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Abstract: Cloud computing is a paradigm that provides platforms for scientific applications. In clouds, the users pay 

based on the usage and the quality of service (QoS). There are many workflow scheduling algorithms in the 

heterogeneous computing environment. But all these cannot be applied in cloud due to t service based resource 

managing method in cloud. This paper discusses a workflow scheduling problem which gives an optimized solution 

considering make span and deadline as two objectives. A novel hybrid algorithm of Memetic algorithm and Bee swarm 

optimization algorithm called Memetic Bee Optimization algorithm (MBOA) is proposed. Experiments on randomly 

generated workflow and real time workflows show that the schedules generated by MBOA gives more stability on 

most of workflow instances. The results also show that the algorithm gives significantly better solutions than existing 

QoS optimization algorithms. 

Keywords: Cloud computing, Memetic algorithm, Bee swarm optimization algorithm, Memetic bee optimization 

algorithm.  

 

 

1. Introduction 

Cloud computing has emerged as a computing 

paradigm that aims at providing computing services 

as scalable and virtualized resources to enormous 

remote users having heterogeneous requirement. 

Cloud provides computing services like networks, 

storage and services allocated from the resource pool 

with minimal management. The services are provided 

so that they follow the service level agreement. The 

instances in SaaS are virtual machines(VMs). The 

VMs help the customer in getting almost unlimited 

access to the resources and also plays a major role in 

reducing the Total Ownership Cost. 

Any application that has jobs and flow of data 

among jobs can be described by a Workflow model 

[1]. Workflow scheduling problem is is a problem of 

assigning jobs to processors in multiprocessor 

environment [2]. It is NP-complete and it can be 

represented as a Directed Acyclic Graph(DAG) in 

which the nodes are processes and edges are 

workflow among processors [3]. The edges show the 

data dependencies among jobs and they are directed 

[4]. Different workflows of Montage and Laser 

Interferometer Gravitational wave observation 

(LIGO) are explained by Luiz et al [5]. Montage 

application creates an image like sky that has about 

17 hierarchical workflows and 900 sub workflows. 

LIGO represents a workflow that involves Tera bytes 

of data for producing the results. 

Fig. 1 shows hybrid IaaS cloud having resources 

of private cloud and public IaaS cloud. The 

scheduling algorithm is run by the broker when the 

user submits a workflow. The broker determines the 

following: 

i. The resources those will be used 

ii. The part of workflow that will run on 

each cloud provider 

Generally algorithms use QoS constraints and 

solves the problem by treating as single objective 

optimization problem. LOSS and GAIN [6] are 

algorithms that use a schedule and reassigns each job 

to another processor till it matches to budget. 

Algorithms like NSPO[7] use the Pareto Swarm 
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Figure.1 The hybrid IaaS cloud 

 

Optimization algorithm (PSO) in order to generate 

trade off among cost and make span [8]. Multi-

objective Heterogeneous Earliest Finish Time is an 

algorithm that extends the workflow in Amazon EC2.  

Artificial bee colony algorithm is used to analyse 

the system reliability in machines and is verified with 

case examples [9].  Least squares support vector 

machines and particle swarm optimization is used to 

evaluate the system failure probability of soil slopes 

[10]. 

Even though the above algorithms can easily be 

applied in traditional heterogeneous environment, 

they are tough to apply in cloud. In this paper, an 

optimization algorithm for cloud workflow 

scheduling problem is proposed. The algorithm 

generates a set of schedules having different trade off 

between time and cost factor. The proposed algorithm 

is a hybrid algorithm called memetic bee 

optimization algorithm which has genetic algorithm 

and bees algorithm as its predecessors. MBOA uses 

real world pay-per-use pricing strategies and is based 

on IaaS instances. The memetic operators like 

encoding, evaluation function, initial population, 

crossover, mutation and reproduction are used. The 

bees algorithm is blended with memetic in the place 

of the selection for the next generation and also in 

selection of offspring for crossover.    

