goes wrong. In addition, 

most of the earlier image fusion approaches are 

based on an assumption that the source images are 

noise free. However in practice the source images 

are often corrupted by noises during the image 

capturing. Though there is an approach proposed in 

[21] for noise cleaning the method is observed to be 

complicated and the computational time take is 

more. 

To overcome these limitations, this paper 

proposes a new medical image fusion approach 

based on the Non-Subsampled Contourlet 

Transform and sub band adaptive filtering which 

makes the fused image more informative with less 

computational complexity. After  decomposing the 

source image through Non-Subsampled Contourlet 

Transform, the proposed approach applies the an 

adaptive sub band adaptive filtering mechanism to 

extract only the informative features form the high 

frequency sub band images. Further the obtained 

features are fused through low frequency fusion rule 

and high frequency fusion rule to obtain final fused 

image. 

Rest of the paper is organized as follows: The 

related literature survey of the proposed work is 

illustrated in section II. The basic architecture 

configuration of Non-Subsampled Contourlet 

Transform is represented in section III. The 

complete details of proposed approach are illustrated 

in section IV. Section V illustrates the details of 

performance evaluation and finally the section VI 

concludes the paper. 

2. Literature survey  

Based on the methodology of fusion process, the 

earlier approaches are categorized into two 

categories as pixel based image fusion and 

transform based image fusion. The simplest spatial-

based method is to take the average of the input 

images pixel by pixel. However, along with its 

simplicity, this method leads to several undesirable 

side effects, such as reduced contrast. To improve 

the quality of fused image, various approaches are 

propose in earlier based on the block division if 

source images. Here the source images are initially 

decomposed into blocks and the optimal blocks are 

chosen for the fusion. The motivation of this 

methodology lies in the fact that an optimized block 

size could be more effective than a fixed block size. 

This type of algorithm may not only improve the 

convergence between each pixel in the fused image 

but may also easily produce block effect. And also 

the finding of a suitable block-size is a problem. A 

large block is more likely to contain portions from 

both focused and defocused regions. This may lead 

to selection of considerable amount of defocused 

regions. On the other hand, small blocks do not vary 

much in relative contrast and hence difficult to 

choose from. Moreover, small blocks are more 

affected by misregistration problems. To solve these 

issues, a novel optimal method for multi-focus 

image fusion using differential evolution algorithm 

is presented in [10]. The source images are first 

decomposed into blocks. Then, the sharper blocks 

are selected by employing a sharpness criterion 
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function. The selected blocks are finally combined 

to construct the fused image. Similarly the quad-tree 

structure method is proposed in [11] to solve the 

problem of how to determine the size of sub-blocks. 

Further two more block based approaches are 

proposed in [12] and [13] to evaluate the local 

content (sharp) information of the input source 

images by which the blocking effect in the fused 

image will reduces efficiently. Though these 

approaches achieved an efficient fusion performance, 

the blocking effect is not eliminated completely. 

Another region segmentation approach is proposed 

in [14] to find the regions through the morphological 

filtering. Then, image matting technique is applied 

to obtain the accurate focused region of each source 

image. Finally, the focused regions are combined 

together to construct the fused image. Through 

image matting, the proposed fusion algorithm 

combines the focus information and the correlations 

between nearby pixels together [15].However, these 

methods may generate artificial information and 

discontinuous phenomena at the boundaries of 

focused regions because the boundary cannot be 

determined accurately. These effects will reduce the 

visual fidelity of the fused image. 

To achieve more efficient results, the medical 

image fusion is shifted towards the transform 

domain through the accomplishment of MST, 

including the discrete wavelet transform (DWT) [3, 

7, 37], framelet transform [16], contourlet transform 

[17], and non-sub sampled contourlet transform 

(NSCT) [1, 4, 6]. By focusing on the properties of 

wavelet filters, some extended wavelet based image 

fusion approaches are proposed based on Wavelet 

Packet Transform (WPT) [18] and Wavelet Frame 

Transform (WFT) [19].  Wavelet transform suffers 

from lack of shift invariance & poor directionality 

and Stationary Wavelet Transform and Wavelet 

Packet Transform overcome these disadvantages. 

