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Abstract: Observation satellites orbiting the Earth provide important surveillance information that helps in identifying 

various types of land cover. As such, the resolution of satellite images is critical to ensure high accuracy in classifying 

land cover types. Clearly, high-resolution images are desirable, but such images are prohibitively expensive. Hence, 

the use of medium-resolution satellite images seems more economical and practical. Several techniques have been 

developed to monitor the conditions of land covers across the world, such as aerial photography, ground survey, and 

remote sensing. Among the three techniques, remote sensing is the best, given its ability to monitor vast geographical 

areas more accurately and much faster compared to those of the other two techniques. In recent decades, many 

countries have been relying on remote sensing to monitor the conditions of coastal areas by extracting shorelines from 

satellite images.  To date, several pixel-based methods have been proposed for the extraction of shorelines, but most 

of these methods are fraught with problems. Thus, the object-based approach is proposed using a combination of 

segmentation algorithms, namely Felzenswalb, Quickshift, and SLIC, together with 15 machine learning classifiers, 

to classify segmented images of Langkawi Island. The performance of the segmentation algorithms and machine 

learning classifiers were assessed in terms of segmentation time and overall accuracy in four experimental settings 

comprising of three different parameters. The research findings showed that the proposed hybridization of SLIC 

segmentation and Extra Tree classifier was the most efficient and accurate technique compared to other combinations 

of techniques in extracting the shoreline of the study area. Specifically, SLIC was faster than Felzenswalb and 

Quickshift by as much as 37 times and 500 times, respectively. Together with Extra Tree classifier, SLIC managed to 

achieve 100% overall accuracy in the object-based classification in three out of four settings compared to the rest of 

the techniques tested in the study.  

 

Keywords: Object based image analysis, SLIC segmentation, Extra tree classifier, Machine learning, Shoreline 

extraction. 

 

 

1. Introduction 

Over the years, natural processes and 

anthropogenic activities are continually reshaping the 

coastal landscapes of countries. Naturally, changes in 

shorelines are largely due to highly dynamic 

processes caused by a host of factors, such as tides, 

winds, waves, water currents, sediments, and oceanic 

temperatures, among others. In recent years, many 

people have settled in newly developed towns and 

cities, some of which are located along the coasts, 

bringing in some socio-economic benefits to societies. 

Inevitably, anthropogenic activities resulting from 

the heavy concentration of people has adversely 

affected coastal areas of many countries  [1]. Without 

redress, such activities can significantly change the 

coastlines  of countries, which can occur 

unpredictably [2].   
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Therefore, monitoring of coastlines is needed to 

provide important information about prevailing 

conditions of coastal areas of a country by examining 

changes that are taking place along its borders. 

According to [3], such a border is commonly referred 

to as a ‘coastline” or a ‘shoreline’. 

A shoreline is defined as a physical line that acts 

as an interface that separates land and water, thus 

creating a boundary between the two [4]. As such, 

shoreline extraction provides important information 

of the boundary between land and water, which can 

help detect and monitor any signs of coastal erosions 

or accretions. Currently, coastline monitoring can be 

performed using several techniques, such as remote 

sensing, aerial photography, and field survey. Given 

that it uses satellite images that can cover vast land 

areas, remote sensing is deemed the most accurate 

and fastest technique among the three. Moreover, this 

technique can extract important boundary 

information from satellite images using appropriate 

image analyses. In contrast, the techniques based on 

traditional field survey or airborne aerial 

photography are relatively time-consuming, 

laborious, and imprecise.  

More importantly, the extraction of selected 

features of shoreline from satellite data can reveal 

important spatial and temporal characteristics. With 

information of such characteristics, researchers can 

determine and predict future coastal changes more 

accurately. In addition, acquiring information of a 

shoreline entails a shoreline indicator to accurately 

represent the true position of a particular shoreline of 

interest [3]. Essentially, the shoreline indicator can be 

divided into three main categories: (i) an indicator 

that is based on visually detectable features, (ii) an 

indicator that is based on a specific tidal datum, and 

(iii) an indicator that is based on features that are 

imperceptible to the human’s eyes [4]. For this study, 

the researchers used the third category of indicators 

as the shoreline indicator. 

Admittedly, accurate delineation of shoreline 

boundaries is difficult to achieve as coastlines will 

undergo a gradual, continual change due to soil 

erosions and accretions caused by fluctuating tides. 

