
Received: February 2, 2017 77

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

Virtual Machine Placement Using Hypercube Ant Colony Optimization

Framework

Boominathan Perumal1* Aramudhan Murugaiyan2

1School of Computing Science and Engineering, VIT University, Vellore, India

2 Perunthalaivar Kamarajar Institute of Engineering and Technology, Puducherry, India
* Corresponding author’s Email: boominathan.p@vit.ac.in

Abstract: This paper presents a novel application of hypercube framework of ant colony optimization to the virtual

machine (VM) placement problem, with the objective of minimizing the power consumption and resource wastage.

The aim of the VM placement is to develop an optimal placement strategy to allocate the VM’s to physical servers

such that the usage of physical resource is minimized. The hypercube framework of ACO differs from its usual ACO

implementation in the hyperspace for the pheromone values. In other words, in the hypercube framework, the

updating of pheromone values is constrained to lie between 0 to1. This constrained pheromone updating has an

advantage of automatically handling the scaling of objective function values and further leads to robust version pf

ACO procedure. Here, we experimentally investigate the influence of hypercube framework of ACO for virtual

machine placement using three ACO variants, namely, Ant system, Max-Min Ant System, and Ant colony system.

Keywords: Virtual Machine, Ant colony Optimization, Hyper cube, Power Consumption, Resource Wastage.

1. Introduction

Ant colony optimization (ACO) [1] is one of the

metaheuristic approaches widely used for

optimization problems. The collaborative behaviour

of original ants that cooperate into a colony for

finding best routes from the nest to the food location

is the real inspiring source of ACO techniques. On

finding the food source, the ants communicate

indirectly with each other by depositing a substance

called pheromone in the path it travelled. The

subsequent ants tend to choose the path having high

pheromone deposit. As time progresses, if the

pheromone signal is not strengthened by other ants,

then the path information is gradually lost and the

pheromone signal evaporates. On the basis of these

concepts, the movement of the artificial ants is

driven by probabilistic decisions taken on the basis

of the pheromone values.

The application of ACO is well explored in

literature by mapping the functionalities of real ant

colonies to artificial ant colonies to solve the several

combinatorial optimization problems in various

engineering domains. Lopez-Ibanez and Blumb [2]

proposed an algorithm named Beam-ACO for the

traveling salesman problem (TSP) with time

windows. The minimum spanning tree problem was

solved by Neumann and Witt [3] using a novel ACO

approaches. In paper [4] ACO was proposed for

production scheduling problem, a class of

Asymmetric TSP. A hybrid algorithm was proposed

for resource-constrained project scheduling [5].

Bi-Objective ACO approach was proposed to

optimize production and maintenance scheduling [6].

Chen et al. [7] applied ACO to monitor the cash

flow monitoring and to control the project cost. A

model based on ACO approach was proposed by

Lee et al. to search for the optimum gardener

manpower requirements and a near-optimal

maintenance schedule for the green areas [8]. ACO

model was proposed for heterogeneous spatial

information processing [9]. Martinez et al.

developed an optimized ACO model for Reinforced

Concrete (RC) bridge piers with hollow rectangular

Received: February 2, 2017 78

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

sections [10]. Rama Rao et al. proposed ACO based

novel optimization method for determining kinetic

and film thickness model parameters [11]. An Ant

colony optimization approach was used for

economic dispatch problem with non-smooth cost

functions [12]. Xu et al. applied ACO model for

MTT in Image processing [13]. Ketabi et al.

proposed to use ant colony algorithm to reactive

power pricing in an open electricity market [14].

Kwang and Weng [15] conducted a comparative

study on all routing algorithms with ACO. Amilkar,

et al. analysed the performance of ACO on various

case studies in TSP using a two stage approach [16].

In the process of introducing virtual machine (VM)

placement in cloud computing as a NP- hard

optimization problem, we propose to use the well-

developed metaheuristic technique named ant

colony optimization technique for mapping a set of

virtual machines to a set of physical machines. The

problem of optimal mapping of VM to PM is

considered as a multi objective optimization

problem where we aim to simultaneously minimize

power consumption and resource wastage. As it is

well known that, there are several variants of ACO

techniques available in literature and each has its

own characteristics, we propose to apply the

Hypercube Ant colony framework [17] which, in

contrast to traditional ACO algorithms, brings

several benefits like increase in the robustness of the

ACO algorithm when implemented in the HCO

framework, as it automatically scales the objective

function values. That is, the behaviour of the

algorithm is independent of whether the objective

function values of a problem instance lie in the

interval of [0,1] or [0,1000]. The other benefit

would be in introducing changes in the pheromone

update rule such that the pheromone values are

constrained to lie between 0 and 1 for any variant of

the ACO algorithm implemented in HCO

framework.

