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Abstract: This paper presents a novel application of hypercube framework of ant colony optimization to the virtual 

machine (VM) placement problem, with the objective of minimizing the power consumption and resource wastage. 

The aim of the VM placement is to develop an optimal placement strategy to allocate the VM’s to physical servers 

such that the usage of physical resource is minimized. The hypercube framework of ACO differs from its usual ACO 

implementation in the hyperspace for the pheromone values. In other words, in the hypercube framework, the 

updating of pheromone values is constrained to lie between 0 to1. This constrained pheromone updating has an 

advantage of automatically handling the scaling of objective function values and further leads to robust version pf 

ACO procedure. Here, we experimentally investigate the influence of hypercube framework of ACO for virtual 

machine placement using three ACO variants, namely, Ant system, Max-Min Ant System, and Ant colony system. 
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1. Introduction 

Ant colony optimization (ACO) [1] is one of the 

metaheuristic approaches widely used for 

optimization problems. The collaborative behaviour 

of original ants that cooperate into a colony for 

finding best routes from the nest to the food location 

is the real inspiring source of ACO techniques. On 

finding the food source, the ants communicate 

indirectly with each other by depositing a substance 

called pheromone in the path it travelled. The 

subsequent ants tend to choose the path having high 

pheromone deposit. As time progresses, if the 

pheromone signal is not strengthened by other ants, 

then the path information is gradually lost and the 

pheromone signal evaporates.  On the basis of these 

concepts, the movement of the artificial ants is 

driven by probabilistic decisions taken on the basis 

of the pheromone values. 

The application of ACO is well explored in 

literature by mapping the functionalities of real ant 

colonies to artificial ant colonies to solve the several 

combinatorial optimization problems in various 

engineering domains.  Lopez-Ibanez and Blumb [2] 

proposed an algorithm named Beam-ACO for the 

traveling salesman problem (TSP) with time 

windows. The minimum spanning tree problem was 

solved by Neumann and Witt [3] using a novel ACO 

approaches. In paper [4] ACO was proposed for 

production scheduling problem, a class of 

Asymmetric TSP. A hybrid algorithm was proposed 

for resource-constrained project scheduling [5].   

Bi-Objective ACO approach was proposed to 

optimize production and maintenance scheduling [6]. 

Chen et al. [7] applied ACO to monitor the cash 

flow monitoring and to control the project cost. A 

model based on ACO approach was proposed by 

Lee et al. to search for the optimum gardener 

manpower requirements and a near-optimal 

maintenance schedule for the green areas [8].  ACO 

model was proposed for heterogeneous spatial 

information processing [9]. Martinez et al. 

developed an optimized ACO model for Reinforced 

Concrete (RC) bridge piers with hollow rectangular 
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sections [10]. Rama Rao et al. proposed ACO based 

novel optimization method for determining kinetic 

and film thickness model parameters [11]. An Ant 

colony optimization approach was used for 

economic dispatch problem with non-smooth cost 

functions [12]. Xu et al. applied ACO model for 

MTT in Image processing [13]. Ketabi et al. 

proposed to use ant colony algorithm to reactive 

power pricing in an open electricity market [14]. 

Kwang and Weng [15] conducted a comparative 

study on all routing algorithms with ACO. Amilkar, 

et al. analysed the performance of ACO on various 

case studies in TSP using a two stage approach [16].  

In the process of introducing virtual machine (VM) 

placement in cloud computing as a NP- hard 

optimization problem, we propose to use the well-

developed metaheuristic technique named ant 

colony optimization technique for mapping a set of 

virtual machines to a set of physical machines. The 

problem of optimal mapping of VM to PM is 

considered as a multi objective optimization 

problem where we aim to simultaneously minimize 

power consumption and resource wastage.  As it is 

well known that, there are several variants of ACO 

techniques available in literature and each has its 

own characteristics, we propose to apply the 

Hypercube Ant colony framework [17] which, in 

contrast to traditional ACO algorithms, brings 

several benefits like increase in the robustness of the 

ACO algorithm when implemented in the HCO 

framework, as it automatically scales the objective 

function values. That is, the behaviour of the 

algorithm is independent of whether the objective 

function values of a problem instance lie in the 

interval of [0,1] or [0,1000]. The other benefit 

would be in introducing changes in the pheromone 

update rule such that the pheromone values are 

constrained to lie between 0 and 1 for any variant of 

the ACO algorithm implemented in HCO 

framework.  

