
Received: June 25, 2017 162

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

A Hybrid Approach of Memetic and Bees Life Algorithm for Multiobjective

Workflow Scheduling in Cloud

Padmaveni Krishnan1* John Aravindhar1

1Hindustan Institute of Technology and Science, India

* Corresponding author’s Email: kpadmaveni@hindustanuniv.ac.in

Abstract: Cloud computing is a paradigm that provides platforms for scientific applications. In clouds, the users pay

based on the usage and the quality of service (QoS). There are many workflow scheduling algorithms in the

heterogeneous computing environment. But all these cannot be applied in cloud due to t service based resource

managing method in cloud. This paper discusses a workflow scheduling problem which gives an optimized solution

considering make span and deadline as two objectives. A novel hybrid algorithm of Memetic algorithm and Bee swarm

optimization algorithm called Memetic Bee Optimization algorithm (MBOA) is proposed. Experiments on randomly

generated workflow and real time workflows show that the schedules generated by MBOA gives more stability on

most of workflow instances. The results also show that the algorithm gives significantly better solutions than existing

QoS optimization algorithms.

Keywords: Cloud computing, Memetic algorithm, Bee swarm optimization algorithm, Memetic bee optimization

algorithm.

1. Introduction

Cloud computing has emerged as a computing

paradigm that aims at providing computing services

as scalable and virtualized resources to enormous

remote users having heterogeneous requirement.

Cloud provides computing services like networks,

storage and services allocated from the resource pool

with minimal management. The services are provided

so that they follow the service level agreement. The

instances in SaaS are virtual machines(VMs). The

VMs help the customer in getting almost unlimited

access to the resources and also plays a major role in

reducing the Total Ownership Cost.

Any application that has jobs and flow of data

among jobs can be described by a Workflow model

[1]. Workflow scheduling problem is is a problem of

assigning jobs to processors in multiprocessor

environment [2]. It is NP-complete and it can be

represented as a Directed Acyclic Graph(DAG) in

which the nodes are processes and edges are

workflow among processors [3]. The edges show the

data dependencies among jobs and they are directed

[4]. Different workflows of Montage and Laser

Interferometer Gravitational wave observation

(LIGO) are explained by Luiz et al [5]. Montage

application creates an image like sky that has about

17 hierarchical workflows and 900 sub workflows.

LIGO represents a workflow that involves Tera bytes

of data for producing the results.

Fig. 1 shows hybrid IaaS cloud having resources

of private cloud and public IaaS cloud. The

scheduling algorithm is run by the broker when the

user submits a workflow. The broker determines the

following:

i. The resources those will be used

ii. The part of workflow that will run on

each cloud provider

Generally algorithms use QoS constraints and

solves the problem by treating as single objective

optimization problem. LOSS and GAIN [6] are

algorithms that use a schedule and reassigns each job

to another processor till it matches to budget.

Algorithms like NSPO[7] use the Pareto Swarm

Received: June 25, 2017 163

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

Figure.1 The hybrid IaaS cloud

Optimization algorithm (PSO) in order to generate

trade off among cost and make span [8]. Multi-

objective Heterogeneous Earliest Finish Time is an

algorithm that extends the workflow in Amazon EC2.

Artificial bee colony algorithm is used to analyse

the system reliability in machines and is verified with

case examples [9]. Least squares support vector

machines and particle swarm optimization is used to

evaluate the system failure probability of soil slopes

[10].

Even though the above algorithms can easily be

applied in traditional heterogeneous environment,

they are tough to apply in cloud. In this paper, an

optimization algorithm for cloud workflow

scheduling problem is proposed. The algorithm

generates a set of schedules having different trade off

between time and cost factor. The proposed algorithm

is a hybrid algorithm called memetic bee

optimization algorithm which has genetic algorithm

and bees algorithm as its predecessors. MBOA uses

real world pay-per-use pricing strategies and is based

on IaaS instances. The memetic operators like

encoding, evaluation function, initial population,

crossover, mutation and reproduction are used. The

bees algorithm is blended with memetic in the place

of the selection for the next generation and also in

selection of offspring for crossover.

