
Received: June 4, 2017 181

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

TCP LR-Newreno Congestion Control for IEEE 802.15.4-based Network

Andri Sembiring1 Maman Abdurohman1* Fazmah Arif Yulianto1

1School of Computing, Telkom University, Indonesia

abdurohman@telkomuniversity.ac.id

Abstract: This paper proposes a new method of TCP congestion control for the IEEE 802.15.4 standard. This

method, which evolved from TCP Newreno, is to be adopted on an IEEE 802.15.4 based network. The

implementation of TCP Newreno on Wireless Sensor Network (WSN) is unable to classify losses of segments

caused by congestion, wireless channel error or segment mishandling. An increase in TCP Newreno aggressive

behavior on congestion avoidance phase has also led to frequent occurrence of congestion due to the low rate or

limited bandwidth of IEEE 802.15.4. The proposed method is named LR-Newreno. LR indicates Low Rate - WPAN

network specifications for WSN based on IEEE 802.15.4 standard. We propose enhancement on window growth

function (addictive increase) and window decrease function (multiplicative decrease) in compliance with WSN

characteristics. The new method has been simulated on network simulator-2 environment. The result shows that the

TCP LR-Newreno provides better performance in term of several parameters such as throughput, data drop rate and

energy consumption when compared to original TCP Newreno.

Keywords: LR-newreno, Transmission control protocol (TCP), Wireless sensor network (WSN), IEEE 802.15.4,

WPAN.

1. Introduction

WSN is generally made out of a substantial

amount of sensor devices equipped with a radio

communication system, and used to observe

environmental condition or object condition such as

room temperature, level of air pollution, noise,

magnitude of vibration, movement of objects, etc.,

without requiring immediate presence of human

beings. WSN commonly incorporates some strong

constraints regarding resources such as: memory,

energy, computational processing speed and data or

transmission rate.

Many applications or implementations of WSN

require the availability of network protocols that can

make sensor equipment or sensor nodes

communicate directly with the external network.

This can be done by applying TCP/IP on WSN as is

done in the Internet; also, TCP can be used to

perform remote management and re-programming

of the sensor node [1]. There are several

considerations for performing TCP implementation

on wireless sensor network, such as:

a. TCP is the most reliable transport protocol used

in IP-based networks.

b. TCP ensures reliability of data transmission

from a sensor to a host external IP and vice

versa.

c. With TCP, we can open SSH connection to log

into wireless devices (sensors, actors, etc.) and

execute commands.

TCP is a reliable transport protocol. When

applied on wireless networks, however, it will cause

some problems in terms of throughput and

efficiency of energy consumption. Therefore, to

increase its performance, it is deemed necessary to

improve several functions and mechanisms

contained in the TCP algorithm according to the

characteristics of WSN.

Using congestion control over WSN is also very

important, because the overload wireless network

caused by simultaneous data transmission can

increase the likelihood of data collisions. These

Received: June 4, 2017 182

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

collisions affect data losses and thereby data re-

transmission is required, which is certainly

inefficient for WSN in term of energy consumption

[2]. TCP is also unable to differentiate between a

lost segment due to congestion and a lost segment

due to bit errors. Whenever a segment is lost, i.e.

when no acknowledgment is received for that

particular segment and a timeout event is triggered,

this loss is believed to be due to a congestion in the

network. Consequently, the sending rate is reduced

to avoid further segment losses [3].

In summary, we find that there are several issues

which need to be solved before TCP becomes a

viable protocol for use in a WSN, such us: header

overhead, packets fragmentation and reassembly;

the greatest hurdle which hinders TCP from being

widely adopted in wireless sensor networks is TCP’s

flow and congestion control mechanism [4].

This paper focuses on investigating the TCP

congestion control implementation in IEEE802.15.4

based WSN. We proposes enhancement for

improving TCP performance in compliance with

WSN characteristics by changing window growth

function (addictive increase) and window decrease

function (multiplicative decrease) of existing TCP

congestion control mechanism. In other words, we

propose another TCP variant which is used

especially for IEEE802.15.4 based WSN.
This paper consists of five sections. Setion one

explains about backgound and problem of this paper.

Section II discusses the related works and literature

review that relevant to this paper. Proposed method

is presented in section III and section IV provides an

analysis of the experiments outcome. Finally,

Section V concludes and future work of this paper.