Further the wavelet frame transform is aliasing free 

and translation invariant. In [37], a new image 

fusion approach is proposed based on the Discrete 

Wavelet transform and type-2 fuzzy logic. Here the 

main is avoiding the extra noise in the fused image. 

In this method, source images are decomposed into 

low-level subband, high-level subbands using DWT. 

Next, low-level sub-images are fused using type-2 

fuzzy fusion rule and high-level sub-images are 

fused using average fusion rule. Finally, inverse 

DWT is applied on the fused components to obtain 

the fused image. However, wavelet transform cannot 

effectively represent the line singularities and plane 

singularities of the images. 

To overcome these shortcomings with wavelet 

transform, the further research is focused through 

the contourlet transform and Non-Subsampled 

Contourlet Transform. The main difference between 

the Contourlet Transform and Non-Subsampled 

Contourlet Transform is shift invariant property. 

Recently Hui Huang et al., [20] propose a novel 

image fusion algorithm that combines nonlinear 

approximation of contourlet transform [26] with 

image regional features. The most important 

coefficient bands of the contourlet sparse matrix are 

retained by nonlinear approximation.However, the 

up- and down-sampling process of Contourlet 

decomposition and reconstruction results in the CT 

lacking shift-invariance and having pseudo-Gibbs 

phenomena in the fused image. The Non-

Subsampled Contourlet Transform inherits the 

advantages of Contourlet Transform, while also 

possessing shift-invariance and effectively 

suppressing Pseudo-Gibbs phenomena. Hence Non-

Subsampled Contourlet Transform is chosen as a 

prominent transform for multimodal medical image 

fusion and so many approaches are proposed based 

on Non-Subsampled Contourlet Transform [22-25, 

27]. 

3. Non-subsampled contourlet transform  

The Non-Subsampled Contourlet Transform [28] 

is developed based on the theory of contourlet 

transform only. Non-Subsampled Contourlet 

Transform is advantageous in the provision of shift 

invariance, boosts the directional selectivity and 

reduces the significance of pseudo-Gibbs 

phenomena effectively. The decomposition process 

of the Non-Subsampled Contourlet Transform is 

divided into two phases, i.e., the Non-sub Sampled 

Pyramids (NSP) and the Non-sub Sampled 

Directional Filter Bank (NSDFB). The former 

performs multiscale decomposition and the later 

provide direction decomposition. The NSP divides 

image into a low frequency sub band and a high 

frequency sub band in each level. For a given k level 

of decomposition the NSP generates k+1 sub-band 

images, consists of  one low frequency sub band 

image and the remaining k sub band images are high 

frequency sub band images. Subsequently, the 

NSDFB divides the high frequency sub band image 

into directional sub band images. For a given level 

of decomposition l, 2l directional sub band images 

will be obtained for a particular high frequency sub 

band image. 

After the low frequency component is 

decomposed iteratively by the same way, an image 

is finally decomposed into one low frequency sub 

image and a series of high frequency directional sub 
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Figure.1 MRI Image decomposition through Non-Subsampled Contourlet Transform for two levels 

 

band images ( ∑ 2𝑙𝑗𝑘
𝑗=1 ), where in 𝑙𝑗denotes the 

number of decomposition directions at the 𝑗 scale.  

Figure.1 represents the schematic of Non-Subsampled 

Contourlet Transform. Hence the NSDFB offers more 

accurate directional information through the bands 

obtained in multi-directional orientations to produce 

more accurate results. Thus, the Non-Subsampled 

Contourlet Transform ensures the optimal frequency 

selectivity and also an essential shift invariance 

property on the aspect of non-subsampled operation. 

Here an important to note that is the dimensions of 

obtained sub-images is in identical fashion. In 

addition, the Non-Subsampled Contourlet Transform 

also reduces the misregistration effects over the 

obtained results. Thus, the proposed model 

considered Non-Subsampled Contourlet Transform for 

medical image effusion. 