The section 2 of paper highlights the commonly 

scheduling algorithms and challenges on IaaS 

platforms. This is followed by scheduling problem 

definition and the pricing models in section 3. The 

section 4 explains the memetic algorithm and the way 

how it is merged with bees algorithm to make MBO. 

Section 5 says about testing and the paper is 

concluded in section 6. 

2. The common scheduling algorithms and 

challenges in IaaS platform  

The workflow scheduling problem considered 

here assumes that the amount charged to a user is 

purely based on the resource utilized. POSH is an 

algorithm that has exponentially correlated the CPU 

cycles to cost. Our pricing model is based on two 

assumptions: 

i. The total cost of task is the sum of cost of 

subtask. 

ii. The cost cannot be changed when the 

service is under run. 

The existing scheduling algorithms have 

challenges on the limitation of resource in the 

resource pool. List based heuristic algorithm finds the 

best assignment by traversing all available processors 

in the selection step of every task. But this cannot be 

applied every time in cloud scheduling since the 

resources are enormous and it is not possible to do 

such traversals every time. One of the well-known 

existing algorithm is Particle Swarm optimization 

based algorithm which defines the particle positions 

and velocities as matrices. Here the order is the no of 

tasks(n) by no of resources(m).ie.,m x n. The 

disadvantage here is the number of resources ‘m’ may 

be too large to handle.  

Few genetic operators represent the mapping of 

task to resources by strings. But, the existing genetic 

approaches might not be suitable to the cloud 

environment always because the VM instances are 

not permanent since they may be allocated and 

deallocated anytime during execution. 

Durillo et al., [11] proposed a list based heuristics 

that can be used in cloud. This algorithm constructs 

an instance pool of limited size and hosts out the 

possible schedules in advance.  

In the algorithm proposed, the pricing criteria is 

considered when the fitness evaluation is made and 

the algorithm is designed such that it does not depend 

upon any fixed pricing schemes. 

3. The workflow scheduling Problem 

3.1 Workflow definition 

A workflow can be generally represented by 

means of Direct Acyclic Graph (DAG). Here Work 

flow WFLOW=(J,C) where J is the set of ‘n’ vertices 

or jobs. J={J0 ,J1 ,….,Jn} and C is the set of edges or 

control dependencies. C={(Ji,Jj)/ Ji,Jj Є J}. Each 

control dependency is assigned with the weight that 

represents the quantity of data transferred among jobs. 

The weight assigned to the vertices are the execution 
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time of jobs in a processor.  It is denoted by 

Exectime(Ji). 

Data(Ji ,Jj ) denoted the transfer of data from job  

Ji to job  Jj. The data transfer in always unidirectional.  

Excluding the source job, all other jobs have 

predecessor. Every job Ji apart from the source has its 

predecessor Jk provided there is an edge from Jk to Ji 

ie., Pred(Ji)={Jk/(Jk,Ji)Є C }. Since the source job will 

not have any predecessor, Pred(Jsource)=Φ 

3.2  Cloud resource model 

The infrastructure as service platform delivers 

computational resource through virtual machines. A 

virtual machine that is running is called as an instance. 

There are different range of instance types having 

different execution time of jobs and bandwidths in 

IaaS platform. It is assumed that a customer can get 

any number of instances. Hence the set of instances 

I={I0 ,I1 ,….,} is infinite whereas, the set 

T={T0 ,T1 ,….Tm} is the type of instances offered and 

it is fixed. Each job is mapped to one instance from 

the available type in T. 

Every workflow has a user defined deadline 

associated with it. This deadline is the maximum time 

limit to complete the execution in cloud environment. 

If the user doesn’t give the deadline, it is obtained by 

assigning all jobs sequentially to the fastest instance 

and calculate minimum execution time of the 

workflow 

Each instance type Ti, has its own features 

represented by CPU Type CPU(Ti), Memory M(Ti) 

and Cost per time interval. It is also assumed that 

parallel execution of the jobs is also possible. The 

CPU instance plays a major role in the time taken. It 

specifies the configuration so that if the time taken to 

execute any job is half if the CPU instance is doubled. 