2. Related Work

There have been some work that already

proposed solutions to the problems of TCP for

implementation to a certain network or a specific

type of network. It is indicated by the presence of

some types of TCP known as TCP Variant, such as:

Bic TCP/Cubic, TCP Vegas, Compound TCP, TCP

Westwood, TCP Hybla, TCP HS etc. [5]. Most of

the existing TCP variants were developed following

the trends in the network technology which is

showed by the existence of wider bandwidth. The

main goal for developing TCP, therefore, is to be

faster in utilizing or maximizing throughput of the

available bandwidth. Yet, this is contrary to what

happens in WSN, where available bandwidth is

quite limited and the main objective of the WSN is

the efficiency in network communication rather than

getting larger throughput. This condition has made

most of the existing TCP variants not suitable for

use with WSN.

In addition to TCP, UDP is also fairly popular

for use on the Internet. However, UDP also has

several problems when implemented on WSN, such

as [6]:

 User Datagram Protocol (UDP) has no

congestion and flow control mechanisms, and

therefore in the case of congestion, the possible

amount of data lost can be much larger, which

consequently requires more data re-transmission

activities; this will be very inefficient for the

implementation on WSN.

 There are no acknowledgment mechanisms in

UDP, thereby no guarantee for the reliability of

the data transmission.

According to [2], in determining or designing a

transport protocol to be adopted in WSN, there are

some important factors that must be considered.

First, it must be able to reduce the dropping of data,

and dropping of data means a waste of energy.

Second, there must be a flow and congestion control

mechanism, so that the reliability of data

transmission is ensured. Third, the transport protocol

should be able to maintain interoperability and

fairness for a variety of sensor nodes available.

Both transport protocols, TCP and UDP, have

problems when used in WSN [4][6], but according

to the above consideration factors for WSN, we

suggest that TCP is more appropriate to be used in

WSN. Thus, in this research, we will focus on

examining and trying to propose a solution for the

implementation of TCP in WSN.

Several specific works that focus on solving the

problem of adoption of TCP in WSN have also been

proposed, some of which have given significant

improvement and contribution. One of them is TCP

header compression which is proposed to address

header overhead problem of TCP adoption in WSN

[3]. Another is TCP MSS tuning which contributes

to the determination of the appropriate packet size of

TCP for more efficient implementation in WSN [7].

There are several other works identified [2][8][9],

but most of them are still focusing on the adjustment

or modification of TCP protocol stack (header,

packet size, code size, option, etc.), and we have

not found any works proposing any new TCP

congestion control variant designed according to

WSN characteristics and especially used in WSN.

2.1 TCP congestion control

The TCP is a connection-oriented transport

protocol that operates on Transport layer TCP/IP. It

handles end-to-end data transmission [4]. Window

Received: June 4, 2017 183

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

based control mechanism is used to control data

flow. Window is data size of amount of

unacknowledged data [10]. Tahoe TCP congestion

control, in 1988, was introduced that consist of three

congestion control schemes: congestion avoidance,

fast retransmit and slow start [11]. Reno/Newreno

TCP congestion control, in 1990, was introduced

that used addition algorithm called fast recovery

[11]. The enhancement of TCP congestion control is

continuing in line with technological development.

2.2 TCP for wireless sensor network

Wireless Sensor Networks are becoming

ubiquitous not only in the scientific world but also

more and more in your home (e.g. monitoring the

temperature of rooms, alerting of an upcoming rain

shower, etc.). Thus the communication between

sensor networks and other networks is getting more

important too.

The de-facto networking standard protocol suite

is TCP (with IP). That why TCP can and should be

adapted to sensor networks. While it is possible to

run TCP on sensor nodes [2] it is not feasible (in

terms of energy consumption) to run pure TCP on

them. In this thesis approaches to tailor TCP to the

characteristics of a WSN are presented.

Other than TCP, UDP are also well-known

transport protocol in Internet. But UDP also is not

the good choice for WSN for some of the following

reason [6]:

a. In UDP there is no mechanism for flow and

congestion control. While UDP is used in WSN,

there will cause lots of datagram drop when

congestion happens.

b. There is no ACK mechanism in UDP, no any

reliability mechanism.

Both transport protocols, TCP and UDP have

problems if used in WSN [4] [6], but according to

the above consideration factors for WSN, we

suggest that TCP is more appropriate to be used in

WSN. So in this thesis, we will just focus on

examine and try to propose solution for

implementation of TCP in WSN.