Cleary, such a change can seriously impede the 

extraction process of the pixel-based approach, as 

evidenced by the presence of salt-and-pepper 

problem in vector GIS generated from the conversion 

of classified images into raster format. To overcome 

this problem, object-based image analysis (OBIA) 

can be used to improve the extraction process.  

To date, several approaches based on OBIA have 

been proposed to extract shorelines from optical 

multispectral satellite images. For example, [2][3] 

implemented an OBIA using the  rule-based approach 

and vegetation index, namely Normalized Difference 

Vegetation Index (NDVI), to extract coastlines from 

Quickbird multispectral images. Furthermore, [3] 

used Digital Elevation Model (DEM) as additional 

data to classify Quickbird and Landsat images.  

Likewise, [1] proposed the use of OBIA with the rule-

based approach and water index, namely Normalized 

Difference Water Index (NDWI), to improve the 

classification accuracy. However, some of the rules 

can sometimes overlap with or oppose one another 

which effectively reducing the classification 

accuracy [5]. Interestingly, [6] proposed a set of rules 

for OBIA  using the combination of NDVI and 

NDWI to distinguish types of coast. Even though 

these spectral indices can reliably discriminate land 

cover classes, they only cover small ranges and have 

the potential to overlap with other classes [7]. To 

overcome the drawbacks of NDWI, machine learning 

(ML) can be used in the pixel-based approach to 

improve the classification accuracy [8].   

In view of the important points highlighted in the 

discussion, this study was carried out with the main 

aim to propose and determine the most effective and 

efficient hybridization of segmentation algorithm and 

ML technique for OBIA in the extraction of 

shorelines. Specifically, the extraction process was 

performed on the Landsat TM satellite images to 

determine the shorelines of the North West coast of 

Peninsular Malaysia. For the extraction process, the 

researchers performed OBIA using 15 ML classifiers 

(11 single classifiers and 4 ensemble classifiers) to 

classify land-water classes. The proposed OBIA 

techniques are in fact the alternative approaches to 

the pixel-based classification methods, which have 

been studied by [9]. 

To facilitate discussion, this paper is organized 

based on the following sections. Section 2 discusses 

OBIA, and Section 3 details the materials and 

methods used in the study. Section 4 elaborates the 

experimental results of the proposed OBIA technique. 

Finally, Section 5 discusses the main research finding 

and its implication on the current practice and 

concludes the discussion of the paper.   

2. Object-based image analysis 

OBIA is a sound methodology that is closely 

related to human perception. Fundamentally, OBIA 

treats segments or objects, not individual pixels, as 

the basic processing units. It starts with segmenting 

an image into smaller homogeneous regions called 

objects. Essentially, the segmentation combines 

relevant pixels into objects based on spectral, shape, 

and neighbourhood similarity. The spectral variable 

is represented by the mean values and standard 
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deviations of a specific spectral band. The shape 

variable includes the size, perimeter, and 

compactness of an image. The neighbourhood 

variable indicates the mean difference between an 

object and other darker entities. The relations among 

such variables help improve the value of the final 

classification, which is lacking in the pixel-based 

approaches. For OBIA method, each object is treated 

as part of the ‘super-object', where the latter is 

obtained by combining several neighbouring objects. 

In addition, each object can be subdivided into 

smaller objects, called ‘sub-objects'. Superpixels 

algorithm is the process that groups neighbouring 

pixels of an image that have similar features into 

perceptually meaningful homogeneous regions. 

Segmentation of the OBIA method is the process 

of partitioning a projected image into multiple 

segments, known as superpixels. Each segment 

corresponds to a group of pixels, with one segment 

assigned to each pixel.  The aim of segmentation is to 

represent the image as an object that is more 

meaningful and easy to analyse. As such, similar 

pixels should be grouped together. The segmentation 

assigns every pixel with a certain level such that 

pixels with the same level will share common visual 

characteristics. Furthermore, the aggregation of 

pixels as an object is based on certain common 

features, such as colour, texture, edge, spatial 

location, gradient, and others. Algorithms for 

generating superpixels can be broadly divided into 

two categories, namely the graph-based method and 

the gradient-ascent-based method. For this study, 

only three segmentation algorithms were considered, 

namely Felzenszwalb (Felz), Quickshift (QS), and 

Simple Linear Iterative Clustering (SLIC).  