The time to run a of Job Ji on instance type Tj is 

represented by Eq. (1). 

𝑇𝑖𝑚𝑒(𝐽𝑖) =
𝑈𝑛𝑖𝑡𝑡𝑖𝑚𝑒(𝐽𝑖)

𝐶𝑃𝑈(𝑇𝑗)
    (1) 

 Where 𝑈𝑛𝑖𝑡𝑡𝑖𝑚𝑒(𝐽𝑖) is the time taken to execute 

the job Ji for unit CPU time. 

Any instance type Ti will have its own bandwidth 

represented by bw(Ti). When the communication is 

among different instances, the bandwidth of both may 

be different. Here, the minimum among both 

bandwidth is considered to calculate the time so that 

the worst case time of communication can be 

calculated. 

T𝑖𝑚𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑖𝑜𝑛(𝐽𝑖, 𝐽𝑗) =

{
(𝐽𝑖,𝐽𝑗)𝑑𝑎𝑡𝑎

min{𝑏𝑤(𝐼𝑛𝑠𝑅),𝑏𝑤(𝐼𝑛𝑠𝑆)}
𝑅 ≠ 𝑆

0, otherwise
        (2) 

Where InsR and InsS are different instances to 

which Ji and Jj are scheduled. 

3.3 Scheduling problem 

The leading cloud providers like Amazon EC2, 

IBM, Microsoft Azure, etc have different pricing 

schemes allowed. The algorithm designed is a generic 

one that flexible to fit for any pricing model. It is 

assumed that there are ‘k’ different pricing models. 

P={P0 ,P1 ,….Pk}.  The function COST (Il,Pm,Tn) will 

calculate the cost for the instance ‘l’ for the pricing 

model ‘m’ having the instance type ‘n’. The IaaS 

model is represented in general as S=(I,P,M) where 

M stands for instance type 

The goal is to find a schedule to execute a 

workflow on cloud computing environment such that 

total execution cost and makespan are minimized by 

meeting the deadline constraints. Hence the two main 

objectives in workflow scheduling are 

i. Total Cost Minimization 

ii. Makespan 

 

3.3.1. Total cost Minimization 

For a workflow WFLOW=(J,C) and an IaaS 

S=(J,P,M), the idea is to produce more scheduling 

choice having instance, type and order. The order is 

the vector containing the scheduling order of jobs. 

The problem is considered with the constraint that the 

pricing scheme once chosen remains unchanged till 

the usage is completed.  Hence the goal for the 

scheduler is to provide a schedule that has minimal 

cost among all possible schedules. 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ 𝑐𝑜𝑠𝑡(𝐼𝑖, 𝑃, 𝑇𝑖)
𝑛

𝑇𝑖 Є𝐼∗       (3) 

Here 𝐼∗ is the instances used by the user, p is the 

pricing option which remains unchanged. 

 

3.3.2. Makespan 

Makespan of a workflow is the total time elapsed 

from the start of the first job till the completion of the 

last job. Makespan will be less if more parallel 

execution is done.  

Any schedule has Start time(ST) and completion 

time(CT). Start time of any job will depend upon the 

finish time of its previous job. If the job ‘Ji belongs 
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to instance Ij, it can be said that Ins(Ji)=Ij. The 

instance available time is mentioned in the vector 

Avail(J). Initially it is 0 for all the available instances. 

When in execution, Avail(J) will have the time when 

the instance will become free for next execution. 