There are several issues which need to be solved,

before TCP is a viable protocol combination to be

used in a WSN. One issue is the header overhead [4].

TCP and IP headers combined have a minimal size

of 40 bytes: 20 bytes TCP header plus 20 bytes IPv4

header, without any additional options. If we look at

the maximum size of link layer frames a significant

part of the message is being occupied by header data.

The IEEE 802.15.4 standard [6] for example limits

the maximum size of link layer frames to 127 bytes.

That leaves a mere 87 bytes of TCP payload even

without taking the link layer header into account.

The headers therefore occupy more than 30 % of

the total maximum possible data which can be sent

in one frame. The nodes scarce energy resources are

thusly not utilized in an optimal way. Additionally it

should be noted that larger payloads can be

fragmented into many packets. Fragmentation and

reassembly, however, are themselves energy

consuming processes. This problem has been tried

solved by [2] using TCP Header Compression and

TCP MSS Tuning.

The greatest hurdle which hinders TCP/IP from

being widely adopted in wireless sensor networks is

TCP’s flow and congestion control mechanism [4].

It is very important to implement congestion control

in WSN. Too many data transmitted in the network

will lead to collision. It will increase energy-

inefficient [2]. TCP cannot differentiate between a

lost segment due to congestion and a lost segment

due to bit errors. Whenever a segment is lost, i.e. no

acknowledgment is received for that particular

segment and a timeout event is triggered, this loss is

believed to be due to congestion in the network.

Consequently the sending rate is reduced to avoid

further segment losses [3].

While this might be a good strategy in wired

networks it certainly is not appropriate for wireless

sensor networks, where bit error rates are orders of

magnitude higher (up to double digit percentage

package error rates [4]).

Despite the fact that the loss occurred due to bit

errors the sending rate is reduced nevertheless. This

leads to a less than ideal throughput. In this study,

we tried to solve this problem by doing

improvement on TCP by creating a new TCP variant

that is accordance with characteristic WSN.

3. The new method LR-newreno

The framework of the TCP Congestion Control

mechanism is shown in Fig. 1. There are several

main processes such as Retransmission Timeout,

Congestion Avoidance, Fast Recovery, Slow Start,

and Fast Retransmit [12].

Congestion Avoidance and Fast Recovery Phase

is the function mostly used by TCP to adjust

congestion window size during data transmission; it

is, therefore, needed to improve the function to

achieve a more efficient and better performance for

specific applications like WSN.

Received: June 4, 2017 184

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

Fast
Retransmit

Retransmission
Timeout

Congestion
Avoidance

Fast
Recovery

Slow
Start

Send Missing
Packet

Dup

AC
K’
s

> 3 Dup
ACK’s

Timeout Timeout

Timeout

Dup

ACK’s

Cwnd >

ssthresh

Ssthresh = cwnd2

Cwnd = ssthresh

Start

Cwnd = 1

Figure.1 TCP Congestion Control Main Process [12]

3.1 TCP newreno

Existing congestion control mechanism of

Newreno as illustrated in Fig. 2, also known as

AIMD (Additive Increase Multiplicative Decrease),

comprises four phases, namely slow start and

congestion avoidance phase (part of AI), fast re-

transmit and fast recovery phase (part of MD).

In the slow-start phase, congestion window

(CW) will increase by 1 for each ack packet

received, so the size of cwnd will be 2 times per

RTT. It means that the cwnd increases exponentially

(2n) per RTT, while in the congestion avoidance

phase, CW will increase 1/CW per ack. Thus, the

size of the CW will increase by 1 per RTT. This

mechanism is very useful on networks with a wide

bandwidth, because the achievement of the

maximum bandwidth can be done quickly. Yet, for

WSN with a limited data rate (250 Kbps), what

happens is a rapid occurrence of congestion.

Frequent occurrence of congestion will increase the

resources requirement. Therefore, it is necessary to

conduct an improvement which could minimize the

congestion, but, at the same time, the bandwidth

utilization can still be maximized.