2.1.1. Felz segmentation 

Felz segmentation algorithm is a graph-based 

method, which was proposed by [10], that uses an 

efficient graph-based representation of local 

neighborhoods. The weight of an edge w(vi,vj) 

between two vertices is used as the level of 

dissimilarity of two points (differences in intensity, 

range, color, location, etc.). It splits nodes such that 

edges inside a component will have relatively lighter 

weights and edges between components will have 

relatively heavier weights. The algorithm has a single 

scale parameter that influences the actual size and the 

number of segments, which can vary depending on 

the local contrast. 

2.1.2. Quickshift segmentation 

QS segmentation is a gradient-ascent-based 

method that uses the mode-seeking segmentation 

algorithm proposed by [11], which is similar to that 

of the mean-shift method. The algorithm segments a 

satellite image by identifying clusters of pixels based 

on the joint spatial and color dimensions. The 

superpixels produced by QS, which are not fixed, are 

influenced by three main parameters, namely the 

ratio(λ), kernel size(σ), and maximum distance(τ), 

where λ is a trade-off between the distance in the 

color-space (R,G,B) and the distance in the spatial-

space (R,G,B,X,Y). Lower ratios indicate high spatial 

importance; in contrast, higher ratios place greater 

emphasis on colors. The kernel size (σ) controls the 

scale of the local density approximation. For the 

hierarchical segmentation, the parameter τ assigns a 

particular level to segments of the subtrees.  

2.1.3. SLIC segmentation 

SLIC a gradient-ascent-based method that 

utilizes K-means for superpixel segmentation. In this 

method, the pixels of an image are initially clustered 

and then iteratively refined until certain criteria are 

met to form the superpixels [12]. Essentially, SLIC 

uses the colours of pixels to cluster them based on 

their similarity and proximity to one another on the 

image plane. SLIC uses a 5-dimensional vector to 

generate superpixels by assigning certain weights to 

parameters L, a, and b of the CIELAB color space and 

by measuring the similarity of spatial coordinates 

based on Euclidean distances.  

Interestingly, this technique can generate 

compact superpixels at lower computational cost. In 

fact, the “compactness” parameter can effectively 

generate a good trade-off between the similarity and 

proximity of pixels. In addition, n-segments can 

select any number of centres for k-means. Overall, 

SLIC is an efficient method for clustering pixels as it 

only compares superpixels’ centres, as opposed to k-

means method that compares all clusters’ centres.  

In addition to the segmentation algorithms, ML 

classifiers are an integral part of the building block in 

the OBIA. In this study, 15 machine learning 

classifiers were used, including the extra-tree 

classifier. 

2.2 Extra-Tree classifier 

An extremely randomized tree classifier, known 

as Extra-Tree (ET) classifier, was proposed by [13]. 

Essentially, ET is an ensemble classification method 

of decision tree classifier, which differs from classic 

decision trees in the way they are built. This means 

that in order to find the best split to separate the 

samples of a node into two groups, random splits are 

drawn from each of the randomly selected features, 
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Figure.1 Methodology of this research 

 

 
Figure.2 Study area of the research 

 

namely max_features, from which the best split will 

be chosen. As such, ET classifier fits with various 

sub-samples of a dataset by averaging out the 

variance problems of single decision tree method, 

which helps improve the predictive accuracy and the 

control of over-fitting. 

 

 

3. Materials and methods 

In this study, the methods used to extract 

shorelines from satellite images consisted of four 

phases, namely pre-processing, supervised OBIA, 

accuracy assessment, and post-processing, as 

depicted in Fig. 1. Prior to the pre-processing phase, 

a study area was chosen from where relevant data 

were collected.  

3.1 Study area 

The chosen area of this study was Langkawi 

Island, which is located at the North West coast of 

Peninsular Malaysia, as shown in Fig. 2. This island 

is located at 6o 15’N and 6o 29’N latitude and 99o 

37’E and 99o 57’E longitude, covering a total area of 

about 478.48 km2. This exotic island consists of a 

major landmass, with many smaller islands dotting its 

coastlines.  
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Table 1. The dates of data acquisition of two scenes of 

multispectral Landsat-5 TM 

Data Path/Row Acq. date  Acq. time 

(GMT) 

Landsat TM 129/56 24/12/2010    03:29:49 

Landsat TM 128/56 05/08/2011    03:28:41 

3.2 Data acquisition 

In this research, two scenes of multispectral 

Landsat-5 Thematic Mapper (TM) were used as the 

research data to ensure the study area would be 

sufficiently covered. The researchers collected the 

data of the two scenes on two different dates. The first 

scene was acquired on 24 December 2010 at 11.29 

am local time (GMT+8), while the second scene was 

acquired on 5 August 2011 at 11.28 am. Table 1 

summarizes the dates of data acquisition of the two 

scenes.  