ST(Jfirst)=0           (4) 

ST(Ji)=max{Avail(Ins(Ji), 𝑚𝑎𝑥(𝐶𝑇(𝑇𝑖𝑚𝑒(𝐽𝑖) +
𝑇𝑖𝑚𝑒 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝐽𝑗, 𝐽𝑖))𝑛}          (5) 

If Jstart is the first job of execution and Jexit is 

the last job to complete the execution in the workflow, 

Makespan=CT(Jexit)-ST(Jstart )   (6) 

4. MBOA for optimization 

4.1 Memetic algorithm 

The memetic algorithm can be used to optimize 

several conflicting objectives by combining them as 

a single objective. The memetic algorithm is an 

evolutionary algorithm that simulates the natural 

evolution and is successful in the past. For the 

workflow scheduling problem, the memetic 

algorithm generates a set of schedules selected by the 

user constraints. The schedules are refined using the 

genetic operators and the solution is reached. The 

solution is generated in polynomial time and could be 

optimal or near optimal solution.  

4.2 Bees algorithm 

The Bees algorithm is also an optimization 

algorithm which is based on the life of Bees. The bee 

colony generally has a Queen bee ‘Q’, lots of male 

bees called Drones ‘D’ and several thousands of 

sterile females called workers ’W’. [12]. The best fit 

schedule in any iteration is treated as queen ‘Q’. The 

crossover operation in any iteration is done with 

queen and Drones. The worker bees are those which 

are worst fit.  These schedules are not fit for the next 

iteration.  

4.3 Memetic bee optimization algorithm 

(MBOA) 

The MBOA is a hybrid version of Memetic 

algorithm by blending the concepts of Bees algorithm 

also. The flow diagram of the hybrid version is in Fig. 

2. 

The constraints considered in this algorithm are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure.2 MBOA algorithm 

 

Initialize the population of  N schedules. 

Evaluate the fitness function for the 

schedules generated. The best fit is the 

queen.  The next N/2 -1 fit schedules are 

Drones. The remaining N/2 schedules 

are workers. 

Terminatio

n criteria 

Y/N 

Perform crossover for the queen and all 

the drones 

For every schedule generated, mutate 

continuously till a better solution is 

reached or the no of times mutated has 

reached the maximum limit 

Select the population for next 

generation. Include the queen to the 

next generation. 

If new queen is emerged, Perform the 

same procedure for new regions also 

Schedule 

to 

Provider 

 

Yes 

      No 
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Figure.3 Example DAG workflow 

 

i. The percentage of Drones and Workers need to 

be changed towards the end of solution. 

Towards the end, select more drones for 

quicker convergence to solution. 

ii. New queen generation is identified by 

checking if the new generation has any 

schedule with <1% closer solution as initial 

queen  

iii. The termination criteria is that, if one region 

couldn’t give better solution continuously for 

N/5 iterations, stop proceeding with that region 

4.4 Fitness function 

The fitness of any possible solution is the major 

factor for selecting the solution. Fitness function for 

this problem is a combination of both objectives 

mentioned in section 3.3  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = ∑ (𝑤𝑖𝑂𝑏𝑗𝑖)2
𝑖=1           (7) 

Where O𝑏𝑗1 and O𝑏𝑗2 are Total cost and Makespan 

respectively and 0≤𝑤𝑖 ≤1. 

4.5 Encoding procedure 

The encoding procedure is used to map the cloud 

workflow as DAG. The problem encoding is done as 

follows. Sequence of job indices represents the Order 

of schedule. This can be like O1 , …..On where Oi+1 

will start execution only after the completion of Oi. 

The job_instance is an array of size ‘n’ where the ith 

element represents the instance of ith job. The 

instance_type is an array of size ‘m’ where the ith 

element has the instance type of ith instance. Fig. 3 is 

an example of DAG workflow. 

Topological ordering using the following 

procedure: 

i. Find the indegree of all vertices 

ii. The first node to schedule is the node 

with indegree 0 

iii. Remove that node and the edges 

corresponding to that and find the new 

node with indegree 0. 

iv. Repeat the above step until all the nodes 

are ordered.  