The section 2 of paper highlights the commonly

scheduling algorithms and challenges on IaaS

platforms. This is followed by scheduling problem

definition and the pricing models in section 3. The

section 4 explains the memetic algorithm and the way

how it is merged with bees algorithm to make MBO.

Section 5 says about testing and the paper is

concluded in section 6.

2. The common scheduling algorithms and

challenges in IaaS platform

The workflow scheduling problem considered

here assumes that the amount charged to a user is

purely based on the resource utilized. POSH is an

algorithm that has exponentially correlated the CPU

cycles to cost. Our pricing model is based on two

assumptions:

i. The total cost of task is the sum of cost of

subtask.

ii. The cost cannot be changed when the

service is under run.

The existing scheduling algorithms have

challenges on the limitation of resource in the

resource pool. List based heuristic algorithm finds the

best assignment by traversing all available processors

in the selection step of every task. But this cannot be

applied every time in cloud scheduling since the

resources are enormous and it is not possible to do

such traversals every time. One of the well-known

existing algorithm is Particle Swarm optimization

based algorithm which defines the particle positions

and velocities as matrices. Here the order is the no of

tasks(n) by no of resources(m).ie.,m x n. The

disadvantage here is the number of resources ‘m’ may

be too large to handle.

Few genetic operators represent the mapping of

task to resources by strings. But, the existing genetic

approaches might not be suitable to the cloud

environment always because the VM instances are

not permanent since they may be allocated and

deallocated anytime during execution.

Durillo et al., [11] proposed a list based heuristics

that can be used in cloud. This algorithm constructs

an instance pool of limited size and hosts out the

possible schedules in advance.

In the algorithm proposed, the pricing criteria is

considered when the fitness evaluation is made and

the algorithm is designed such that it does not depend

upon any fixed pricing schemes.

3. The workflow scheduling Problem

3.1 Workflow definition

A workflow can be generally represented by

means of Direct Acyclic Graph (DAG). Here Work

flow WFLOW=(J,C) where J is the set of ‘n’ vertices

or jobs. J={J0 ,J1 ,….,Jn} and C is the set of edges or

control dependencies. C={(Ji,Jj)/ Ji,Jj Є J}. Each

control dependency is assigned with the weight that

represents the quantity of data transferred among jobs.

The weight assigned to the vertices are the execution

Received: June 25, 2017 164

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

time of jobs in a processor. It is denoted by

Exectime(Ji).

Data(Ji ,Jj) denoted the transfer of data from job

Ji to job Jj. The data transfer in always unidirectional.

Excluding the source job, all other jobs have

predecessor. Every job Ji apart from the source has its

predecessor Jk provided there is an edge from Jk to Ji

ie., Pred(Ji)={Jk/(Jk,Ji)Є C }. Since the source job will

not have any predecessor, Pred(Jsource)=Φ

3.2 Cloud resource model

The infrastructure as service platform delivers

computational resource through virtual machines. A

virtual machine that is running is called as an instance.

There are different range of instance types having

different execution time of jobs and bandwidths in

IaaS platform. It is assumed that a customer can get

any number of instances. Hence the set of instances

I={I0 ,I1 ,….,} is infinite whereas, the set

T={T0 ,T1 ,….Tm} is the type of instances offered and

it is fixed. Each job is mapped to one instance from

the available type in T.

Every workflow has a user defined deadline

associated with it. This deadline is the maximum time

limit to complete the execution in cloud environment.

If the user doesn’t give the deadline, it is obtained by

assigning all jobs sequentially to the fastest instance

and calculate minimum execution time of the

workflow

Each instance type Ti, has its own features

represented by CPU Type CPU(Ti), Memory M(Ti)

and Cost per time interval. It is also assumed that

parallel execution of the jobs is also possible. The

CPU instance plays a major role in the time taken. It

specifies the configuration so that if the time taken to

execute any job is half if the CPU instance is doubled.