4. Adaptive sub band filtering (ASF) 

In various signal and image processing 

applications, refinement of a signal/image is made to 

achieve higher level of accuracy. In the process of 

band decomposition, it is observed that, finer details 

reveal more clear information’s than the original 

processing signal. However as the band 

decomposition increases, the probability of 

redundancy among different bands increases. This 

redundancy of information increases the processing 

overhead, and intern makes the system slower. 

Hence it is required to have an adaptive band 

selection process for extracting the actual 

informative band from the processed bands. In the 

process of signal processing an adaptive band 

selection process for subband coding was made in 

[29]. However no such approach of band selection is 

observed in image coding. With reference to band 

selection process in this work the process of 

adaptive band selection is developed for Non-

Subsampled Contourlet Transform sub band images. 

For this purpose, initially the source images are 

decomposed through Non-Subsampled Contourlet 

Transform and then the adaptive sub band filtering 

is accomplished over the obtained high frequency 

sub bands to obtain only informative bands. The 

process of adaptive sub band filtering is illustrated 

in the following section.  

The ASF operation is based on the LMS-type 

adaptive filter. The converged of such filter is based 

on the optimization of this LMS function, wherein 

weight functions are used to optimize the mean error. 

To converge the cost function faster in [30] a 

Normalized ASF (NASF) is proposed. In this 

approach the convergence speed is increased by 

increasing the number of subband filters while 

maintaining the same level of steady-state error. 

However, it suffers from huge complexity when 

used in adapting an extremely long unknown system. 

To overcome this problem in [31] a dynamic 

selection based NASF (DS-NASF) scheme is 

proposed. This approach sorts out a subset of the 

subband filters contributing to convergence 

performance and utilizes those in updating the 

adaptive filter weight. This approach dynamically 

selects the subband filters so as to fulfill the largest 

decrease of the successive mean square deviations 
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(MSDs) at every iteration. This approach reduces 

the computational complexity of the conventional 

ASF with critical sampling while maintaining its 

selection performance. The operational approach for 

the conventional DS-ASF approach [30] is as 

outlined. 

In a ASF system the desired band d(n) that 

originates from an its lowering band  is defined by, 

 

𝑑(𝑛) = 𝑢(𝑛)𝑊𝑜 + 𝑣(𝑛)                          (1) 

 

Where  𝑊𝑜  is an unknown column vector to be 

identified with an adaptive filter, 𝑣(𝑖) corresponds 

to a variance σv
2 for each band, and 𝑢(𝑛)denotes a 

row input vector with length M defined as; 

 

𝑢(𝑛) = [𝑢(𝑛)𝑢(𝑛 − 1) … 𝑢(𝑛 − 𝑀 + 1)]   (2) 

 

In the process of adaptive selection, the Normalized 

ASF (NASF) [31] approach was proposed.In this 

approach the source image sample is partitioned into 

N subbands by the Non-subsampled directional filter 

banks (NSDFB).  The resulting subband signals are 

then critically decimated to a lower sampling rate 

relative to their demanded bandwidth. The original 

signal d(n) is decimated to k signals and the 

decimated filter output at each subband is defined 

as; 

 

𝑦𝑖,𝐷(𝑘) = 𝑢𝑖(𝑘) 𝑤(𝑘)                                  (3) 

 

Where, 𝑢𝑖(𝑘)  is a 1 x M row such that, 𝑢𝑖(𝑘) =
[𝑢𝑖(𝑘𝑁), 𝑢𝑖(𝑘𝑁 − 1), … . . , 𝑢𝑖(𝑘𝑁 − 𝑀 + 1)]  and 

𝑤(𝑘) = [𝑤0(𝑘), 𝑤1(𝑘), … … , 𝑤𝑀−1(𝑘)]𝑇 denotes 

the estimated weight value and the decimated band 

error is then defined by, 

 

𝑒𝑖,𝐷(𝑘) = 𝑑𝑖,𝐷(𝑘) − 𝑦𝑖,𝐷(𝑘) = 𝑑𝑖,𝐷(𝑘) −
𝑢𝑖(𝑘)𝑤(𝑘)                                                  (4) 