For the last few decades, the Landsat TM satellite 

had orbited the Earth more than 150,000 times, 

transmitting over 2.5 million images of land surfaces 

of the world. From 1984 to 2013, this satellite 

provided multispectral images of the Earth’s surface 

at an altitude of 705 km with 8-bit radiometric 

resolution, thus making it the longest operating 

satellite sensor at that time.  

The repeat cycle was within 16 days with 185 km 

swath width. Landsat TM satellite has an 8-bit 

radiometric resolution with 256 grey value levels that 

specify the image brightness. It also has 7 spectral 

bands, including a thermal band, such as blue: 0.45–

0.52 µm; green: 0.52–0.60 µm; red: 0.63–0.69 µm; 

NIR (Near Infrared) µm: 0.76–0.90 µm; Short-wave 

Infrared (SWIR) 1: 1.55-1.75 µm; SWIR 2: 2.05-2.35 

µm; and thermal: 10.40-12.50 µm. All these bands 

have spatial resolutions of 30 m, except the thermal 

band that has a spatial resolution of 120 m. 

3.3 Pre-processing 

Pre-processing of satellite images is an 

important step for attaining high classification 

accuracy and easing computational complexity. In 

the pre-processing phase, five processes were 

performed, namely radiometric correction, 

atmospheric correction, mosaicking, geometric 

correction, and subset of the study area. The main aim 

of the pre-processing phase was to clean satellite 

images from errors caused by satellite sensors, such 

as atmospheric, radiometric, and geometric errors. 

Radiometric calibration was immediately 

performed on the image once the study area and 

image data were established. Such calibration 

converted the satellite image to radiance (Lλ) image, 

as expressed by Eq. (1). 

 

𝐿𝜆 = 𝐺𝑎𝑖𝑛 × 𝑃𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 + 𝐵𝑖𝑎𝑠         (1) 

 

The pixel value is a digital number (DN) that 

ranges from “0” to “255”, and the radiance of each 

image band depends on the gain and bias values. 

After calibrating the image data, dark object 

subtraction (DOS) method was applied to the 

radiance image to remove haze components caused 

by the additive atmospheric scattering effects of the 

image data [14]. This method assumes there is a high 

probability that at least a few pixels of an image will 

be black with near-zero percent reflectance (e.g., 

water, cloud, and shadow), which is due to 

atmospheric scatterings called path radiance that 

need to be removed [15].  

Essentially, the pixel value represents the value 

of an image’s element that must be subtracted from a 

particular spectral band to remove the first-order 

scattering component. The removal process uses the 

minimum value of a band, which represents its 

background signature. Given that TM images were 

the data of this study, the use of the DOS method was 

deemed appropriate, as it had been successfully used 

in earlier generation of Landsat sensors. The DOS 

method includes a simple multiplicative correction to 

deal with the effects of atmospheric transmittance. 

The land surface reflectance can be estimated by 

using Eq. (2). 

 

𝑝 =  
𝜋(𝐿𝑠𝑎𝑡−𝐿𝑝)𝑑2

𝐸0 𝑐𝑜𝑠2 (𝜃2)
                             (2) 

 

In this formula, Lsat , Lp , and d are the satellite 

radiance, path radiance, and Earth-sun distance (in 

astronomical unit), respectively. Mosaicking process 

was then applied to combine the two scenes of the 

image into a single large image based on the same 

coordinate system. Then, image registration process 

was performed using image-to-image geometric 

correction process with root-mean-square (RMS) 

value of 0.457 for 30 ground control points (GCPs). 

Later, Rectified Skew Orthomorphic (RSO) Kertau 

was utilized to project the image data (of the West 

Coast of Peninsular Malaysia) onto a local projection 

system. Finally, image sub-setting was performed to 

fit the image to the study area, yielding an image of 

2,513 x 1,830 pixels. Once cleaned, the image was 

used in the classification phase. 
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3.4 Supervised OBIA  

In this phase, the OBIA used image 

segmentation as the preliminary step to enhance the 

classification process after the required training and 

testing samples had been established. Arguably, the 

proper use of the supervised OBIA relies heavily on 

the user’s knowledge of such analysis. With such 

knowledge, proper training samples can be developed 

to build the appropriate model of ML algorithms to 

classify different types of land covers. The training 

samples were represented by a number of groups of 

homogeneous pixels, each of which defined a 

particular type of land cover based on the closest 

spectral features.  