The time to run a of Job Ji on instance type Tj is

represented by Eq. (1).

𝑇𝑖𝑚𝑒(𝐽𝑖) =
𝑈𝑛𝑖𝑡𝑡𝑖𝑚𝑒(𝐽𝑖)

𝐶𝑃𝑈(𝑇𝑗)
 (1)

 Where 𝑈𝑛𝑖𝑡𝑡𝑖𝑚𝑒(𝐽𝑖) is the time taken to execute

the job Ji for unit CPU time.

Any instance type Ti will have its own bandwidth

represented by bw(Ti). When the communication is

among different instances, the bandwidth of both may

be different. Here, the minimum among both

bandwidth is considered to calculate the time so that

the worst case time of communication can be

calculated.

T𝑖𝑚𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑖𝑜𝑛(𝐽𝑖, 𝐽𝑗) =

{
(𝐽𝑖,𝐽𝑗)𝑑𝑎𝑡𝑎

min{𝑏𝑤(𝐼𝑛𝑠𝑅),𝑏𝑤(𝐼𝑛𝑠𝑆)}
𝑅 ≠ 𝑆

0, otherwise
 (2)

Where InsR and InsS are different instances to

which Ji and Jj are scheduled.

3.3 Scheduling problem

The leading cloud providers like Amazon EC2,

IBM, Microsoft Azure, etc have different pricing

schemes allowed. The algorithm designed is a generic

one that flexible to fit for any pricing model. It is

assumed that there are ‘k’ different pricing models.

P={P0 ,P1 ,….Pk}. The function COST (Il,Pm,Tn) will

calculate the cost for the instance ‘l’ for the pricing

model ‘m’ having the instance type ‘n’. The IaaS

model is represented in general as S=(I,P,M) where

M stands for instance type

The goal is to find a schedule to execute a

workflow on cloud computing environment such that

total execution cost and makespan are minimized by

meeting the deadline constraints. Hence the two main

objectives in workflow scheduling are

i. Total Cost Minimization

ii. Makespan

3.3.1. Total cost Minimization

For a workflow WFLOW=(J,C) and an IaaS

S=(J,P,M), the idea is to produce more scheduling

choice having instance, type and order. The order is

the vector containing the scheduling order of jobs.

The problem is considered with the constraint that the

pricing scheme once chosen remains unchanged till

the usage is completed. Hence the goal for the

scheduler is to provide a schedule that has minimal

cost among all possible schedules.

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑜𝑠𝑡(𝐼𝑖, 𝑃, 𝑇𝑖)
𝑛

𝑇𝑖 Є𝐼∗ (3)

Here 𝐼∗ is the instances used by the user, p is the

pricing option which remains unchanged.

3.3.2. Makespan

Makespan of a workflow is the total time elapsed

from the start of the first job till the completion of the

last job. Makespan will be less if more parallel

execution is done.

Any schedule has Start time(ST) and completion

time(CT). Start time of any job will depend upon the

finish time of its previous job. If the job ‘Ji belongs

Received: June 25, 2017 165

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

to instance Ij, it can be said that Ins(Ji)=Ij. The

instance available time is mentioned in the vector

Avail(J). Initially it is 0 for all the available instances.

When in execution, Avail(J) will have the time when

the instance will become free for next execution.

ST(Jfirst)=0 (4)

ST(Ji)=max{Avail(Ins(Ji), 𝑚𝑎𝑥(𝐶𝑇(𝑇𝑖𝑚𝑒(𝐽𝑖) +
𝑇𝑖𝑚𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐽𝑗, 𝐽𝑖))𝑛} (5)

If Jstart is the first job of execution and Jexit is

the last job to complete the execution in the workflow,

Makespan=CT(Jexit)-ST(Jstart) (6)

4. MBOA for optimization

4.1 Memetic algorithm

The memetic algorithm can be used to optimize

several conflicting objectives by combining them as

a single objective. The memetic algorithm is an

evolutionary algorithm that simulates the natural

evolution and is successful in the past. For the

workflow scheduling problem, the memetic

algorithm generates a set of schedules selected by the

user constraints. The schedules are refined using the

genetic operators and the solution is reached. The

solution is generated in polynomial time and could be

optimal or near optimal solution.