In this paper, the hypercube framework is 

implemented on three major variants of ACO 

namely Ant System (AS), Max-Min ant system 

(MMAS) and Ant Colony System (ACS). The 

results show that the implementation of ACO 

algorithms in the HCF increases their robustness and 

makes it easier the handling of the pheromones 

during its implementation. 

The rest of the paper is organized as follows. In 

Section 2 we formulate the virtual machine 

placement problem. Section 3 provides the variants 

of ACO and their implementation strategy for 

virtual machine placement. Section 4 gives the 

detailed description of virtual machine placement 

using hypercube ant colony system optimization 

framework. In section 5 we present the 

computational experimental study conducted and the 

results obtained. Section 6 concludes the paper 

followed by references. 

2. Problem Formulation 

The problem of VM placement is formulated as 

follows. Given, a set of n virtual machines, m 

physical servers and the physical servers already 

hosting ni VMs, the VM placement algorithms 

generate possible mapping solutions for n+ni VMs 

on the m physical servers under a specified set of 

constraints. The objective function given in Eq. (1) 

is to minimize the power consumption and the 

objective function in Eq. (2) focuses on reducing the 

resource wastage.  

Here, we consider the VMP placement problem 

as a multi-objective combinatorial optimization 

problem where the optimization strategy focuses on 

simultaneously minimizing the power consumption 

and the resource wastage under the given set of 

constraints. The constraint given in Eq. (3) assigns a 

VM i  to only one of the servers. Constraints (4) and 

(5) specify the constraint related to the server 

capacity. Constraint (6) defines the range of the 

variables related to the VM placement. The 

notations used in the problem formulation are given 

in Table 1. 

 

Table 1. Notations and Description 

Notation Description 

[ Ri
cpu    Ri

mem ]  CPU and Memory resource 

requirements of the server i 

 

[TC jcpu TC jmem]  

Total capacity vector of  server j 

with respect to CPU and memory 

 

allocij ϵ {0,1}  

The  binary variable allocij is set to 1 

if virtual machine i is allocated to the 

server  j 

         yj ϵ {0,1} The  binary variable yj is set to  1 if 

server j is packed  with any virtual 

machine i.  

RWj Resource wastage of the jth  server 

Pj Power consumed by the jth server 

U jcpu
  CPU utilization of the jth  server 

U jmem
  Memory utilization of  jth  server 

L jcpu Normalized remaining CPU of the 

server j 

L jmem Normalized remaining memory  of 

server j 

 

P 
j
busy and Pj

idle 

 

Average power values when server j 

is busy and server j is idle. 
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Minimize ∑ Pj= ∑ [y
j
 × (( Pj

busy
- Pj

idle)× ∑ ( allocij Rcpu
i )+ Pj

idlen
i=1 )  ]m

j=1
m
j=1           (1) 

    

 

Minimize ∑ RWj
m
j=1  =                        (2) 

∑[y
j
 × 
|(TCcpu

j -∑ (allocij. Rcpu
i )n

i=1 ) - (TCmem
j -∑ (allocij Rmem

i )n
i=1 )|+ ɛ

∑ (allocij Rcpu
i )+ n

i=1 ∑ ( alloc
ij
Rmem

in
i=1 )

]

m

j=1

 

 

 

Subject to: 

 

 

 

∑ 𝑎𝑙𝑙𝑜𝑐𝑖𝑗 = 1
𝑚
𝑗=1  ; ∀ 𝑖 ∈  𝐼     (3) 

∑ Rcpu
i  .allocij ≤  TCcpu

j y
j

n
i=1 ;   ∀ j ∈ J   (4) 

∑ Rmem
in

i=1  allocij ≤ TCmem
j  y

j
; ∀j ϵ J                (5) 

 

yj , allocij ∈{0,1}; ∀ i ∈ I , ∀ j ∈ J                     (6)                 

 

The potential cost of wasted resources is 

modelled using the following Eq. (7) 

 

   

RWj= (|Lcpu
j - Lmem

j |+ ε) (Ucpu
  j +Umem

 j  )⁄            (7)                      

   

ε is a very small positive real number and its 

value is set to be 0.0001. The power consumption of 

the j-th server is defined as a function of the CPU 

utilization as shown below. 