On the other hand, the testing samples are usually 

used to measure the performances of such models, 

which in this case involved the land and water classes. 

Using the land ground truth data as a reference, the 

training and testing sets were created from the 

random sampling of several randomly placed 

observations. For this study, only one set of training 

and testing samples was created in the form of 

polygons, comprising 260 and 65 polygons for land 

and water classes, respectively. To ensure 

separability of the training and testing set, Jeffries-

Matusita distance and Transformed Divergence were 

used [9], yielding a separability index of 1.97, which 

was close to 2.0 that indicated perfect separability. 

The hybridization involved two processes, 

namely segmentation, and classification. For the 

segmentation process, the quality of the segmentation 

helped determine the classification output. 

Depending on the type of segmentation algorithms 

and parameters used, this process may produce a 

number of dissimilar segments. In this study, the 

segmentation algorithms used were Felz, QS, and 

SLIC, and the chosen parameters for such algorithms 

were determined by trial and error. Then, the training 

and testing sets of each class were generated by 

matching the segments generated from the image to 

the original training and testing sets.  

Before classification was performed on the 

segments created by segmentation algorithms, 

feature extraction process was applied to provide 

segment representation. Specifically, feature 

extraction encompasses the analysis and extraction of 

machine-readable information from satellite images 

in order to obtain a concise, compact description. 

Naturally, the context of a specific task or domain 

determines the type of features to be extracted. In this 

study, the features extracted were largely statistical 

descriptors, such as (i) min, (ii) max, (iii) mean,       

(iv) variance, (v) kurtosis, and (vi) skewness, which 

helped improve the final classification process.  

Admittedly, in view of the many techniques 

available, it was quite challenging to choose the 

appropriate ML classifiers for the OBIA in such 

problem domain. Nevertheless, the researchers 

managed to select 15 ML classifiers consisting of 11 

single ML classifiers and 4 ensemble ML classifiers. 

The single ML classifiers used in this study were 

Decision Tree (DT), Naïve Bayes (NB), k-Neareast 

Neighbour (kNN), Linear Discriminat Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), 

Logistic Regression (LR), SGD Classifier, SVM-

linear (SVM-L), SVM-RBF (SVM-R), SVM-

polynomial (SVM-P), and Multi-Layer Perceptron 

Artificial Neural Network (MLP).  

The ensemble ML classifiers selected were 

AdaBoost (ADB), Gradient Boosting (GDB), ET, 

and Random Forest (RF). After the model had 

learned part of the image regions of the training 

segments, the whole image segments were then 

classified with additional extracted features to 

improve the classification results. In addition, a 

lookup table (LUT) consisting of all colour classes 

was used to render the classified image with 

appropriate colours. In this study, brown and blue 

were used to represent land and water, respectively. 

3.5 Accuracy assessment 

The goal of the accuracy assessment phase was 

to measure the accuracy of the classification process 

carried out in the OBIA. Specifically, the accuracy of 

extracted satellite images was measured in terms of 

the percentage of an area of a map that was correctly 

classified according to the reference data. In this 

phase of the study, such percentage was treated as the 

overall accuracy of the ML classifiers. In fact, the 

overall accuracy has been used as the primary 

performance indicator in many studies of the 

evaluation of classification methods of satellite 

images. The accuracy of the classification is 

calculated by dividing the sum of entries that forms 

the major diagonal of the confusion matrix by the 

total number of samples taken as expressed in Eq. (3) 

and Eq. (4). 

 

𝑛 =  ∑ ∑ 𝑛𝑖𝑗
𝑘
𝑗=1

𝑘
𝑖=1                      (3) 

𝑂𝐴 =  
∑ 𝑛𝑖𝑖

𝑘
𝑖=1

𝑛
                   (4) 

In Eq. (3) and (4), n and nij are the total number of 

samples and the diagonal elements of the confusion 

matrix, respectively. 

Assessing the accuracy of ML classifiers in 

fitting a model usually entails the use of cross 
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validation techniques or rotation estimation. The k-

fold cross-validation method helps partition an 

original sample into k subsamples of equal size. A 

single subsample will be treated as validation data to 

test the model, while the remaining (k-1) subsamples 

will be used as training data [16]. For this study, the 

10-fold cross-validation method was used to deal 

with overfitting and class imbalance problems.   