4.2 Bees algorithm

The Bees algorithm is also an optimization

algorithm which is based on the life of Bees. The bee

colony generally has a Queen bee ‘Q’, lots of male

bees called Drones ‘D’ and several thousands of

sterile females called workers ’W’. [12]. The best fit

schedule in any iteration is treated as queen ‘Q’. The

crossover operation in any iteration is done with

queen and Drones. The worker bees are those which

are worst fit. These schedules are not fit for the next

iteration.

4.3 Memetic bee optimization algorithm

(MBOA)

The MBOA is a hybrid version of Memetic

algorithm by blending the concepts of Bees algorithm

also. The flow diagram of the hybrid version is in Fig.

2.

The constraints considered in this algorithm are

Figure.2 MBOA algorithm

Initialize the population of N schedules.

Evaluate the fitness function for the

schedules generated. The best fit is the

queen. The next N/2 -1 fit schedules are

Drones. The remaining N/2 schedules

are workers.

Terminatio

n criteria

Y/N

Perform crossover for the queen and all

the drones

For every schedule generated, mutate

continuously till a better solution is

reached or the no of times mutated has

reached the maximum limit

Select the population for next

generation. Include the queen to the

next generation.

If new queen is emerged, Perform the

same procedure for new regions also

Schedule

to

Provider

Yes

 No

Received: June 25, 2017 166

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

Figure.3 Example DAG workflow

i. The percentage of Drones and Workers need to

be changed towards the end of solution.

Towards the end, select more drones for

quicker convergence to solution.

ii. New queen generation is identified by

checking if the new generation has any

schedule with <1% closer solution as initial

queen

iii. The termination criteria is that, if one region

couldn’t give better solution continuously for

N/5 iterations, stop proceeding with that region

4.4 Fitness function

The fitness of any possible solution is the major

factor for selecting the solution. Fitness function for

this problem is a combination of both objectives

mentioned in section 3.3

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ (𝑤𝑖𝑂𝑏𝑗𝑖)2
𝑖=1 (7)

Where O𝑏𝑗1 and O𝑏𝑗2 are Total cost and Makespan

respectively and 0≤𝑤𝑖 ≤1.

4.5 Encoding procedure

The encoding procedure is used to map the cloud

workflow as DAG. The problem encoding is done as

follows. Sequence of job indices represents the Order

of schedule. This can be like O1 , …..On where Oi+1

will start execution only after the completion of Oi.

The job_instance is an array of size ‘n’ where the ith

element represents the instance of ith job. The

instance_type is an array of size ‘m’ where the ith

element has the instance type of ith instance. Fig. 3 is

an example of DAG workflow.

Topological ordering using the following

procedure:

i. Find the indegree of all vertices

ii. The first node to schedule is the node

with indegree 0

iii. Remove that node and the edges

corresponding to that and find the new

node with indegree 0.

iv. Repeat the above step until all the nodes

are ordered.

5. Memetic and bees algorithm operators

5.1 Crossover

The scheduling for jobs here is precedence

constrained. The order should always be maintained

in the dependencies between jobs. If Jk has to get the

output of Ji, then Ji should precede Jk in all the

possible orders generated. The crossover used here

is Partially Matched Crossover(PMX) shown in

Algorithm 1. Given two schedules ‘A’ and ‘B’ the

PMX randomly picks two crossover points. This

crossover point is used for the construction of next

generation schedule. Here substring is a sub

sequence of job in the given schedule referred with

starting and ending position. The crossover is

performed by considering the following facts.

i. Same job should not repeat.

ii. The dependencies among job are

maintained.