5. Memetic and bees algorithm operators 

5.1 Crossover 

The scheduling for jobs here is precedence 

constrained. The order should always be maintained 

in the dependencies between jobs. If  Jk has to get the 

output of Ji, then Ji should precede Jk in all the 

possible orders  generated. The crossover used here 

is Partially Matched Crossover(PMX) shown in 

Algorithm 1. Given two schedules ‘A’ and ‘B’ the 

PMX randomly picks two crossover points. This 

crossover point is used for the construction of next 

generation schedule.  Here substring is a sub 

sequence of job in the given schedule referred with 

starting and ending position. The crossover is 

performed by considering the following facts. 

i. Same job should not repeat.  

ii. The dependencies among job are 

maintained. 

 

The procedure for Crossover operation is given in 

Algorithm 1: 

i. Procedure Partially_Matched (Schedule 

A, Schedule B) 

ii. n is the number of jobs 

iii. Select a random value  P1 between 0 and 

n-1  

iv. Select second random value P2 between 

0 and n-1 where P1 ≠P2 

v. If P1 > P2, swap P1 and P2 

vi. From  the Schedule A, copy he substring 

from position P1 to P2 as O1. 

vii. From  the Schedule B, copy he substring 

from position P1 to P2 as O2. 

viii. For all allels(Jobs) in substring  O1 and 

O2 

ix.  If the allels in substring  (A,0,P1)and 

substring (A,Pi+1,n-1) does not contain 

entries from substring (A,P1,P2) and 

substring (B,P1,P2), then replace 

substring O1 by O2, 

x.  else repeat steps 3 to 9. 

xi. For string O1 and O2 

xii. Find the remaining allels in O1 and O2. 

xiii. Place them from left to right. 

xiv. Check if the dependencies among jobs 

are satisfied. If not repeat steps 3 to 12 
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Algorithm 1: Partially matched crossover 

5.2 Mutation 

The mutation is a memetic operator that 

maintains alteration in one or more gene values 

shown in algorithm 2. It is an occasional random 

alteration of a value in a schedule with small 

probability. 

i. Procedure Mutation( Schedule A) 

ii. n is the number of jobs 

iii. Select a random value  P1 between 0 and 

n-2 

iv. Select a random value  P1 between 1 and 

n-1 and P2 > P1  

v. Swap the allels in positions P1 and P2 

and generate new schedule . 

vi. Check if dependency among jobs is 

maintained 

vii. If not repeat step 3 to 6 

viii. Check the fitness of new string 

ix. Repeat step 3 to 8 till a better fit solution 

is obtained or if the number of mutation 

done is ‘n’  
Algorithm 2: Mutation 

5.3 Initial population 

In any scheduling algorithm, the solution space is 

massive. The generation of initial population plays a 

major role in the convergence to the solution. For a 

problem size of ‘n’ jobs, the initial population of ‘n’ 

possible schedules are generated. Out of the ‘n’ 

schedules, first four schedule are based on 

i. Topological ordering 

ii. Earliest Finish Time algorithm 

iii. Shortest Job First 

iv. Minimal Cost Ordering algorithm 

 
The remaining n-4 schedules are generated on 

random ordering. Any schedule generated will be 

considered only if the dependency is maintained. This 

is depicted in algorithm 3. 

The four algorithms included in generation of 

initial population helps in quicker convergence 

towards the optimal solution. For every schedule 

generated, the instance-type and job to instance are 

mapped accordingly. 

i. Procedure initial population 

ii. n is the  number of jobs 

iii. m is the number of instance types 

iv. Generate  the first schedule by 

topological ordering based on indegree 

of any vertex. 

v. Generate the second schedule by 

heterogeneous earliest finish time 

algorithm. 

vi. Generate the third schedule by Shortest 

job first algorithm 

vii. Generate the fourth schedule based on 

the descending order of cost . 

viii. For i=1 to n-4  

ix. Generate a random schedule ‘I’ so that 

the dependency is maintained. 

x. Find the fitness of each schedule. The 

best fit is the queen.  The  next N/2 -1 fit 

schedules are Drones. The remaining N/2 

schedules are workers. 

xi. End procedure 
Algorithm 3: Initial population 

5.4 Complexity analysis 

The complexity of memetic operators crossover 

and mutation are O(n2) and O(n) respectively for n 

jobs. The checking of dependency and fitness is O(n). 