3.6 Post-processing 

After assessing and verifying the classification 

accuracy, the resultant classified image was saved to 

a hard drive for further post-processing operations, 

such as sieve and clump. First, sieve was used to 

remove isolated pixels based on a specific threshold 

value (number of pixels). Then, clump was applied to 

add spatial coherency to existing classes by 

combining similar classified areas that were adjacent 

with one another. Later, a raster-to-vector conversion 

process was performed to convert the resultant 

classified image into GIS vector format. 

Subsequently, polygon-to-line conversion process 

was carried out to convert the image into vector lines 

format, which was then followed by line editing to 

remove unwanted data (i.e., lines that were not part 

of the shoreline). Such a process was laborious and 

prone to committing errors, such as the unintentional 

removal of important data (e.g., lines). Finally, line 

smoothing was applied to the cleaned shoreline to 

smooth straight edges and corners of angular features 

that helped ensure curves would be seamlessly 

connected at their vertices. 

4. Results and discussions 

The analysis of the experimental data was 

initially carried out on a high-performance 

workstation, namely Dell Precision 3620 machine, 

which was equipped with 3.4GHz Intel i7-6700 Quad 

Core Processor and 28 GB RAM, running on 

Microsoft Windows 7 (a 64-bit operating system). 

However, the system memory could only support a 

few ML classifiers, such as DT, NB, LDA, LR, and 

SGD. Accordingly, the workstation’s RAM was 

upgraded to 40GB to support all the 15 ML classifiers.  

As acknowledged, our approach was different 

from those used in the previous studies carried out by 

[1-3, 6]. Actually, our work focused on examining the 

accuracy of OBIA of satellite images based on the 

hybridisation of several segmentation algorithms and 

machine learning classifiers. In contrast, [1-3, 6] used 

commercial tools in their studies, such as eCognition 

and ENVI, with which the OBIA process was carried 

out with unknown segmentation algorithms and  

 
(a) 

 

 
(b) 

 

 
(c) 

Figure.3 Image segmentation output: (a) Felz, (b) QS, 

and (c) SLIC 

 

limited number of classifiers. Moreover, their studies 

did not involve accuracy assessments, which had 

been dealt with in our study. In view of the above 

differences, this present study helped address the void 

of research on hybridisation of techniques and 

assessments of accuracy.  

Figures 3a, 3b, and 3c show the results of the 

segmentation outputs of Felz, QS and SLIC, 

respectively. The results showed that the different 

segmentation algorithms produced different types of 

segments, which were highly visible to the reader.  
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Table 2. Results of OBIA using Felz, QS and SLIC segmentation algorithms 

Input Configuration Parameters 

Segmentation 

Algorithm 
Felz QS SLIC 

Scale 50 100 1,000 85 Kernel size 25 12 12 10 No of segments 4,000 10,000 40,000 80,000 

Sigma  0.4 0.9 0.5 0.25 Max Distance  10 5 4 3 Compact  10 10 10 8 

Min size 300 50 1000 100 Ratio 0.8 0.8 0.2 0.5 Sigma 0.25 0.8 1 0.8 

Process Segments Generated 

No of Segments 3,412 9,502 15,847 63,386 No of Segments 3,417 26,322 50,055 84,419 No of segments 3,996 10,440 37,848 71,906 

Time to segment 

(s) 
8,600 7,101 9,200 5,801 

Time to segment 

(s) 
150,327 67,169 67,204 5,699 

Time to segment 

(s) 
238 260 250 276 

Training Segments 

for Class 1 
91 206 85 478 

Training 

Segments for 

Class 1 

151 368 471 630 

Training 

Segments for 

Class 1 

204 297 475 633 

Training Segments 

for Class 2 
116 11 342 456 

Training 

Segments for 

Class 2 

94 294 491 694 

Training 

Segments for 

Class 2 

141 201 394 586 

Output Overall Accuracy (%) 