The procedure for Crossover operation is given in

Algorithm 1:

i. Procedure Partially_Matched (Schedule

A, Schedule B)

ii. n is the number of jobs

iii. Select a random value P1 between 0 and

n-1

iv. Select second random value P2 between

0 and n-1 where P1 ≠P2

v. If P1 > P2, swap P1 and P2

vi. From the Schedule A, copy he substring

from position P1 to P2 as O1.

vii. From the Schedule B, copy he substring

from position P1 to P2 as O2.

viii. For all allels(Jobs) in substring O1 and

O2

ix. If the allels in substring (A,0,P1)and

substring (A,Pi+1,n-1) does not contain

entries from substring (A,P1,P2) and

substring (B,P1,P2), then replace

substring O1 by O2,

x. else repeat steps 3 to 9.

xi. For string O1 and O2

xii. Find the remaining allels in O1 and O2.

xiii. Place them from left to right.

xiv. Check if the dependencies among jobs

are satisfied. If not repeat steps 3 to 12

Received: June 25, 2017 167

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

Algorithm 1: Partially matched crossover

5.2 Mutation

The mutation is a memetic operator that

maintains alteration in one or more gene values

shown in algorithm 2. It is an occasional random

alteration of a value in a schedule with small

probability.

i. Procedure Mutation(Schedule A)

ii. n is the number of jobs

iii. Select a random value P1 between 0 and

n-2

iv. Select a random value P1 between 1 and

n-1 and P2 > P1

v. Swap the allels in positions P1 and P2

and generate new schedule .

vi. Check if dependency among jobs is

maintained

vii. If not repeat step 3 to 6

viii. Check the fitness of new string

ix. Repeat step 3 to 8 till a better fit solution

is obtained or if the number of mutation

done is ‘n’
Algorithm 2: Mutation

5.3 Initial population

In any scheduling algorithm, the solution space is

massive. The generation of initial population plays a

major role in the convergence to the solution. For a

problem size of ‘n’ jobs, the initial population of ‘n’

possible schedules are generated. Out of the ‘n’

schedules, first four schedule are based on

i. Topological ordering

ii. Earliest Finish Time algorithm

iii. Shortest Job First

iv. Minimal Cost Ordering algorithm

The remaining n-4 schedules are generated on

random ordering. Any schedule generated will be

considered only if the dependency is maintained. This

is depicted in algorithm 3.

The four algorithms included in generation of

initial population helps in quicker convergence

towards the optimal solution. For every schedule

generated, the instance-type and job to instance are

mapped accordingly.

i. Procedure initial population

ii. n is the number of jobs

iii. m is the number of instance types

iv. Generate the first schedule by

topological ordering based on indegree

of any vertex.

v. Generate the second schedule by

heterogeneous earliest finish time

algorithm.

vi. Generate the third schedule by Shortest

job first algorithm

vii. Generate the fourth schedule based on

the descending order of cost .

viii. For i=1 to n-4

ix. Generate a random schedule ‘I’ so that

the dependency is maintained.

x. Find the fitness of each schedule. The

best fit is the queen. The next N/2 -1 fit

schedules are Drones. The remaining N/2

schedules are workers.

xi. End procedure
Algorithm 3: Initial population

5.4 Complexity analysis

The complexity of memetic operators crossover

and mutation are O(n2) and O(n) respectively for n

jobs. The checking of dependency and fitness is O(n).

The time complexity of evaluation and generation

each generation is O(n2). For a graph of ‘n’ vertices,

a maximum of n2 edges exist. For ‘g’ iterations, the

overall complexity is O(gn2). Excluding the

evolution, four schedules in initial population are

generated based on algorithms. The complexity of

these also needs to be included. The HEFT,

Topological ordering, SJF and MCO have O(n2)

complexity each. The overall complexity is O(4n2) +

O(𝑔n2). Which is O(𝑔n2) in general.

6. Testing

6.1 Experimental workflow

The MBOA algorithm is assessed using standard

workflows defined in Pegasus workflow

management systems[13]. The workflow models

used are Montage, Epigenomics, Cybershake, Sipht

and Inspiral. [14]. It is shown in Fig. 4

6.2 Algorithms compared

MBOA is compared with two algorithms namely

Particle Swarm optimization(PSO)[15] and Genetic

algorithm(GA) [16].