The time complexity of evaluation and generation 

each generation is O(n2). For a graph of ‘n’ vertices, 

a maximum of n2 edges exist. For ‘g’ iterations, the 

overall complexity is O( gn2 ). Excluding the 

evolution, four schedules in initial population are 

generated based on algorithms. The complexity of 

these also needs to be included. The HEFT, 

Topological ordering, SJF and MCO have O( n2 ) 

complexity each. The overall complexity is O(4n2) + 

O(𝑔n2). Which is O(𝑔n2) in general. 

 
6. Testing 

6.1  Experimental workflow 

The MBOA algorithm is assessed using standard 

workflows defined in Pegasus workflow 

management systems[13]. The workflow models 

used are Montage, Epigenomics, Cybershake, Sipht 

and Inspiral. [14]. It is shown in Fig. 4 

6.2 Algorithms compared 

MBOA is compared with two algorithms namely 

Particle Swarm optimization(PSO)[15] and Genetic 

algorithm(GA) [16]. 

PSO is an evolutionary algorithm based on 

particles (ie.,bird or fish) [17]. The particles have the 

ability to move around the solution space and reach 

to a solution [18].  

GA is a  meta-heuristic algorithm based on 

evolutionary ideas of natural selection and genetics. 
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[19]It provides solution to optimization problems 

with its initialization, selection, and generic 

operators[20].  

6.3  Experimental setup 

The algorithm is implemented in Cloudsim3.0. 

We assume only six types of instances taken from 

Amazon as sample. The processing time for each job 

is estimated based on their processing capacity and 

the instance.  

The average bandwidth to transfer intermediate 

data between instances is comparable to the average 

bandwidth provided by Amazon elastic block store 

(20kbps). Our experiment has considered a billing 

period of 10 minutes and the acquisition delay is 

estimated as 1 minute. 

We have considered six sizes of scientific 

workflow in our experiments small (approx. 20 Jobs), 

medium (approx. 50 Jobs), large (approx. 100 Jobs), 

xlarge(approx. 200 Jobs), 2xlarge(approx. 500 Jobs) 

and 4xlarge(approx.1000 Jobs).  We have conducted 

each experiment 10 times. 

To evaluate the performance of the MBOA, we 

need the deadline of each workflow. The deadline is 

obtained from any of the following 

i. The user  

ii. By assigning all jobs sequentially to the 

fastest instance and calculate minimum 

execution time of the workflow.  

 

The deadline is also recorded as the Fastest time. 

Assigning the jobs sequentially to the slowest 

instance gives the Slowest Time. Testing was done 

using four different deadline intervals of 1,2,3 and 4.  

Deadline interval is calculated by finding the 

difference between fastest time and the slowest time 

and then dividing it by five. Say, if the slowest time 

is 50 ns and the fastest time is 100 ns, the difference 

is 50 ns. Here the interval is 10ns. The deadline 

interval 1 is 60ns, deadline interval 2 is 70 ns and so 

on. 

The IaaS parameters used for different virtual 

machines are mentioned in the table 1 (source 

www.aws.amazon.com). Here L, M and  represents 

the Low, Moderate and High in Network Preference. 

 

7. Results and analysis 

Graphs are plotted to show the deadlines met. 

Comparison graph is generated based on the  

percentage of fitness given by each algorithm. 