DT 90.4 98.5 98.8 99.11 DT 95.54 98.97 99.08 98.41 DT 99.9 99.81 98.74 98.36 

kNN 90.4 74.9 99.09 98.37 kNN 99.38 97.95 98.07 98.87 kNN 98.8 98.7 99.57 99.67 

NB 91 96.9 98.41 97.59 NB 92.97 99.21 98.23 97.99 NB 98.9 98.78 98.75 99 

LDA 79.3 99.3 99.86 99.02 LDA 99.94 98.46 99.32 99.3 DA 99.2 99.24 99.13 99.2 

QDA 89.8 98.3 98.62 96.93 QDA 98.86 99.3 98.07 97.82 QDA 98.3 98.52 98.39 98.46 

LR 74.1 100 97.76 99.51 LR 95.52 99.15 98.82 98.95 LR 99.2 99.2 98.73 99.32 

SGD 89.4 100 97.53 96.99 SGD 99.21 98.61 98.28 97.34 SGD 98 98.99 99.09 99.18 

MLP 29 71.4 28.62 72.26 MLP 74.08 72.09 28.57 28.57 MLP 71.9 72.19 71.83 71.74 

SVM-L 82.2 100 97.74 99.5 SVM-L 95.71 98.97 99.08 99.74 SVM-L 98.7 98.74 98.66 99.31 

SVM-R 40.4 98.3 87.5 79.19 SVM-R 79.89 73.72 36.74 34.88 SVM-R 74.5 72.57 72.23 71.79 

SVM-P 90.2 98.8 98.68 99.25 SVM-P 95.78 99.15 98.64 99.74 SVM-P 98.4 98.58 99.74 99.9 

ADB 55 99.4 99.59 98.89 ADB 93.77 98.97 99.08 98.41 ADB 99.4 99.42 100 99.76 

ET 90.8 100 100 99.74 ET 98.07 100 100 99.74 ET 99.8 100 100 100 

GDB 90.9 95.7 98.78 99.59 GDB 98.07 98.97 99.08 100 GDB 98.4 99.62 100 99.95 

RF 80.2 99.8 99.64 99.64 RF 98.07 100 100 99.7 RF 99.9 99.31 99.74 99.71 



Received:  September 26, 2017                                                                                                                                            70 

International Journal of Intelligent Engineering and Systems, Vol.11, No.1, 2018           DOI: 10.22266/ijies2018.0228.07 

 

 

Table 2 summarizes the results of OBIA of the 15 

classifiers using Felz, QS, and SLIC segmentation 

algorithms. As highlighted, the segmentation time 

was an important performance criterion in OBIA. 

Evidently, SLIC was the most efficient method, using 

200 to 300 seconds to process 4,000 to 80,000 

segments. In contrast, the least efficient method was 

QS, taking 6,000 to 150,000 seconds to process the 

same number of segments. Furthermore, it was 

observed that the time used to segment the satellite 

image in QS was directly proportional to the size of 

kernel, suggesting that the larger the kernel size the 

longer it would take to segment the image. In between 

the above two methods, Felz performed moderately 

well, needing 5,000 to 10,000 seconds to segment 

4,000 to 70,000 segments. 

Three parameters, namely the scale, sigma, and 

min size, of the Felz segmentation settings were used 

to determine the classification accuracy. The results 

clearly showed Felz-ET was the most accurate 

method, attaining extremely high accuracy in three 

out of four settings. More impressively, it managed 

to achieve 100% overall accuracy in two of the 

configuration settings. In addition, an analysis to 

determine which configuration settings had 

significantly contributed to high overall accuracy was 

carried out. For the first configuration setting (scale 

= 50, sigma = 0.4, and min size = 300), Felz-NB 

achieved the highest accuracy, which was closely 

followed by Felz-GDB and Felz-ET. Interestingly, as 

the number of segments increased further to 9,502 

segments and beyond, Felz-ET was observed to be 

the most efficient method in all the remaining 

configuration settings. 

Three parameters of QS segmentation settings 

were used to determine the classification accuracy, 

namely the kernel size, max distance, and ratio. The 

results showed QS-ET was the most accurate method 

as evidenced by its ability to achieve 100% accuracy 

in two of the configuration settings. For the 

remaining settings, it managed to achieve relatively 

high accuracy, except for the first configuration 

setting (kernel size = 25, max distance = 10 and ratio 

= 0.8), in which the recorded overall accuracy was 

98.07%. The same analysis also focused on 

determining the best configuration settings that 

helped generate the number of segments and the 

respective training segments for each class. For the 

first configuration setting (kernel size=25, max 

distance=10 and ratio=0.8), QS-LDA was the most 

accurate method, which was followed by QS-kNN 

and QS-SGD. For the final configuration setting 

(kernel size = 10, max distance = 3, ratio = 0.5), the 

most accurate method was QS-GDB, which 

impressively attained 100% accuracy. Almost 

equally impressive were QS-ET, QS-SVM-P, and 

QS-SVM-L, all of which managed to achieve 99.74% 

accuracy.  