PSO is an evolutionary algorithm based on

particles (ie.,bird or fish) [17]. The particles have the

ability to move around the solution space and reach

to a solution [18].

GA is a meta-heuristic algorithm based on

evolutionary ideas of natural selection and genetics.

Received: June 25, 2017 168

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

[19]It provides solution to optimization problems

with its initialization, selection, and generic

operators[20].

6.3 Experimental setup

The algorithm is implemented in Cloudsim3.0.

We assume only six types of instances taken from

Amazon as sample. The processing time for each job

is estimated based on their processing capacity and

the instance.

The average bandwidth to transfer intermediate

data between instances is comparable to the average

bandwidth provided by Amazon elastic block store

(20kbps). Our experiment has considered a billing

period of 10 minutes and the acquisition delay is

estimated as 1 minute.

We have considered six sizes of scientific

workflow in our experiments small (approx. 20 Jobs),

medium (approx. 50 Jobs), large (approx. 100 Jobs),

xlarge(approx. 200 Jobs), 2xlarge(approx. 500 Jobs)

and 4xlarge(approx.1000 Jobs). We have conducted

each experiment 10 times.

To evaluate the performance of the MBOA, we

need the deadline of each workflow. The deadline is

obtained from any of the following

i. The user

ii. By assigning all jobs sequentially to the

fastest instance and calculate minimum

execution time of the workflow.

The deadline is also recorded as the Fastest time.

Assigning the jobs sequentially to the slowest

instance gives the Slowest Time. Testing was done

using four different deadline intervals of 1,2,3 and 4.

Deadline interval is calculated by finding the

difference between fastest time and the slowest time

and then dividing it by five. Say, if the slowest time

is 50 ns and the fastest time is 100 ns, the difference

is 50 ns. Here the interval is 10ns. The deadline

interval 1 is 60ns, deadline interval 2 is 70 ns and so

on.

The IaaS parameters used for different virtual

machines are mentioned in the table 1 (source

www.aws.amazon.com). Here L, M and represents

the Low, Moderate and High in Network Preference.

7. Results and analysis

Graphs are plotted to show the deadlines met.

Comparison graph is generated based on the

percentage of fitness given by each algorithm.

Table 1. IaaS parameters

Inst
type

C
P
U

Memory
(GiB)

PIOP
Opzd

N/W
Pref

Price

Db.m1.
small

1 1.7 - L $0.044

Db.m1.
medium

1 3.75 - M $0.087

Db.m1.
large

2 7.5 Yes M $0.175

Db.m1.
xlarge

4 15 Yes H $0.350

Db.m2.
2xlarge

4 34.2 Yes M $0.420

Db.m2.
4xlarge

8 68.4 Yes H $0.840

(a) (b)

(c) (d)

(e)

Figure.4 Workflow models: (a) Montage, (b)

Epigenomics, (c) Cybershake, (d) Sipht, and (e)

Inspiral

http://www.aws.amazon.com/

Received: June 25, 2017 169

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

The fitness is compared among three algorithms

namely

 Genetic Algorithm(GA)

 Particle swarm Optimization(PSO)

 MBOA

 For the testing purpose it is assumed with 0.5 for

𝑤𝑖 in Eq. (7).

In case of the Montage workflow, MBOA gave a

better result than GA and PSO. The GA gave better

result for deadline interval 3 and 4. MBOA achieved

100% result in deadline interval 3 and 4. It gave 92%

and 96% result in deadline interval 1 and 2

respectively. Comparing the results for Epigenomics,

it is inferred that MBOA gives a better result than the

other two algorithms.

In the Cybershake workflow model, it is found

that all the three algorithms showed a decently better

performance in deadline 1 and 2. MBO gave 100%

performance for deadline 3 and deadline 4.

While comparing the performance in the Sipht

workflow, PSO gave a better performance than GA.

But MBOA outperformed both.