 

 

 

Table 1. IaaS parameters 

Inst 
type 

C 
P 
U 

Memory 
(GiB) 

PIOP  
Opzd 

N/W 
Pref 

Price 
  
 

Db.m1. 
small 

1 1.7 - L $0.044 

Db.m1. 
medium 

1 3.75 - M $0.087 

Db.m1. 
large 

2 7.5 Yes M $0.175 

Db.m1. 
xlarge 

4 15 Yes H $0.350 

Db.m2. 
2xlarge 

4 34.2 Yes M $0.420 

Db.m2. 
4xlarge 

8 68.4 Yes H $0.840 

 

  

(a) (b) 

 
 

(c) (d) 

 

 

(e)  

Figure.4 Workflow models: (a) Montage, (b) 

Epigenomics, (c) Cybershake, (d) Sipht, and (e) 

Inspiral 

http://www.aws.amazon.com/
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The fitness is compared among three algorithms 

namely 

 Genetic Algorithm(GA) 

 Particle swarm Optimization(PSO) 

 MBOA 

 For the testing purpose it is assumed with 0.5 for 

𝑤𝑖  in Eq. (7). 

 

In case of the Montage workflow, MBOA gave a 

better result than GA and PSO. The GA gave better 

result for deadline interval 3 and 4. MBOA achieved 

100% result in deadline interval 3 and 4. It gave 92% 

and 96% result in deadline interval 1 and 2 

respectively.  Comparing the results for Epigenomics, 

it is inferred that MBOA gives a better result than the 

other two algorithms.  

In the Cybershake workflow model, it is found 

that all the three algorithms showed a decently better 

performance in deadline 1 and 2. MBO gave 100% 

performance for deadline 3 and deadline 4. 

While comparing the performance in the Sipht 

workflow, PSO gave a better performance than GA. 

But MBOA outperformed both.  

In the Inspiral workflow model, MBOA showed 

the best of 92 % for interval 1 & 2 and 100% for 

interval 3 &4. GA came closer to MBOA having 80% 

accuracy in interval 1 & 2 and 100% for interval 3 & 

4. 
Comparing the values and graph in Fig. 5, the 

other two algorithms totally outperform GA. Out of 

the other two algorithms MBOA has proven better 

than PSO. 

8. Further analysis 

The performance was analysed for different 

intances. Inference says that the solution was 

generated with lower makespan most of the time. As 

future work, analysis can be done with hybrid 

algorithms of ACO or Modified PSO algorithm with 

genetic algorithm An important point is the impact on 

the selection of initial population. The initial four 

algorithms selected has a major difference in time for 

the convergence to the solution. It helps in faster 

convergence towards solution. 

When the algorithm was checked with the input 

condition of one VM of every type in each job. It was 

found that the algorithm takes higher execution time 

for longer jobs when compared to shorter jobs. When 

seeing the computational complexity, MBOA 

algorithm is better than the other algorithms like PSO. 
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(e) 

Figure.5 Deadline for real-world workflows: (a) 

Montage, (b) Epigenomics, (c) Cybershake, (d) 

Sipht, and (e) Inspiral 

 
9. Conclusion and future work 

Many scheduling algorithms are available for 

multiprocessor architectures in cloud environment. 

But most of these have difficulty when directly 

applied in cloud. The algorithm developed 

overcomes the issues in the real-world cloud 

computing models.  

Cloud computing provides high performance 

computing resources on demand for solving large 

scale scientific problems. To execute the large scale 

scientific application, cloud provider needs to have 

appropriate provisioning algorithm which helps the 

cloud provider in minimizing the cost and makespan. 

Towards this, MBOA is proposed. 

For giving a solution to the multi-objective cloud 

scheduling problem, an encoding scheme that 

represents the scheduling criteria having the different 

instances of jobs and their types are modelled. The 

memetic operators like evaluation function, 

crossover and mutation are used along with the bees 

algorithm.  The experiment is checked with the actual 

pricing model in Amazon EC2 and the results are 

promising. 

The future work can be a hybrid algorithm of 

PSO or any other optimization algorithm using more 

than one pricing scheme. The issues like termination 

delay of virtual Machines can be considered. Further 

work can be done in execution of workflow deployed 

in different regions and the data transfer cost among 

different data centre can be considered. 
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