C
o

n
g

e
s
ti
o

n
 W

in
d

o
w

Slow Start Slow Start

Time

Window =1

Upon Timeout

Congestion

Avoidance

Fast Recovery

Windows halving Upon Congestion loss

Fast

Retransmission

Figure.2 TCP newreno

TCP congestion control assumes that the packet

losses occur as a result of congestion in the network,

and responds to it with Multiplicative Decrease by

decreasing the size of the cwnd to an half (cwnd =

cwnd /2) or 50%. Whereas, in wireless networks,

packet losses often take place due to the occurrence

of the error channel (channel noise), which generally

does not reach 50% and run in a very short time.

Thus, this mechanism can drastically reduce TCP

throughput performance in the WSN.

3.2 TCP vegas

To verify the results of the improvement, the

proposed method is also compared with TCP Vegas.

According to [13], TCP Vegas is more stable and

better than some others TCP versions because of the

congestion control before collision, but it has a

drwaback on competitive ability and lack on fully

take advantage of available bandwidth on

transmitting packets.
TCP Vegas perform a very different approach

respect to TCP New Reno in handling TCP windows

growth function during data transmission. TCP

Vegas is detect the congestion using the RTT

fluctuation of the packets rather than using occurred

losses packet as it does with TCP Newreno.

According to [14], Vegas-like protocol could

improve the availability of the system for supporting

real time application.

3.2 Design of proposed method

The New Method that is proposed in this paper

as show in Fig. 3 that describes the concepts of

proposed method (a) in detail and (b) in simple form.

The LR-Newreno algorithm is designed as

follows:

1) The main idea of this new method is how to

identify and record the best CW achieved

(CW_max) at each time before the occurrence of

loss and make it a reference for the next phase.

2) Congestion Avoidance phase is divided into 2

sub phases. The first sub phase is when the CW

increases rapidly approaching the last identified

CW_max point and tries to maintain the position by

slowing down the increasing speed of CW. The

second sub phase is when the last CW max point can

be passed smoothly, and CW will therefore increase

moderately (faster with a constant increase) to

utilize network bandwidth and identify new

CW_max.

Received: June 4, 2017 185

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

(a)

C
W

SS SS

Time

Window =1

Upon Timeout

CA

Fast Recovery

Fast

Retransmission

Proposed Method

Existing Method

(b)

Figure.3 Proposed mehod: (a) details and (b) more simple

3) CW_max will be monitored and identified as

“Ideal CW” if current CW has already left (d1

Range) the last CW_max point more than a half of

the last distance range (d). (d1 > 1/2d).

The New proposed method has implemented as

show in the algorithm pseudocode of each phase of

TCP LR-Newreno. Every step or phase is indicated

using number in circle.

Proposed Method Algorithm (pseudocode):
Phase 1:

CW =1

ssthresh = 20

Phase 2: SS (Exponential Growth)

If (rec Acks && CW < ssthresh)

CW = CW+1

Phase 3: CA (Additive Increase)

If (rec ACKs) {

If (CW < CW_max) { /* First sub phase */

CW = CW + (CW_max-CW)/(α.CW_max)

} else { /* Second sub phase */

CW = 1/(α.CW)

Ideal_CW = CW_max

}}

Phase 4: Fast Retransmit/Fast Recovery

If (congestion) {

If (rec 3 dupack or RTO) {

CW_max = CW

ssthresh = CW/2

If (RTO) {

CW = initial;

Exit and go to SS;

Else /* rec 3 dupack*/

CW = ssthresh;

If ((CW – Ideal_CW) > (β.ssthresh)) {

CW = Ideal_CW

}

Exit and go to CA Phase;

}

}

}

Determination Value of α and β:

The value of α and β needs to be adjusted with the

appropriate value to achieve a proper window

growth function of the proposed method as

illustrated in Fig. 3 (a) (red line), with the following

steps:

1) The value of α, which is the decreasing

coefficient of window growth function in the

Congestion Avoidance phase, refers to the existing

method. Because there is no coefficient of α, then

the value of α can be assumed as 1; within this value,

the window growth function of the existing method

will not change.

2) The value α = 1, and then varies in a repetitive

experiment while increasing the value by 1, which

means higher than the value of α, will make the

window growth function slower at the second sub

phase of congestion avoidance, as visualized in Fig.

3 (a) (red line).