 

  Pj 
= 
{
(Pj  

busy 
-Pj

idle) × Ucpu
 j +Pj

idle; UC
 j

>0

0   ;                                  otherwise

  (8)  

                                                                    
      

Where, Pj
idle and P 

j
busy are the average power 

values when the jth server is idle and when fully 

utilized, respectively. The values of Pj
idle and P 

j
busy 

have been fixed to 162 and 215 Watt [18]. 

 

3. Variants of ACO for Virtual Machine 

Placement  

The three major variants of ACO namely Ant 

system, Max-Min Ant System and Ant colony 

System are used to explore the implementation of 

hypercube framework. 

3.1 Ant Systems (AS) 

The two main phases of AS [19] algorithm are 

the ant’s solution construction phase and the 

pheromone update phase. At each solution 

construction step, an ant k in AS applies a 

probabilistic action choice rule, named random 

proportional state transition rule, to decide the next 

VM i to place in server j. In particular, the 

probability with which an ant k, chooses server j for 

VM i is  

 

Pij
k = {

[τij]
α
 .  [ƞij]

β

∑ ∈ Ω k (j)u [τiu]
α .  [ɳiu]

β   ;  i ∈ Ωk(j)

         

                         0               ;   otherwise

     (9)              

Where, τij is the pheromone trail deposited when 

virtual machine i is placed in server j. It defines the 

favourability of packing VM i into server j. The 

heuristic information ηij indicates the desirability of 

assigning VM i to server j.  α and β parameters 

weigh the relative importance of the pheromone trail 

and the heuristic information. 

 

Ωk( j )= 

{
 
 
 
 
 

 
 
 
 
 i∈ {1,…, n} |(∑ allociu=0

m

u=1

)  ^

(
(∑(allocuj× Rcpu

u )+ Rcpu
i

n

u=1

)

≤TCcpu
j

) ^

(
(∑(allocuj× Rmem

u )+ Rmem
i

n

u=1

)

≤TCmem
j

)

}
 
 
 
 
 

 
 
 
 
 

 

 

                                                                        (10) 
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Ωk (j) is the set of eligible virtual machines 

determined for ant k to pack in a particular server j.  

In Eq. (10), each ant k stores the virtual 

machines placed so far, and this memory is 

exploited to determine Ωk (j) in each construction 

step. 

The pheromone updating is done once all ants 

have finished constructing their solutions and is also 

evaporated in all the solution components.      

The update rule is as given below: 

 

τij(t)= (1-ρ
g
) τij (t-1)+ ∑ ∆τij

kNA
k=1                    (11) 

∆τij
k  = 1

VMPk
⁄                (12) 

 Where, ρg ϵ {0,1} is the evaporation rate, NA is the 

number of ants, t is the iteration number  and VMPk 

is the quality of the solution determined using the 

normalized power consumption and resource 

wastage of the solution  S given by ant k. 

 

VMPk=P'(Sk)+RW(Sk)                        (13) 

For the initial iteration, the pheromone value τ0 is 

determined using the term NA/VMP. NA is the 

number of ants and VMP is the quality of the initial 

solution S0 determined as Pʹ(S0)+RW(S0).  Pʹ(S0) is 

the normalized CPU power consumption of the 

solution S0 and is calculated using Eq. (14). 

P'(S0)= ∑ (
Pj

Pj
max⁄ )m

j=1              (14)        

RW (S0) is the resource wastage of the solution 

S0. The initial solution S0 is generated by initial 

random placements. Pj
max is the maximum power 

consumption of the server j. 

3.2 Max-Min Ant System (MMAS) 

The Max–Min Ant System (MMAS) algorithm 

introduces few modifications to the AS [20].  The 

pheromone update function is bound to lie in the 

interval [τmin, τmax]. The initial pheromone value τ0 is 

computed as 

 

τ0 = 1
ρ

g
⁄ . VMP               (15) 

 

 The pheromone update rule for MMAS is as 

follows: 

  

τij= [(1-ρ
g
) . τij(t-1) +∆ij

best]
τmin

τmax

            (16) 

Where τmax and τmin are the upper and lower 

pheromone bounds, respectively. 