 

Where 𝑑𝑖,𝐷(𝑘) = 𝑑𝑖(𝑘𝑁)  is the reference 

information at each band.  In the process of NASF 

the weight optimization is defined as, 

𝑤(𝑘 + 1) = 𝑤(𝑘) + 𝜇 ∑
𝑢𝑖

𝑇(𝑘)

‖𝑢𝑖(𝑘)∥2 𝑒𝑖,𝐷(𝑘)𝑁−1
𝑖=0    (5)   

 

 Where µ is the step size. This weight is used to 

optimize the band selection process where in it takes 

a large computation to converge for the optimization. 

To overcome this issue in [30] a MSD based weight 

optimization is proposed. In this DS-NASF 

approach the largest decrease of the MSDs between 

successive iterations is used. 

Hence the weight error vector is then defined as, 

�̃�(𝑘) = 𝑤𝑜 − 𝑤(𝑘) . The weight optimization is 

then defined as, 

 

�̃�(𝑘 + 1) = �̃�(𝑘) − 𝜇 ∑
𝑢𝑖

𝑇(𝑘)

‖𝑢𝑖(𝑘)∥2 𝑒𝑖,𝐷(𝑘)𝑁−1
𝑖=0     (6) 

 

Using this weight vector and taking the expectation 

a MSD is computed which satisfies the absolute 

expectation as, 

 

𝐸‖�̃�(𝑘 + 1) ∥2

= 𝐸‖�̃�(𝑘) ∥2 + 𝜇2𝐸 [∑
𝑒𝑖,𝑑

2 (𝑘)

‖𝑢𝑖(𝑘) ∥2

𝑁−1

𝑖=0

]

−                2𝜇𝐸 [∑
𝑢𝑖(𝑘)�̃�(𝑘)𝑒𝑖,𝐷(𝑘)

‖𝑢𝑖(𝑘) ∥2

𝑁−1

𝑖=0

] 

≜E‖�̃�(𝑘) ∥2                                                 (7) 

 

Where 

Δ = 𝜇 ∑ (2𝐸 [
𝑢𝑖(𝑘)�̃�(𝑘)𝑒𝑖,𝐷(𝑘)

‖𝑢𝑖(𝑘)∥2 ] − 𝜇𝐸 [
𝑒𝑖,𝑑

2 (𝑘)

‖𝑢𝑖(𝑘)∥2])𝑁−1
𝑖=0                                                 

(8) 

 

Defines the difference of MSDs between two 

successive bands. With bands having minimum 

MSD is then chosen to have a selective band for 

processing rather to all decomposed bands. This 

band selection process reduces the processing 

coefficient with minimum deviation due to the 

selecting criterion of minimum MSD value.  

Further the obtained informative high frequencies 

only are processed for fusion based on the maximum 

absolute rule. The further fusion process in 

illustrated as follows. 

5. Fusion framework  

Due to the beneficial properties of Non-

Subsampled Contourlet Transform, it is chosen for 

decomposition of source images and then the 

redundancy between high frequency bands is 

reduced through the adaptive sub band filtering. For 

every source image, the Non-Subsampled 

Contourlet Transform decomposes it into one low 

frequency band and N number of high frequency 

bands. Further the bands are processed for fusion 

through fusion rule. Here the fusion rules also play 

an important role in the medical image fusion. 