3) The value of β, which is a coefficient of

sshthresh, the existing method without coefficient β,

can be assumed as β = 1, which is also assumed as

the highest value of sshthresh limit of the existing

method. Thus, to get the best value of β, a repetitive

experiment is conducted with varied values of β, 0 <

β <1. After some repetitive experiments, the best

value found was α = 4 and β = 1/2

4. Result and analysis

The study was accomplished by running

simulations using tools called Network Simulator 2

(NS-2). The simulations were aimed to compare the

performance of the existing methods and the

proposed methods by conducting experiments in

several scenarios with certain parameter values and

performance metrics, as follows:

4.1 Simulation parameter

The simulation parameters used in this research

are summarized as shown in Table I. It consists of

some parameters and it’s value such as traffic

generator, TCP Flows, Wireless link and channel

error.

d

Ideal_CW

ssthres

h

CW_max d1

1

3.1

3.2

2

4

4

3.1

ENHANCEMENT

CODE

ENHANCEMENT

CODE

Received: June 4, 2017 186

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

4.2 Simulation scenario

According to Fig. 4, in the first scenario, the

existing method and the proposed method will be

tested in a simple network with only one TCP flow

and without the presence of channel noise/error; the

entire network resources can therefore be utilized

and a maximum performance of each method be

measured. Afterwards, the performance between

both methods will be compared.

Simulations are run by activating tcp sink at host

node as a receiver, and at the sensor node, 1 tcp

agent activated as sender and using ftp application to

generate data. For the first experiment, the tcp agent

used at the sender is the existing method (Newreno);

after that, the data are transmitted from sensor node

1 to host node, conducted over 200s, and then the

results are measured. The same experiment is then

repeated, but by replacing the TCP Agent with the

proposed method (LR-Newreno) and also TCP

Vegas, and then the results are measured and

compared.

Table 1. Simulation parameters

Parameter Value

Traffic Generator FTP (File Transfer Procotol)

TCP Flows
1 (Scenario 1 & 2), 4 (Scenario

3 &4)

Wireless Link 802.15.4

Channel Error 1 – 10%

Routing Protocol DSDV

Number of Sink 1

Mobility Support No

Traffic Direction Node --> Sink --> Host

Packet Size 100 Bytes

Queue Type Drop Tail

Queue Length 50

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sink

Host/Server

Wireless
Wired

Figure.4 Scenario topology

The second scenario will run a test similar to the

first one with a change of the parameter of channel

error, randomly between 1 to 10%. This treatment

aims to test and compare the response between the

existing method and the proposed method as the

effect of channel errors in the wireless networks, as

commonly happen in an actual wireless network.

In the third scenario the existing method and the

proposed method will be tested in a more complex

network where the number of nodes propagated and

tcp flow also multiplied up to 4 consecutive

connection, in order to test and compare the

performance between the existing methods and the

proposed methods with a presence of bottlenecks

and congestion due to shared network resources and

without the existence of channel noise/error.

Simulations are run by activating 4 tcp sinks at host

node as a receiver, and at sensor node 1, 2, 3, and

sensor node 4; tcp agent is activated as sender and

uses ftp application to generate data. For the first

experiment, the tcp agent used at sender is the

existing method (newreno), and then it starts to

transmit data from each sensor node to host

consecutively; this is conducted over 100s, after

which the results are measured. The same

experiment is then repeated, but by replacing TCP

Agent with the proposed method (LR-Newreno) and

also TCP Vegas, and then the results are measured

and compared.

The fourth scenario will do the same test as the

third with changes in the parameter of channel error,

randomly between 1 to 10%. This treatment aims to

test and compare the response between the existing

method and the proposed method as the effect of

channel errors in the wireless networks, as usually

happen in the actual wireless network.

4.3 Performance Metrics

1) Data Drop Ratio

is a percentage of lost data while on delivery

from sender to receiver, also an indicator of

congestion on the network.

𝐷𝑟𝑜𝑝_𝑅𝑎𝑡𝑒 =
𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝐷𝑟𝑜𝑝_𝑃𝑎𝑐𝑘𝑒𝑡𝑠

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑃𝑎𝑐𝑘𝑒𝑡𝑠
 ×100 %

 (1)

2) Throughput

is an amount of data successfully transmitted

from the source to the receiver at a certain time span.

Throughput on this measure ignores all the

overheads that arise on the network.