In this paper, the hypercube framework is

implemented on three major variants of ACO

namely Ant System (AS), Max-Min ant system

(MMAS) and Ant Colony System (ACS). The

results show that the implementation of ACO

algorithms in the HCF increases their robustness and

makes it easier the handling of the pheromones

during its implementation.

The rest of the paper is organized as follows. In

Section 2 we formulate the virtual machine

placement problem. Section 3 provides the variants

of ACO and their implementation strategy for

virtual machine placement. Section 4 gives the

detailed description of virtual machine placement

using hypercube ant colony system optimization

framework. In section 5 we present the

computational experimental study conducted and the

results obtained. Section 6 concludes the paper

followed by references.

2. Problem Formulation

The problem of VM placement is formulated as

follows. Given, a set of n virtual machines, m

physical servers and the physical servers already

hosting ni VMs, the VM placement algorithms

generate possible mapping solutions for n+ni VMs

on the m physical servers under a specified set of

constraints. The objective function given in Eq. (1)

is to minimize the power consumption and the

objective function in Eq. (2) focuses on reducing the

resource wastage.

Here, we consider the VMP placement problem

as a multi-objective combinatorial optimization

problem where the optimization strategy focuses on

simultaneously minimizing the power consumption

and the resource wastage under the given set of

constraints. The constraint given in Eq. (3) assigns a

VM i to only one of the servers. Constraints (4) and

(5) specify the constraint related to the server

capacity. Constraint (6) defines the range of the

variables related to the VM placement. The

notations used in the problem formulation are given

in Table 1.

Table 1. Notations and Description

Notation Description

[Ri
cpu Ri

mem] CPU and Memory resource

requirements of the server i

[TC jcpu TC jmem]

Total capacity vector of server j

with respect to CPU and memory

allocij ϵ {0,1}

The binary variable allocij is set to 1

if virtual machine i is allocated to the

server j

 yj ϵ {0,1} The binary variable yj is set to 1 if

server j is packed with any virtual

machine i.

RWj Resource wastage of the jth server

Pj Power consumed by the jth server

U jcpu
 CPU utilization of the jth server

U jmem
 Memory utilization of jth server

L jcpu Normalized remaining CPU of the

server j

L jmem Normalized remaining memory of

server j

P
j
busy and Pj

idle

Average power values when server j

is busy and server j is idle.

Received: February 2, 2017 79

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

Minimize ∑ Pj= ∑ [y
j
 × ((Pj

busy
- Pj

idle)× ∑ (allocij Rcpu
i)+ Pj

idlen
i=1)]m

j=1
m
j=1 (1)

Minimize ∑ RWj
m
j=1 = (2)

∑[y
j
 ×
|(TCcpu

j -∑ (allocij. Rcpu
i)n

i=1) - (TCmem
j -∑ (allocij Rmem

i)n
i=1)|+ ɛ

∑ (allocij Rcpu
i)+ n

i=1 ∑ (alloc
ij
Rmem

in
i=1)

]

m

j=1

Subject to:

∑ 𝑎𝑙𝑙𝑜𝑐𝑖𝑗 = 1
𝑚
𝑗=1 ; ∀ 𝑖 ∈ 𝐼 (3)

∑ Rcpu
i .allocij ≤ TCcpu

j y
j

n
i=1 ; ∀ j ∈ J (4)

∑ Rmem
in

i=1 allocij ≤ TCmem
j y

j
; ∀j ϵ J (5)

yj , allocij ∈{0,1}; ∀ i ∈ I , ∀ j ∈ J (6)

The potential cost of wasted resources is

modelled using the following Eq. (7)

RWj= (|Lcpu
j - Lmem

j |+ ε) (Ucpu
 j +Umem

 j)⁄ (7)

ε is a very small positive real number and its

value is set to be 0.0001. The power consumption of

the j-th server is defined as a function of the CPU

utilization as shown below.