 

∆ij
best= 1

VMPbest⁄                (17) 

τmax =
1

ρ
g
.VMPbest⁄                           (18) 

 τmin= τmax (1- √pbest
n

) ((avg-1)√pbest
n

)⁄       (19) 

avg=n/2                (20) 

 

VMPbest is the best solutions quality determined 

using normalized power consumption and resource 

wastage. Chosen a value for pbest, the value of τmin 

can be estimated. The different cases would be if 

pbest is chosen to be 1, then τmin is assigned to zero. 

If pbest is chosen to be too small then it may lead to 

a situation where τmin> τmax.  

In such a case, we set τmin =τmax, where only 

heuristic information will be used in the process of 

solution construction. For our experiments we have 

chosen the pbest value as 0.05. 

If we let the update function be x, the upper and 

lower bounds are imposed in the following way: 

 

[x]τmin

τmax  = {
a ;  if x > τmax

b ;  if x < τmin

   x ;  otherwise

              (21) 

 

When solution gets stagnated, occasionally 

pheromone trails are reinitialized using the variable 

pbest and convergence factor (cf).  

 

cf = 

 2((
∑ ∈ Tmax{τmax-τij,  τij-τmin}τij

|T|.(τmax-τmin)
) -τinit) 

                           (22) 

For the purpose of re-initialization and updating 

of pheromone values, it is required to keep track of 

the solutions, which are best in the current iteration, 

the best solution-so-far and the restart-best solution. 

Eq. (22) is used as a part of re-initialization process. 

The strategy behind the pheromone update in 

MMAS is as follows: At the start of the restart 

phase (i.e., when pbest is TRUE and convergence-
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factor is nearer to zero), the updating of pheromone 

values is done using iteration best solution. Then, 

as the number of iterations increases, very often, 

the best solution which is found in the current 

restart phase is considered for pheromone update. 

Just before convergence occurring (i.e., 

convergence-factor < 0.9999), the restartbest 

solution alone is used for pheromone update, and 

once when convergence is found (i.e., convergence-

factor > 0.9999), the control variable pbest is set to 

TRUE and the best-so-far solution is used for 

updating the pheromone values. If there is no 

convergence, then in the next iteration, the 

pheromone values are reset to initial values and the 

algorithm is restarted [20]. 

3.3 Ant Colony System (ACS) 

In Ant Colony System (ACS) [21], the pseudo 

random proportional rule is given by 

 

i = 

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝛺𝑘(𝑗) {

𝛼 × 𝜏𝑢𝑗
+

(1 − 𝛼) × ɳ𝑢𝑗
} ; 𝑞 ≤  𝑞0

                                   𝑠                          ; otherwise

            

            (23)             

Where, q is a random value uniformly distributed 

in [0, 1]. If q is greater than q0, the process is called 

exploration, otherwise it is exploitation. q0 is a fixed 

parameter between 0 to 1. The pheromone value τij 

is as given in Eq. (25-26). is a random variable 

selected according to the following random-

proportional rule probability distribution [22], which 

is the probability that ant k chooses to assign VM i 

to server  j. 

 

 

Pij
k = {

α × τij+(1-α)× ղ
ij

∑ (α × τij+(1-α)× ղ
ij
)u ϵ Ωk(j) 

; 𝑖 ϵ Ωk(j) 

                                               (24) 

   The local pheromone update rule is given below in 

Eq. (25). 

 

τij=(1- ρ
l
). τij(t-1)+ ρ

l
.τ0              (25) 

 

Where, ρl ϵ{0,1} is the pheromone decay 

coefficient, and τ0 is the initial value of the 

pheromone. The global updating rule is applied after 

all ants have finished building a solution. The 

solutions of Pareto set are updated using following 

rules. 

 

τij(t)= (1-ρ
g
) τij(t-1)+ ρ

g
∆τij

best             (26)

          

∆τij
best= λ

VMPbest⁄                (27)

              

λ = NA
t- NIS+1⁄                      (28) 

    

For multi objective optimization, in general the 

Pareto set which contains the global non-dominated 

solutions are stored in an external set. If a current 

iteration solution is not dominated by any other 

solutions in the current iteration or in the external 

set, then the current iteration solution is added to the 

external set and the quantity of pheromone in all 

movements which constructed it is increased.  