Hence the choice of fusion rules is also an important 

that depends on the sub bands obtained.  In a MST-

based image fusion algorithm, such as the Non-

Subsampled Contourlet Transform domain, one of 

the most important things for improving fusion 
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quality is to design the fusion rules, which will 

affect the performance of the fusion algorithm 

remarkably. In order to achieve better performance, 

Phase congruency [4] and local Log-Gabor energy 

[32] are and used to merge the low- and high-

frequency coefficients, respectively. The step by 

step process of proposed image fusion frame work is 

represented below: 

Consider two medical images A and B captured 

under two different models. The proposed image 

fusion framework is illustrated step by step as 

follows; 

 

Step 1:Decompose the two source images A and B 

through Non-Subsampled Contourlet Transform to 

attain one low frequency band and t high frequency 

bands for a direction l. Let 𝐿𝐹𝑘,𝑙
𝐴  and 𝐿𝐹𝑘,𝑙

𝐵  are the 

obtained low frequency bands of source image A 

and source image B respectively. Similarly, {𝐻𝐹𝑘,𝑙
𝐴 } 

and  {𝐻𝐹𝑘,𝑙
𝐵 } are the obtained set of high frequency 

bands of source image A and source image B 

respectively.  

 

Step 2: Fuse the low frequency coefficients of both 

image A and B through the proposed fusion rule to 

obtain the composite low frequency sub image of a 

fused image. 

Generally, the low frequency information of 

source images is fused according to the most 

popular averaging rule. Though it is easier for fusion, 

the quality of fused images should not be that much 

better and it does not represents the entire 

information of both source images. However, this 

rule reduced contrast in the fused images and cannot 

give the fused sub image of high quality for medical 

image. Therefore, the criterion based on the phase 

congruency [4] that is employed to fuse the low-

frequency coefficients. The fusion rule for the low-

frequency sub bands is defined as 

 
𝐿𝐹𝐹(𝑥, 𝑦) =

{

𝐿𝐹𝐴(𝑥, 𝑦)                                   𝑖𝑓 𝐴𝑐
𝐴𝜃(𝑥, 𝑦) > 𝐴𝑐

𝐵𝜃(𝑥, 𝑦)

𝐿𝐹𝐵(𝑥, 𝑦)                                    𝑖𝑓 𝐴𝑐
𝐴𝜃(𝑥, 𝑦) < 𝐴𝑐

𝐵𝜃(𝑥, 𝑦)
1

2
(𝐿𝐹𝐴(𝑥, 𝑦) + 𝐿𝐹𝐵(𝑥, 𝑦))    𝑖𝑓 𝐴𝑐

𝐴𝜃(𝑥, 𝑦) = 𝐴𝑐
𝐵𝜃(𝑥, 𝑦)

               

                                                                    (9) 

 

Where 𝐴𝑐
𝐴𝜃(𝑥, 𝑦), 𝐴𝑐

𝐵𝜃(𝑥, 𝑦) phase congruency is 

extracted from low-frequency sub images of the 

source images 𝐴 and 𝐵respectively. 

High frequency sub bands correspond to detailed 

information in these regions such as edges, lines, 

and corners. Because of different imaging 

modalities contain redundant and complementary 

information of each other; the purpose of selection 

rule is mainly to capture salient information of the 

source images as much as possible. Larger absolute 

selection rule is not suitable for medical image 

fusion, because it works well on this premise that 

only an original image provides good pixel at each 

corresponding location; thus vast complementary 

information will be lost when it is used for MIF. 

One more issue, the noise coefficients are also 

resembles the nature of high frequency coefficients. 

Thus, there is a chance of miscalculation of noise as 

high frequency coefficients. Therefore, the criterion 

based on Log-Gabor energy [32] is accomplished to 

fuse high-frequency coefficients. The fusion rule for 

the high-frequency sub bands is defined as 

 

𝐻𝐹𝐹(𝑥, 𝑦) =

       {
𝐻𝐹𝐴(𝑥, 𝑦)     𝑖𝑓  𝐸𝐴(𝑥, 𝑦) ≥ 𝐸𝐵(𝑥, 𝑦)

𝐻𝐹𝐵(𝑥, 𝑦)     𝑖𝑓  𝐸𝐴(𝑥, 𝑦) < 𝐸𝐵(𝑥, 𝑦)
         (10) 

 

Where 𝐸𝐴(𝑥, 𝑦)  and 𝐸𝐵(𝑥, 𝑦)  are the Log-Gabor 

energies of the high frequency sub images extracted 

from source image A and source image B 

respectively through Non-Subsampled Contourlet 

Transform.  