Received: June 4, 2017 187

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑜𝑓_𝑎_𝑁𝑜𝑑𝑒 =
𝑇𝑜𝑡𝑎𝑙_𝐷𝑎𝑡𝑎_𝐵𝑖𝑡𝑠_𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛_𝑅𝑢𝑛𝑡𝑖𝑚𝑒

 (2)

The throughput of the network:

𝑁𝑒𝑡𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =

𝑆𝑢𝑚_𝑜𝑓_𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑜𝑓_𝐴𝑙𝑙_𝑁𝑜𝑑𝑒𝑠_𝐼𝑛𝑣𝑜𝑙𝑣𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑁𝑜𝑑𝑒𝑠
 (3)

3) Energy Consumtion

is a measure of the amount of energy spent by

the node for data transmission activity.

Measurements were made by giving the initial

energy on each node, and will be reduced with a

certain value for every data transmission and

reception activity on the node.

𝐸𝑛𝑒𝑟𝑔𝑦𝑐𝑜𝑚𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =

𝐼𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦 – 𝑓𝑖𝑛𝑎𝑙_𝑒𝑛𝑒𝑟𝑔𝑦 (4)

𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝐸𝑛𝑒𝑟𝑔𝑦𝐶𝑜𝑛𝑠𝑢𝑚𝑡𝑖𝑜𝑛
=

𝑇𝑜𝑡𝑎𝑙_𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑_𝐸𝑛𝑒𝑟𝑔𝑦

𝑁𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑁𝑜𝑑𝑒𝑠
 (5)

A. Simulation Result and Analysis

The existing method and the proposed method

have been tested in all of the scenarios, and the

results are then compared and analyzed regarding

the response between the existing method and the

proposed method as the effect of channel errors in

the wireless networks, as commonly occur in the

actual wireless network.

Simulation results as shown in the corresponding

Fig. 5 (a) and (b) show the relationship between CW

changes and simulation run time. The CW changes

in the congestion avoidance and fast recovery phase

clearly show a different reaction between the

existing TCP Newreno and TCP LR-Newreno. Fig.

5 (b) shows that the presence of channel errors has

resulted in CW to fluctuate more than that without

channel errors in Fig. 5 (a).

Congestion avoidance phase of TCP Newreno

(green line) indicates linear CW changes, while TCP

LR-Newreno (red line) indicates arching CW

changes. This means that at the beginning, the CW

change will be faster and when approaching the

previously known maximum CW, it becomes much

slower. The aim is to maintain an ideal longer CW.

(a)

(b)

Figure.5. Congestion Window Comparison: (a) with and

(b) without Channel Error

Fast recovery phase is the phase when the packet

loss occurs with indications of reception of 3

duplicate acks at the receiver side and is visualized

on the graph by the sudden changes of CW drops.

The comparison of TCP LR-Newreno and TCP

Newreno are shown in Fig. 6. (a), (b) and (c). Fig. 6.

(a) compare between Drop rate, (b) compare

between throughput and (c) between energy

consumption.

The main differences of fast recovery phase

between TCP Newreno and LR-Newreno are shown

at second 42, where TCP LR-Newreno just

decreases the current CW to the previously

identified ideal CW rather than doing windows

halving (dividing the current CW by 2) as it does

with TCP Newreno.

Sudden reduction of CW changes as

visualization of packet loss occurrence in TCP LR-

Newreno, which is less than that in TCP Newreno,

shows that the modified TCP has a more efficient

performance in term of lower drop rate and node

energy consumption and also produce better

throughput.

Figs. 6 (a), (b) and (c) show the proving of

concept TCP LR-Newreno has better performance

compare to previous protocol TCP Newreno.

TCP Vegas has better energy consumption

compare to TCP Reno and LR-Newreno. Number of

activity for sending and receiving routing protocol

Received: June 4, 2017 188

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

(a)

(b)

(c)

Figure.6 Comparison of TCP LR-Newreno, TCP

Newreno and TCP Vegas on (a) drop rate, (b) throughput

and (c) energy consumption

massages on the node is fewer than TCP-LR

Newreno.

B. Summary of Findings

Enhancement of the existing algorithms shows

us, through the simulation result of each scenario,

that our suggestions to modify the existing TCP

method in congestion avoidance and fast recovery

phase improves its efficiency in term of drop rate

and node consumed energy and also improves TCP

performances on throughput. The simulation

experiments conducted using star topology wireless

sensor network with random channel error between

1 to 10%, both in simple network and more complex

network, prove that our proposed method has

outperformed the existing method almost in all

aspects.