 Pj
=
{
(Pj

busy
-Pj

idle) × Ucpu
 j +Pj

idle; UC
 j

>0

0 ; otherwise

 (8)

Where, Pj
idle and P

j
busy are the average power

values when the jth server is idle and when fully

utilized, respectively. The values of Pj
idle and P

j
busy

have been fixed to 162 and 215 Watt [18].

3. Variants of ACO for Virtual Machine

Placement

The three major variants of ACO namely Ant

system, Max-Min Ant System and Ant colony

System are used to explore the implementation of

hypercube framework.

3.1 Ant Systems (AS)

The two main phases of AS [19] algorithm are

the ant’s solution construction phase and the

pheromone update phase. At each solution

construction step, an ant k in AS applies a

probabilistic action choice rule, named random

proportional state transition rule, to decide the next

VM i to place in server j. In particular, the

probability with which an ant k, chooses server j for

VM i is

Pij
k = {

[τij]
α
 . [ƞij]

β

∑ ∈ Ω k (j)u [τiu]
α . [ɳiu]

β ; i ∈ Ωk(j)

 0 ; otherwise

 (9)

Where, τij is the pheromone trail deposited when

virtual machine i is placed in server j. It defines the

favourability of packing VM i into server j. The

heuristic information ηij indicates the desirability of

assigning VM i to server j. α and β parameters

weigh the relative importance of the pheromone trail

and the heuristic information.

Ωk(j)=

{

 i∈ {1,…, n} |(∑ allociu=0

m

u=1

) ^

(
(∑(allocuj× Rcpu

u)+ Rcpu
i

n

u=1

)

≤TCcpu
j

) ^

(
(∑(allocuj× Rmem

u)+ Rmem
i

n

u=1

)

≤TCmem
j

)

}

 (10)

Received: February 2, 2017 80

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

Ωk (j) is the set of eligible virtual machines

determined for ant k to pack in a particular server j.

In Eq. (10), each ant k stores the virtual

machines placed so far, and this memory is

exploited to determine Ωk (j) in each construction

step.

The pheromone updating is done once all ants

have finished constructing their solutions and is also

evaporated in all the solution components.

The update rule is as given below:

τij(t)= (1-ρ
g
) τij (t-1)+ ∑ ∆τij

kNA
k=1 (11)

∆τij
k = 1

VMPk
⁄ (12)

 Where, ρg ϵ {0,1} is the evaporation rate, NA is the

number of ants, t is the iteration number and VMPk

is the quality of the solution determined using the

normalized power consumption and resource

wastage of the solution S given by ant k.

VMPk=P'(Sk)+RW(Sk) (13)

For the initial iteration, the pheromone value τ0 is

determined using the term NA/VMP. NA is the

number of ants and VMP is the quality of the initial

solution S0 determined as Pʹ(S0)+RW(S0). Pʹ(S0) is

the normalized CPU power consumption of the

solution S0 and is calculated using Eq. (14).

P'(S0)= ∑ (
Pj

Pj
max⁄)m

j=1 (14)

RW (S0) is the resource wastage of the solution

S0. The initial solution S0 is generated by initial

random placements. Pj
max is the maximum power

consumption of the server j.

3.2 Max-Min Ant System (MMAS)

The Max–Min Ant System (MMAS) algorithm

introduces few modifications to the AS [20]. The

pheromone update function is bound to lie in the

interval [τmin, τmax]. The initial pheromone value τ0 is

computed as

τ0 = 1
ρ

g
⁄ . VMP (15)

 The pheromone update rule for MMAS is as

follows:

τij= [(1-ρ
g
) . τij(t-1) +∆ij

best]
τmin

τmax

 (16)

Where τmax and τmin are the upper and lower

pheromone bounds, respectively.

∆ij
best= 1

VMPbest⁄ (17)

τmax =
1

ρ
g
.VMPbest⁄ (18)

 τmin= τmax (1- √pbest
n

) ((avg-1)√pbest
n

)⁄ (19)

avg=n/2 (20)

VMPbest is the best solutions quality determined

using normalized power consumption and resource

wastage. Chosen a value for pbest, the value of τmin

can be estimated. The different cases would be if

pbest is chosen to be 1, then τmin is assigned to zero.