 

Step 3: Reconstruct the fused image through inverse 

Non-Subsampled Contourlet Transform form the 

obtained low frequency and high frequency sub 

images. 

6. Simulation results  

This section illustrates the details of 

performance evaluation of proposed framework 

quantitatively and qualitatively. To verify the 

performance of proposed approach, an extensive 

simulation is carried out over various types of 

medical images and like MRI, CT, MR-T1 and MR-

T2. Here the source images of size 256*256 are 

considered and the simulation is carried through 

MATLAB software. The obtained fused images are 

shown in Figs. 3-5. 

In this paper, five objective evaluation 

measurements parameters are adopted to evaluate 

the fusion performance. There are local quality 

index (𝑄0) [34],weighted fusion quality index (𝑄𝑊) 

[34], edge-dependent fusion quality index (𝑄𝐸) [34], 

𝑄𝐴𝐵/𝐹[35] which measures the transmission of edge 

and visual information from source images to fused 

images, and mutual information (MI) [36]which 

computes the information transformed from the 

source images to the fused images.The range of 𝑄0, 

𝑄𝑊, 𝑄𝐸, 𝑄𝐴𝐵/𝐹 lies between 0 and 1 and the range of 

MI is above 1 and it varies from image to image. 
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(a1)                    (b1)                     (c1)                     (d1)                  (e1)                      (f1) 

 
(a2)                      (b2)                            (c2)                     (d2)                        (e2)                      (f2) 

Figure.2. Obtained results: (a1)-(a2) CT images, (a3)-(a4) MR-T1 images, (b1)-(b2) MRI images, (b3)-(b4) MR-T2 

images, (c1)-(c4) fused by non-subsampled contourlet transform-1, (d1)-(d4) fused by non-subsampled contourlet 

transform-2, (e1)-(e4) fused through non-subsampled contourlet transform -3, and (f1)-(f4) fused through proposed 

approach 

 

 
(a3)                      (b3)                  (c3)                     (d3)                      (e3)                   (f3 ) 

 
(a4)                      (b4)                       (c4)                       (d4)                          (e4)                   (f4) 

Figure.3 Obtained results: (a3)-(a4) MR-T1 images, (b3)-(b4) MR-T2 images, (c1)-(c4) fused by non-subsampled 

contourlet transform -1, (d1)-(d4) fused by non-subsampled contourlet transform -2, (e1)-(e4) fused through non-

subsampled contourlet transform -3, and (f1)-(f4) fused through proposed approach 

 

 
(a)                      (b)                           (c)                        (d)                          (e)                         (f) 

Figure.4 Fused results in the case of external noise: (a) CT image with gaussian noise 0.001, (b) MRI image with noise 

variance 0.001, (c) fused through non-subsampled contourlet transform -1, (d) fused through non-subsampled contourlet 

transform -2,  (e) fused through non-subsampled contourlet transform -3, and (f) fused through proposed approach 

 

 
(a)                      (b)                           (c)                        (d)                          (e)                         (f) 

Figure.5 Fused results in the case of external noise: (a) MR-T1 image with gaussian noise 0.001, (b) MR-T2 image with 

noise variance 0.001, (c) fused through Non-Subsampled Contourlet Transform -1, (d) fused through non-subsampled 

contourlet transform -2,  (e) fused through non-subsampled contourlet transform -3, and (f) fused through proposed 

approach 
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Table 1. The objective evaluation results for CT and MRI image dataset 

Image Set Metric NSCT-1 [1] NSCT-2 [4] NSCT-3 [6] Proposed 

 

 

Image set 1 

𝑄0 0.5960 0.5972 0.5998 0.6471 

𝑄𝑊 0.7514 0.7536 0.7544 0.7596 

𝑄𝐸 0.5703 0.5729 0.5768 0.5844 

𝑄𝐴𝐵/𝐹 0.5812 0.5843 0.5875 0.5963 

MI 4.6613 4.6696 4.6709 4.6759 

CT(sec) 2.3654 3.1274 3.2471 2.0027 

 