Further, all the solutions that are dominated by 

the added one are removed from the external set. In 

Eq. (28), NA is the number of ants and NIs 

represents the number of epochs that the solution S 

has existed in the external set. λ as an adaptive 

coefficient controls how a solution in the external 

set contributes to pheromone information over time. 

The non-dominated solution updates are also 

considered for AS and MMAS as well. 

3.4 Hyper cube framework for Ant System (HC-

AS) 

In the AS framework described in section 3.1, 

the ants construct the solution using the pheromone 

values associated to the solution components. It is 

known that the pheromone values considered as a 

vector τ͞ = (τ1, τ2,…, τn ) moves in a hyperspace with 

different limits for different pheromone updating 

rules. The hyperspace is denoted as T. For AS, the 

pheromone values τi are limited by  

     

lim
t → ∞

Ti(t) ≤ (1
1-ρ⁄ ) . (𝑘

f(sopt)⁄ )              (29) 

 

It is clear that the limits of T can be very 

different depending on the pheromone updating rule 

itself and the amount of pheromone added in each 

step, which is a function of the solution quality. 

Here, we rewrite the pheromone updating rules for 

hypercube framework of Ant System [23].  

Ant System’s new updating rule is obtained via a 

normalization of Eq. (11-12) 

 

τij(t)= ρ
g
. τij(t-1)+ (1-ρ

g
)∑ ∆τij

kNA 
k=1               (30) 
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∆τij
k = (1

VMPk
⁄ ) (∑ 1

VMPk
⁄NA

k=1 )⁄                   (31) 

The new update rule restricts the pheromone 

values to lie between 0 and 1. 

3.5 Hyper cube framework for Max-Min Ant 

System (HC-MMAS) 

In hypercube framework of MMAS, instead of 

using only one solution per iteration for updating the 

pheromone values, a weighted average of the three 

solutions is used. The modified update rules are as 

given in Eq. (32) and Eq. (33). 

 

τij(t)= ρ
g
τij(t-1)+ (1-ρ

g
) .∆τij

bestsol             (32) 

 

 

∆ij
bestsol= wibest.∆ij

ibest+ wrbest.∆ij
rbest+ wbbest. ∆ij

bbest 

                             (33)     

In Eq. (33) wibest wrbest and wbbest are the weights 

of the iteration best (ibest), restart best (rbest) and 

best so far (bbest) solutions. The update rules given 

in Eq. (32) sets the pheromone values that exceed 

τmax, back to τmax..Δij
bestsol in Eq. (33) allows choosing 

how to schedule the relative influence of the three 

solutions used for updating pheromones.  

The Setting of weights based on the convergence 

factor and Boolean variable for updating Eq. (33) is 

given by Blum and Dorigo [23]. 

3.6 Hyper cube framework for Ant Colony 

System (HC-ACS) 

The modified update rules and the process of VM 

placement for HC-ACS is given in next section. 

4. Application of Hyper cube Ant colony 

system framework for Virtual Machine 

Placement  

In this section, we apply the hypercube 

framework of Ant colony system approach for 

virtual machine placement. The given procedure 

works as follows: in an initialization phase, the 

parameters are initialized and all the pheromone 

trails associated with every VM to PM mapping are 

set to τ0 as given in Eq. (34).  

Then we generate initial solution by mapping 

VM-PM in a random manner. In the iterative 

optimization phase, each ant receives all VM 

requests, introduces a physical server and starts 

assigning VMs to servers. Here, we use pseudo 

random proportional rule which describes the 

desirability for an ant to choose a particular VM for 

placing in the current server based on pheromone 

and heuristic information. A local pheromone 

update is performed once an artificial ant has built a 

solution. After all ants have constructed their 

solutions, a hypercube framework based global 

update rule is used to update the pheromone values 

of the current Pareto set. The initial pheromone 

value is calculated using Eq. (34) 

 

τ0=1/[n.(P'(S0)+RW(S0))]                             (34) 

 

The heuristic information denoted as ηij indicates 

the desirability of assigning VM i to server j.  The 

partial contributions of assigning VM i to the server 

j are given in Eq. (35-36). 