Table 3. shows that the problem of adopting

TCP for WSN is not suitable for handling wireless

channel error, but it is successfully improved based

on our proposed hypothesis (scenario 2 & 4).

The result of experiments show the prove of

concept of proposed method performance compare

to existing method.
While the comparison of the proposed method

with TCP Vegas, has not yielded satisfactory results.
From Fig. 5 it can be seen that, TCP vegas has a

very different congestion control approach. This

figure shows TCP Vegas is more stable in the data

transmission process, but on the other hand unable

to increase Windows size agressiffly to increase

bandwidth utilization available on the network.

Table 2. Summary of Simulation Result without

Channel Noise/Error (LR-Newreno vs Newreno)

Scenario
TCP

Scheme

Drop

Rate

(%)

Avg

THR

(Kbps)

Consumed

Energy

(mcJoule)

Scenario

1

TCP

Newreno
1.49 81.43 4,304,211

TCP

LR-

Newreno

0.31 82.71 4,178,861

Scenario

3

TCP

Newreno
0.92 81.36 6,048,495

TCP

LR-

Newreno

0.14 82,64 5,918,243

Table 3. Summary of Simulation Result with Channel

Noise/Error (LR-Newreno vs Newreno)

Scenario TCP Scheme

Drop

Rate

(%)

Avg

THR

(Kbps)

Consumed

Energy

(mcJoule)

Scenario

2

TCP Newreno 18.59 73.11 4,770,195

TCP LR-

Newreno 12.97 74.37 4,643,822

Improvement 5.62%

1.26

Kbps

(1.8%)

126,373

mcJoule

(Efficiency

2.65%)

Scenario

4

TCP Newreno 20.21 71.17 6,897,275

TCP LR-

Newreno 12.94 74.20 6,579,965

Improvement 7.27%

3.20

Kbps

(4.5%)

317,310

mcJoule

(Efficiency

4.6%)

Received: June 4, 2017 189

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

Table 4. Summary of Simulation Result without

Channel Noise/Error (LR-Newreno vs Vegas)

Scenario
TCP

Scheme

Drop

Rate

(%)

Avg

THR

(Kbps)

Consumed

Energy

(mcJoule)

Scenario

1

TCP

Vegas
0.01 82.29 3,961,653

TCP LR-

Newreno
0.31 82.71 4,178,861

Scenario

3

TCP

Vegas
0.05 81.81 5,579,015

TCP LR-

Newreno
0.14 82.64 5,918,243

Table 5. Summary of Simulation Result with Channel

Noise/Error (LR-Newreno vs Vegas)

Scenario
TCP

Scheme

Drop

Rate

(%)

Avg

THR

(Kbps)

Consumed

Energy

(mcJoule)

Scenario

2

TCP

Vegas
16.58 73.20 4,195,676

TCP LR-

Newreno
12.97 74.37 4,643,822

Scenario

4

TCP

Vegas
15.39 73.68 6,125,993

TCP LR-

Newreno
12.94 74.20 6,579,965

The results as shown in the summary of

performance in Table 5 on the noisy/error-prone

network, the proposed method is more competitive

to the Drop Rate and Throughput categories, but on

the other side of TCP Vegas is more competitive in

terms of energy consumption.
This result is a bit anomalous, because according

to our hypothesis, that the decrease of the number of

error (drop rate), will reduce the activity of data

retransmission so that sender node will be have

more efficient energy consumption.
After investigating the trace file of simulation

results, we found that energy consumption for TCP

Vegas is more efficient because the amount of

activity for sending and receiving routing protocol

messages on the node is fewer than TCP-LR

Newreno and TCP Newreno, although drop rate of

the TCP LR-Newreno is better.
This is confirmed because for the measurement

of energy consumption in this research is applied by

reducing the available energy of the node for each

send/received activity, including for the needs as

above. The method used in TCP Vegas is not the

main focus of this research, and will be followed up

in further research.

5. Conclusion

WSN environment is unique network condition.