 

Image set 2 

𝑄0 0.5973 0.5985 0.6011 0.6484 

𝑄𝑊 0.7527 0.7549 0.7557 0.7609 

𝑄𝐸 0.5716 0.5742 0.5781 0.5857 

𝑄𝐴𝐵/𝐹 0.5825 0.5856 0.5888 0.5976 

MI 4.6626 4.6709 4.6722 4.6774 

CT(sec) 2.3667 3.1287 3.2484 2.0140 

 

Table 2. The objective evaluation results for MR-T1 and MR-T2 image dataset 

Image Set Metric NSCT-1 [1] NSCT-2 [4] NSCT-3 [6] Proposed 

 

 

Image set 1 

𝑄0 0.6383 0.6389 0.6395 0.6846 

𝑄𝑊 0.8248 0.8265 0.8276 0.8311 

𝑄𝐸 0.6239 0.6257 0.6268 0.6284 

𝑄𝐴𝐵/𝐹 0.6450 0.6454 0.6461 0.6490 

MI 5.4616 5.4408 5.4328 5.4741 

CT(sec) 3.3437 4.1344 4.2089 3.0052 

 

 

Image set 2 

𝑄0 0.6311 0.6317 0.6323 0.6774 

𝑄𝑊 0.8176 0.8193 0.8204 0.8239 

𝑄𝐸 0.6167 0.6185 0.6196 0.6212 

𝑄𝐴𝐵/𝐹 0.6378 0.6382 0.6389 0.6418 

MI 5.4544 5.4336 5.4256 5.4669 

CT(sec) 3.3365 4.1275 4.2014 2.9968 
 

Along with these metrics, the performance of 

proposed approach is also evaluated through the 

computational time (CT). i.e., the amount of time 

taken for the complete method evaluation.  These 

performance metrics are evaluated for all the above 

test image sets and are formulated in Tables 1 and 2. 

Fig. 2 shows the resuts obtained on the 

accomplishment of proposed approach over CT amd 

MRI image dataset. Fig.2 (a1)-(a2) are the source 

images A and Fig.2 (b1)-(b2) are the source images 

B and Fig.2 (c1)-(c2), (d1)-(d2), (e1)-(e2) represents 

the fused images obtained through conventional 

NSCT approaches. Fig.2 (f1)-(f2) show sthe 

obtained fused images through the proposed 

approach. From these two figures, it can be observed 

that the obtained fused image has more clear edges 

compared to the conventional approaches. The 

respective numerical results are tabulated in table.1. 

From the table.1, it can noticed that the proposed 

approach having more efficiency with respect to all 

the metrics. Though the increment observed in all 

metrics is less, the computational time taken for the 

process of evaluation is observed to be very less. 

Since the accomplishment of a new sub band 

adaptive filtering technique in the proposed 

approach, the fusion process considers only few 

number of sub band images in which the improtant 

infomration is present, and recues most of the 

redundant information in the high frequency sub 

band images. The similar results for MR-T1 and 

MR-T2 image dataset is shown in Fig. 3 and its 

respective numerical metrics are represneted in 

table.2. From Fig. 3 (f), it can be observed that the 

proposed methods preserve both better local edge 

and texture information, which isthe vital 

information for diagnosis. The source image Fig.3 

(b4) is the sub-acute premature hematoma of head, 

has clear edges and contours and almost all the 

features are replicated in the fused image obtained 

through proposed approach, in Fig.3 (f4). 