 

η
ij1

= 1 (ε+ ∑ (Pv/Pv
max)

j

v=1 )⁄               (35) 

 

η
ij2

=1 (ε+ ∑ Wv
j

v=1 )⁄                (36) 

 

The total desirability of each movement using 

Eq. (37) 

 

η
ij
= η

ij1
+η

ij2
                           (37) 

 

In the process of choosing the next VM to place 

in current server, the ant k selects the VM according 

to the pseudo-random-proportional rule given in Eq. 

(23-24). The local updating rule of ACS is given in 

Eq. (25) and the global update of the pheromone 

values in HCF framework is computed using the 

following modified global update rule: 

 

τij(t)=(1-ρ
l
)τij(t-1)+ρ

g
Δτij

best                          (38) 

 

 Δτij
best= (

λ

VMPbest) ∑
λ

VMPpareto

paretoset_n

pareto=1⁄   (39)                                                              

 

The best solutions are the non-dominated 

solutions (Pareto set) and each of the solution 

components are updated such that the values lie 

between 0 and 1. 

5. Computational Experiments 

In this paper, we have conducted experiments on 

six ant colony optimization algorithms for virtual 

machine placement problem. 
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Figure.1 Flow-chart of the HC-ACO algorithm applied to virtual machine placement problem 

Repeat 

End For 
virtual 

machine that 

can be packed 

into the 

current server   

 

Initialize the number of iterations (M) and number of ants (NA) 

Assign the No. of VMs (n)  and  No. of servers (m) 

Let the vector I be set of VMs and vector J be set of PMs 

Set q0, NA, M, α, ρl, ρg, tpj, tmj, ϵ 

Initialize the Pareto set P as empty matrix  

Generate problem instances 

 

Construct Initial Solution  

Determine the normalized power consumption and resource wastage of the initial solution  

Initialize n×m pheromone values to τ0 

 

 
 

 

Sort the server list J in random order 

 

 

 

 

 

 

 

 

 

Host a new server from the server list J 

Generate a random number q 

 

Compute the total desirability of the movement using Eq. (37) 

Compute the probability of the movement using Eq. (24) 

 

q<=q0 

Perform Exploitation 

Perform 

Exploration 

Apply the local update rule given in Eq. (25) 

 

Calculate the objective functions. 

Add the solution to the Pareto set P, if it is not dominated by any other solution and the 

non-dominated solutions in the Pareto set P.  Further all the solutions dominated by the 

newly added one are removed from the set P. 

 

 

Apply the global update rule using Eq. (38) 

Return Pareto Set P 

Until all VMs are placed 

Repeat 

Until no remaining VM fits in the server anymore 

 

For each ant k 

End For 

For each virtual machine that can be hosted into the current server   

 

For each non-dominated solution in the Pareto set P 

 
End For  

For iteration=1:  M 

End For  
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Initial Solution 

Yes 

No 
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Firstly, we have used the traditional ant system 

approach for placing virtual machines in optimal 

number of servers. The initial pheromone values for 

AS are initialized as n/ Pʹ(S0)+RW(S0). The 

algorithm performs global update of pheromone 

values once all ants construct the solution.  

Secondly, we have used Max-Min ant system 

where the initial pheromone values are initialized as 

1/ρ.Pʹ(S0)+RW(S0) and the updating of pheromone 

values during solution construction process are 

restricted between τmin and τmax..  

Thirdly, we use ant colony system where it has 

additional characteristics of local update done for 

each solution constructed by the ants and the global 

update as in other variants. The initial pheromone 

values for ACS are as given in Eq. (34).   

In the next three experiments related to 

hypercube framework, the Eq. (30-39) is used to 

update pheromone values. The programs were coded 

in the MATLAB and ran on an Intel Pentium® 

Dual-Core processor with 2.50 GHz CPU and 3 GB 

RAM. The random sequences of problem instances 

are generated using the procedure given by Gao with 

reference values set as 35% [18]. The procedure 

used for generating solutions is given in Fig. 1.  

By conducting experiments, we have determined 

the power consumption and resource wastage of the 

placement solutions generated by ACO and its 

variants. The results recorded in Table 4 – Table 8 

are average of 20 runs of 100 iterations.  