Congestion control in this system is a must to fit to

its characteristic. This paper has proved The New

TCP LR-Newreno congestion control that suitable

for WSN environment. The result of all scenarios

show that the new LR-Newreno method could

improve efficiency in term of drop rate, node energy

consumption and throughput. These simulations

have been accomplished using star topology

wireless sensor network with random channel error

between 1% to 10%, both in simple network and

complex network. The result shows that the TCP

LR-Newreno provides better performance in term of

several parameters such as throughput, data drop

rate and energy consumption when compared to the

existing method of TCP Newreno for WSN

environment.
TCP protocol is still in use and technologies are

evolving, there is a potential for other problems to

arise in future. There is also an interest to improve

the performance of networks. One part of our future

work is to make further investigation compare to

other TCP variant like Vegas, also investigate the

performance of TCP algorithms in different network

set-ups, different combination of routing protocol,

another queue management and adjusting simulation

parameter as actual as “real world” networks.

Acknowledgments

Authors thank to Telkom University for financial

support under program of Research and Community

Service Department (PPM) on International

Research Scheme. We also thank to School of

Computing Faculty for research lab. support.

References

[1] M. Anwander, G. Wagenknecht, and T. Braun,

“Management of Wireless Sensor Net- works

using TCP/IP,” In: Proc. of IWSNE'08, 1-8,

Santorini Island, Greece, 2008.

[2] T. Braun, T. Voigt, and A. Dunkels, “TCP

support for sensor networks”, In : Proc. of

Fourth Annual Conference on Wireless on

Demand Network Systems and Services,

Oberguyrgl, pp. 162-169, 2007.

[3] A. Khurshid, M. H. Kabir, and M.A.T. Prodhan,

“An improved TCP congestion control

algorithm for wireless networks”, In:
Proceedings of 2011 IEEE Pacific Rim

Conference on Communications, Computers

and Signal Processing, Victoria, BC, pp. 382-

387, 2011.

Received: June 4, 2017 190

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.20

[4] O. Gasser, “TCP/IP communication in a WSN”,

In : Proc. of Sensor Nodes–Operation, Network

and Application (SN) 75, 2011.

[5] N. Parvez, A. Mahanti, and C. Williamson,

“An Analytic Throughput Model for TCP

NewReno”, IEEE/ACM Transactions on

Networking, Vol. 18, No. 2, pp. 448-461, April

2010.

[6] C. Wang, K. Sohraby, Y. Hu, B. Li, and W.

Tang, “Issues Of Transport Control Protocols

For Wireless Sensor Networks”, In: Proc. 2005

International Conference on Communications,

Circuits and Systems, Hongkong, 2005.

[7] A. Ayadi, P. Maille, and D. Ros, “TCP over

Low-Power and Lossy Networks: Tuning the

Segment Size to Minimize Energy

Consumption”, In: Proc. of the 4th IFIP

International Conference on New Technologies,

Mobility and Security, Paris, pp. 1-5, 2011.

[8] A. Dunkels, “Full TCP/IP for 8-bit

architectures”, In: Proc. of the 1st international

conference on Mobile systems, applications

and services (MobiSys '03). ACM, New York,

NY, USA, pp.85-98, 2003.

[9] L. Li, Y. Li, Q. Chen, and N. Nie, “PTCP:

Phase-Divided TCP Congestion Control

Scheme in Wireless Sensor Networks”, In:

Proc. of Mobile Ad-Hoc and Sensor Networks,

Springer Berlin Heidelberg, pp. 281-290, 2007.

[10] S. Floyd, and K. Fall, “Promoting the use of

end-to-end congestion control in the Internet”,

IEEE/ACM Transactions on Networking, Vol.

7, No. 4, pp. 458-472, 1999.

[11] J. Antila, “TCP Performance Simulations

Using Ns2”, 2002.

[12] B. M. Sabbar, “Generation and simulation of

new transmission control protocol (TCP) agent

over network simulator 2 (NS-2) platforms”,

Scientific Research and Essays 9.10, pp. 452-

457, 2014.

[13] Y. Luo, M. Yin, H. Jiang, and S. Ma, “An

improved congestion avoidance control model

for TCP Vegas based on Ad Hoc networks”,

In: Proc. of the 26th Chinese Control and

Decision Conference (2014 CCDC), Changsha,

pp. 2310-2314, 2014.

[14] M. Massaro, C. Palazzi, and A. Bujari,

“Exploiting TCP Vegas algorithm to improve

real-time multimedia applications”, In: Proc. of

the 12th Annual IEEE Consumer

Communications and Networking Conference,

pp.316 - 321, 2015.