In the Inspiral workflow model, MBOA showed

the best of 92 % for interval 1 & 2 and 100% for

interval 3 &4. GA came closer to MBOA having 80%

accuracy in interval 1 & 2 and 100% for interval 3 &

4.
Comparing the values and graph in Fig. 5, the

other two algorithms totally outperform GA. Out of

the other two algorithms MBOA has proven better

than PSO.

8. Further analysis

The performance was analysed for different

intances. Inference says that the solution was

generated with lower makespan most of the time. As

future work, analysis can be done with hybrid

algorithms of ACO or Modified PSO algorithm with

genetic algorithm An important point is the impact on

the selection of initial population. The initial four

algorithms selected has a major difference in time for

the convergence to the solution. It helps in faster

convergence towards solution.

When the algorithm was checked with the input

condition of one VM of every type in each job. It was

found that the algorithm takes higher execution time

for longer jobs when compared to shorter jobs. When

seeing the computational complexity, MBOA

algorithm is better than the other algorithms like PSO.

(a)

(b)

(c)

(d)

0

20

40

60

80

100

D Interval
1

D Interval
2

D Interval
3

D Interval
4

%
 O

F
D

EA
D

LN
E

M
ET

GA PSO MBOA

0

20

40

60

80

100

D Interval
1

D Interval
2

D Interval
3

D Interval
4

%
 O

F
D

EA
D

LN
E

M
ET

GA PSO MBOA

0

20

40

60

80

100

D Interval
1

D Interval
2

D Interval
3

D Interval
4

%
 O

F
D

EA
D

LN
E

M
ET

GA PSO MBOA

0

20

40

60

80

100

D Interval
1

D Interval
2

D Interval
3

D Interval
4

%
 O

F
D

EA
D

LN
E

M
ET

GA PSO MBOA

Received: June 25, 2017 170

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

(e)

Figure.5 Deadline for real-world workflows: (a)

Montage, (b) Epigenomics, (c) Cybershake, (d)

Sipht, and (e) Inspiral

9. Conclusion and future work

Many scheduling algorithms are available for

multiprocessor architectures in cloud environment.

But most of these have difficulty when directly

applied in cloud. The algorithm developed

overcomes the issues in the real-world cloud

computing models.

Cloud computing provides high performance

computing resources on demand for solving large

scale scientific problems. To execute the large scale

scientific application, cloud provider needs to have

appropriate provisioning algorithm which helps the

cloud provider in minimizing the cost and makespan.

Towards this, MBOA is proposed.

For giving a solution to the multi-objective cloud

scheduling problem, an encoding scheme that

represents the scheduling criteria having the different

instances of jobs and their types are modelled. The

memetic operators like evaluation function,

crossover and mutation are used along with the bees

algorithm. The experiment is checked with the actual

pricing model in Amazon EC2 and the results are

promising.

The future work can be a hybrid algorithm of

PSO or any other optimization algorithm using more

than one pricing scheme. The issues like termination

delay of virtual Machines can be considered. Further

work can be done in execution of workflow deployed

in different regions and the data transfer cost among

different data centre can be considered.

References

[1] J. Yu, M. Kirley, and R. Buyya, “Multiobjective

planning for workflow execution on grids”, In:

Proc. of the 8th IEEE/ ACM International

conference on Grid computing, pp 11-17, 2007.

[2] W. N. Chen and J. Zhang, “An Ant colony

optimization approach to a grid workflow

scheduling problem with various QoS

requirements”, IEEE Transaction system Man

Cybern, Vol. 39 No. 1, pp 29-43, 2009.

[3] F. Zhang, J. Cao, K.Hwang , C. Wu,” Ordinal

optimized scheduling of scientific workflows in

elastic compute clouds”, In: Proc. of the 3rd

IEEE International conference on cloud

computing technology and science, pp. 9-17,

2011.

[4] S. Ghanbari, M. Othman, “A priority basedJob

scheduling algorithm in cloud computing”, In:

Proc. of the International conference on

Advances science and contemporary

engineering, pp 778-785, 2012.