Further the simulation is carried out by adding 

the noise to the both source images and then they are 

subjected to fusion thoruhgh the proposed and 

conventional approaches and the obtained fused 

images are shown in Figs.4 and 5.  Fig. 4 shows the 
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Table.3. the objective evaluation results for in the case of noise acquisition 

Image Set Metric NSCT-1 [1] NSCT-2 [4] NSCT-3 [6] Proposed 

 

 

CT and MRI 

𝑄0 0.5767 0.5779 0.5808 0.6278 

𝑄𝑊 0.7321 0.7343 0.7351 0.7403 

𝑄𝐸 0.5510 0.5536 0.5575 0.5651 

𝑄𝐴𝐵/𝐹 0.5619 0.5650 0.5682 0.5770 

MI 4.6420 4.6503 4.6516 4.6599 

CT(sec) 2.5463 3.2244 3.3471 2.1127 

 

 

MR-T1 and 

MR-T2 

𝑄0 0.6279 0.6285 0.6291 0.6742 

𝑄𝑊 0.8144 0.8161 0.8172 0.8207 

𝑄𝐸 0.6135 0.6153 0.6164 0.6189 

𝑄𝐴𝐵/𝐹 0.6346 0.6352 0.6358 0.6386 

MI 5.4512 5.4303 5.4224 5.4637 

CT(sec) 3.4365 4.1575 4.2142 3.0263 

 

fused images for CT and MRI image data set and the 

figure.5 shows the fusd results of MR-T1 and MR-

T2 image dataset, clearly implies that the fused 

image by proposed method has better quality and 

contrast than other methods. 

7. Conclusion  

Medical image fusion plays important role in 

clinical applications. But the real challenge is to 

obtain a visually enhanced image through fusion 

process. In this paper, a new medical image fusion 

approach is proposed based on Non-Subsampled 

Contourlet Transform and Adaptive sub band 

filtering. Here the Non-Subsampled Contourlet 

Transform decomposes the image into sub band 

images and the ASF selects the appropriate sub band 

images for fusion by which the computational time 

reduces. As the number of levels of decomposition 

increases, the redundant information in the high 

frequency subband images also increases. If all the 

decomposed bands are considered for fusion, the 

unnecessary complexity increases. Thus the 

proposed ASF tends to reduce the redundant 

information and also helps in the removal of 

external noises of the source images. Further the low 

frequency sub band images are fused through phase 

congruency rule and the high frequency subband 

images are fused through Log-Gabor energy rule.  

The experiments results indicate that the proposed 

fusion approach can achieve better results than the 

conventional fusion methods in both subjective and 

objective aspects.  

On an average the 𝑄0 for proposed approach is 

observed to be 0.6477, where it is of 0.5965 for 

NSCT [1], 0.5978 for NSCT-2 [4] and 0.6004 for 

NSCT-3 [6].  

On an average the 𝑄𝑊 for proposed approach is 

observed to be 0.7602, where it is of 0.7520 for 

NSCT [1], 0.7542 for NSCT-2 [4] and 0.7550 for 

NSCT-3 [6].   

On an average the 𝑄𝐸 for proposed approach is 

observed to be 0.5850, where it is of 0.5709 for 

NSCT [1], 0.5735 for NSCT-2 [4] and 0.5774 for 

NSCT-3 [6].    

On an average the 𝑄𝐴𝐵/𝐹 for proposed approach 

is observed to be 0.5969, where it is of 0.5818 for 

NSCT [1], 0.5849 for NSCT-2 [4] and 0.5881 for 

NSCT-3 [6].  

On an average the MI for proposed approach is 

observed to be 4.6766, where it is of 4.6619 for 

NSCT [1], 4.6702 for NSCT-2 [4] and 4.6715 for 

NSCT-3 [6].   

Finally, on an average the Computation Time for 

proposed approach is observed to be 2.0083 sec, 

where it is of 2.3360 sec for NSCT [1], 3.128 sec for 

NSCT-2 [4] and 3.2471 sec for NSCT-3 [6].   

From the above analysis, it can be observed that 

the proposed attained a greatest improvement in the 

computation time. The computation time of the 

proposed approach is observed to be very less and it 

is mainly due to the reduction in the number of 

processing bands, whereas the conventional 

approaches didn’t focused on the redundant 

information. Hence the proposed approach is robust 

for multimodal medical image fusion.  

In the future, the proposed approach can be 

extended to accomplish through a new spectral 

feature based band selection approach by which 

there is a possibility of more reduction in the 

computational time followed by Quality 

enhancement in the fused image. 
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