Three parameters of the SLIC segmentation 

settings were used in assessing the classification 

accuracy, namely the number of segments, 

compactness, and sigma. The results showed SLIC-

ET was the most accurate method, attaining 100% 

accuracy in three out of four settings. For the 

remaining settings, this method also performed 

exceptionally well, recording an accuracy of 99.77%. 

In addition, the same analysis was performed to 

determine the best configuration settings that helped 

generate the number of segments and the respective 

training segments for each class. For the first 

configuration setting (number of segments = 4,000, 

compact = 10, and sigma = 0.25), the most accurate 

method was SLIC-RF. For the same setting, the 

second and third most accurate methods were SLIC-

DT and SLIC-ET, respectively. For the remaining 

configuration settings involving 10,000 to 80,000 

segments, SLIC-ET was clearly the best method in 

terms of accuracy, comfortably securing 100% 

accuracy.   

The classification process produced an image 

classification map, which clearly demarcates the 

boundary separating the land class and the water class. 

Later, post-classification processes were performed 

on the image classification map to extract the 

shoreline from the satellite image. As demonstrated, 

the line editing process was easier to perform using 

the proposed OBIA approach compared to the pixel-

based approach, as the raster-to-vector conversion 

process generated less unwanted data. Finally, the 

base map was overlaid with the extracted shoreline 

output to delimitate its boundary for further shoreline 

map analysis. Fig. 4 shows the shoreline (rendered in 

red) that distinctively outlines the base map of the 

original Landsat TM image. 

 

 
Figure.4 The extracted shoreline overlaid the base map 
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As demonstrated in this study, the use of OBIA 

with hybridised SLIC-ET was the most efficient and 

accurate method, having attained the fastest 

segmentation time and highest classification 

accuracy. Such finding is hardly surprising given that 

SLIC can produce compact superpixels which  

effectively lowers the computational overhead of 

classification process. Additionally, the research 

findings showed Tree-based classifiers were able to 

achieve fast segmentation time and high 

classification accuracy, with ET being the best among 

such classifiers. Essentially, ET is quite similar to RF, 

but the former splits nodes randomly without having 

to comply with any selection criteria. This kind of 

randomness that makes ET better than RF. 

5. Conclusion 

In this study, the researchers proposed a hybrid 

SLIC-ET algorithm for OBIA involving two stages, 

namely fast segmentation and object-based 

classification. In the first stage, three segmentation 

algorithms were used, namely Felz, QS, and SLIC, to 

segment a Landsat TM image into superpixels. For 

the second stage, feature extraction was applied to the 

segmented images to extract several important 

features. Then, a series of experiments involving 15 

ML techniques was carried out to classify the 

segmented image. The results showed that ET 

classifier in combination with the three segmentation 

algorithms (i.e., Felz, QS, and SLIC) was the most 

accurate classifier for image segmentation based on 

OBIA, having achieved the highest overall accuracy. 

Equally revealingly was that ET classifier 

outperformed the other methods in all settings of the 

three segmentation algorithms. RF was the second 

most accurate classifier, falling slightly short of the 

performance of ET. In contrast, MLP was the least 

accurate method among those tested in this study.  

Interestingly, SLIC-ET was observed to be the 

best method among the combinations of algorithms 

for OBIA in extracting shoreline given its extremely 

high accuracy and exceedingly fast segmentation. 

Following closely were Felz-ET and QS-ET, which 

were observed to be the second and third most 

accurate method, respectively. Together, these 

findings suggest that SLIC-ET is the best hybrid for 

OBIA compared to other hybrids of segmentation 

algorithms and ML classifiers. Moreover, the 

findings also suggest that choosing a particular OBIA 

method for shoreline extraction depends on a number 

of factors, including the parameters of segmentation 

algorithms, extracted features of segmented objects, 

and type of classifiers.  

Clearly, further research should focus on other 

critical features, such as spectral indexes, NDVI, and 

NDWI layers, to improve the classification accuracy. 

In addition, a comparative analysis can be carried out 

to compare the differences between extracted 

shorelines and reference shorelines. 
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