From the results obtained, we observe that as the 

numbers of virtual machines are increased gradually, 

among the classical ACO techniques Ant colony 

System (ACS) variant which performs both 

exploration and exploitation performed better in 

obtaining placement solutions which had minimum 

power consumption and resource wastage. Further, 

compared to classical ACO techniques like AS, 

MMAS and ACO, the hyper cube ACO variants 

generated still better solutions with much lesser 

power consumption and resource wastage than 

classical variants.  

Table 4.   Power consumption and resource wastage of 

VMP using Variants of ACO for 50 VMs 

Algorithm Power 

(W) 

Resource 

Wastage 

CPU time 

(Sec) 

AS 8621 2.00 0.99 

MMAS 8821 1.60 0.97 

ACS 8732 1.37 0.88 

HC-AS 8950 2.04 1.23 

HC-MMAS 8860 1.91 1.81 

HC-ACS 8775 1.82 1.36 

 

Table 5. Power consumption and resource wastage of 

VMP using Variants of ACO for 100 VMs 

Algorithm Power 

(W) 

Resource 

Wastage 

 

CPU time 

(Sec) 

AS 15757 2.61 1.01 

MMAS 15343 3.11 1.84 

ACS 15518 4.21 1.66 

HC-AS 15586 4.39 1.42 

HC-MMAS 16096 2.12 2.24 

HC-ACS 15757 2.61 1.01 

 

Table 6. Power consumption and resource wastage of 

VMP using Variants of ACO for 150 VMs 

Algorithm Power 

(W) 

Resource 

Wastage 

CPU time 

(Sec) 

AS 19628 3.96 2.05 

MMAS 19621 4.14 3.45 

ACS 18617 3.61 2.06 

HC-AS 19078 4.00 2.57 

HC-MMAS 19728 3.96 3.76 

HC-ACS 18538 3.24 2.96 

 

 

Table 7.   Power consumption and resource wastage of 

VMP using Variants of ACO for 200 VMs 

Algorithm Power 

(W) 

Resource 

Wastage 

 

CPU time 

(Sec) 

AS 25029 7.79 4.90 

MMAS 25763 6.55 3.91 

ACS 25159 4.92 3.46 

HC-AS 25297 4.85 4.97 

HC-MMAS 25143 4.85 5.54 

HC-ACS 25053 3.58 4.53 

 

 

Table 8. Power consumption and resource wastage of 

VMP using Variants of ACO for 250 VMs 

Algorithm Power 

(W) 

Resource 

Wastage 

 

CPU time 

(Sec) 

AS 31219 8. 46 5.39 

MMAS 31330 8.12 5.73 

ACS 31298 8.31 5.49 

HC-AS 31198 8.41 6.45 

HC-MMAS 29576 6.64 6.08 

HC-ACS 31192 7.61 6.22 
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 Figure. 2 Running time of ACO variants relative to 

number of virtual machines 

From Fig. 2, we find that among hypercube 

algorithms, HC-ACS takes less time to get optimal 

results compared to other variants when numbers of 

VMs are increased gradually. 

6. Conclusion 

In this paper, we have applied hypercube ant 

colony optimization framework for optimal and 

efficient placement of static multi objective virtual 

machine placement problem. In using traditional 

ACO techniques, generally the upper limit of the 

pheromone values is unknown and it majorly 

depends on the values of an optimal solution 

obtained.  

However, if the ACO algorithm is implemented 

in the Hyper cube framework (HCF), especially the 

Max- Min ant system gets benefited as the upper 

and lower limit for pheromone values are known to 

be respectively 1 and 0. The HCF framework also 

automatically handles the scaling of the objective 

function values. The HCF solution performance is 

compared to that of an existing ACO variant, 

without hypercube framework and within hypercube 

framework. The results demonstrate that HCF 

algorithm gives on average a more robust behaviour 

of ant colony optimization algorithms for virtual 

machine placement. Finally the scalability of the 

proposed algorithm is also considered and verified 

by conducting several experiments varying the 

number of virtual machines.  

 

The possible future research directions related to 

virtual machine placement is to make an attempt on 

parallel implementation of ant colony optimization 

techniques for the execution of placement 

algorithms. The other direction would be to 

investigate on dynamic placement strategies with 

load prediction and live migration techniques as a 

part of server consolidation and placement problem. 
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