[5] L. F. Bittencourt, E. R. M. Madeira, and Nelson

L. S. da Fonseca, University of Campinas

“Scheduling in Hybrid Clouds Cloud

computing: Networking and communications

challenges”, IEEE communications Magazine,

September, pp.42-47, 2012.

[6] R. Sakellaiou, H. Zaho, and E. Tsiakkouri,

M.Dikaiakos, “Scheduling workflows with

budget constraints”, Integrated research in

GRID computing, pp 189-202, 2007.

[7] X. Zuo, “Self adaptive learning PSO – Based

deadline constrained task scheduling for Hybrid

IaaS cloud”, IEEE Transactions on Automation

Science and Engineerin”, Vol. 11, No. 2, April

2014.

[8] R. Garg and A.K. Singh, “Multiobjective

workflow grid scheduling based on discrete

particle swarn optimization”, Swarn,

Evolutionary and Memetic computing, pp 183-

190, 2011.

[9] F. Kang and J.J. Li,

“Artificial Bee Colony Algorithm Optimized S

upport Vector Regression for System Reliability

Analysis of Slopes“, Journal of Computing in

Civil Engineering, Vol. 30, No. 3, pp.1-13, 2016.

[10] K.F. Kang, J.S. Li, and J.J Li, “System reliability

analysis of slopes using least squares support

vector machines with particle swarm

optimization“, Neurocomputing, Vol. 209, No.

C, pp 46-56, 2016.

[11] J. Durillo and R. Pordan, “Multiobjective

workflow scheduling in Amazon EC2”, Cluster

computing, Vol.17, No.2, pp.169 – 189, 2014.

[12] S.S. Bitam, “Bees life algorithm for job

scheduling in cloud computing” International

conference on communications and information

technology, pp186-191, 2012.

0

20

40

60

80

100

D Interval
1

D Interval
2

D Interval
3

D Interval
4

%
 O

F
D

EA
D

LN
E

M
ET

GA PSO MBOA

http://ascelibrary.org/journal/jccee5
http://ascelibrary.org/journal/jccee5

Received: June 25, 2017 171

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.18

[13] S. Abrishami, M. Naghibzadeh, and D. Epema,

“Deadline constrained workflow scheduling

algorithms for IaaS clouds”, Future generation

computer systems, Vol.23, No.8, pp 1400-1414,

2012.

[14] S.Bharathi, A. Chervanak, E. Deelman, and

G.Mehta, “Characterization of scientific

workflows”, In: Proc. of the 3rd workshop on

workflows in support of large scale, pp 1-10,

2008.

[15] A.A. Al-maamari and F. A. Omara, “Task

Scheduling Using PSO Algorithm in Cloud

Computing Environments”, International

Journal of Grid Distribution Computing, Vol. 8,

No.5, pp.245-256, 2015.

[16] Z. Zhu and G. Zang, “Evolutionary multi-

objective workflow scheduling in cloud”,

Transactions on parallel and distributed systems,

pp.1-14, 2015.

[17] M.M.A. Rodriguez and R. Buyya, “Deadline

based resource provisioning and scheduling

algorithm for scientific workflows on cloud”,

IEEE Transactions on cloud computing, Vol. 2,

No. 2, pp.222-235, 2014.

[18] A.A.I. Awada, N.A. El-Hefnawyb, and H.M.A.

kaderc, “Enhanced Particle Swarm Optimization

For Task Scheduling In Cloud Computing

Environments”, In: Proc. of the International

Conference on Communication, Management

and Information Technology, pp 920-929, 2015.

[19] O.O. Udomkasemsub, L. Xiaorong, and T.

Achalkul, “A multiple objective workflow

scheduling framework for cloud data analytics”,

In: Proc. of the 24th IEEE International Joint

Conference in Computing Sciences and

Software Engineering , pp 391-398, 2012.

[20] Y.Y. Ge and G. Wei, “GA based task scheduler

for the cloud computing systems”, In: Proc. of

the International Conference on Web

Information Systems and Mining, pp 181-186,

2010.