If pbest is chosen to be too small then it may lead to

a situation where τmin> τmax.

In such a case, we set τmin =τmax, where only

heuristic information will be used in the process of

solution construction. For our experiments we have

chosen the pbest value as 0.05.

If we let the update function be x, the upper and

lower bounds are imposed in the following way:

[x]τmin

τmax = {
a ; if x > τmax

b ; if x < τmin

 x ; otherwise

 (21)

When solution gets stagnated, occasionally

pheromone trails are reinitialized using the variable

pbest and convergence factor (cf).

cf =

 2((
∑ ∈ Tmax{τmax-τij, τij-τmin}τij

|T|.(τmax-τmin)
) -τinit)

 (22)

For the purpose of re-initialization and updating

of pheromone values, it is required to keep track of

the solutions, which are best in the current iteration,

the best solution-so-far and the restart-best solution.

Eq. (22) is used as a part of re-initialization process.

The strategy behind the pheromone update in

MMAS is as follows: At the start of the restart

phase (i.e., when pbest is TRUE and convergence-

Received: February 2, 2017 81

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

factor is nearer to zero), the updating of pheromone

values is done using iteration best solution. Then,

as the number of iterations increases, very often,

the best solution which is found in the current

restart phase is considered for pheromone update.

Just before convergence occurring (i.e.,

convergence-factor < 0.9999), the restartbest

solution alone is used for pheromone update, and

once when convergence is found (i.e., convergence-

factor > 0.9999), the control variable pbest is set to

TRUE and the best-so-far solution is used for

updating the pheromone values. If there is no

convergence, then in the next iteration, the

pheromone values are reset to initial values and the

algorithm is restarted [20].

3.3 Ant Colony System (ACS)

In Ant Colony System (ACS) [21], the pseudo

random proportional rule is given by

i =

{
𝑎𝑟𝑔𝑚𝑎𝑥𝑢∈𝛺𝑘(𝑗) {

𝛼 × 𝜏𝑢𝑗
+

(1 − 𝛼) × ɳ𝑢𝑗
} ; 𝑞 ≤ 𝑞0

 𝑠 ; otherwise

 (23)

Where, q is a random value uniformly distributed

in [0, 1]. If q is greater than q0, the process is called

exploration, otherwise it is exploitation. q0 is a fixed

parameter between 0 to 1. The pheromone value τij

is as given in Eq. (25-26). is a random variable

selected according to the following random-

proportional rule probability distribution [22], which

is the probability that ant k chooses to assign VM i

to server j.

Pij
k = {

α × τij+(1-α)× ղ
ij

∑ (α × τij+(1-α)× ղ
ij
)u ϵ Ωk(j)

; 𝑖 ϵ Ωk(j)

 (24)

 The local pheromone update rule is given below in

Eq. (25).

τij=(1- ρ
l
). τij(t-1)+ ρ

l
.τ0 (25)

Where, ρl ϵ{0,1} is the pheromone decay

coefficient, and τ0 is the initial value of the

pheromone. The global updating rule is applied after

all ants have finished building a solution. The

solutions of Pareto set are updated using following

rules.

τij(t)= (1-ρ
g
) τij(t-1)+ ρ

g
∆τij

best (26)

∆τij
best= λ

VMPbest⁄ (27)

λ = NA
t- NIS+1⁄ (28)

For multi objective optimization, in general the

Pareto set which contains the global non-dominated

solutions are stored in an external set. If a current

iteration solution is not dominated by any other

solutions in the current iteration or in the external

set, then the current iteration solution is added to the

external set and the quantity of pheromone in all

movements which constructed it is increased.

Further, all the solutions that are dominated by

the added one are removed from the external set. In

Eq. (28), NA is the number of ants and NIs

represents the number of epochs that the solution S

has existed in the external set. λ as an adaptive

coefficient controls how a solution in the external

set contributes to pheromone information over time.

The non-dominated solution updates are also

considered for AS and MMAS as well.

3.4 Hyper cube framework for Ant System (HC-

AS)

In the AS framework described in section 3.1,

the ants construct the solution using the pheromone

values associated to the solution components. It is

known that the pheromone values considered as a

vector τ͞ = (τ1, τ2,…, τn) moves in a hyperspace with

different limits for different pheromone updating

rules. The hyperspace is denoted as T. For AS, the

pheromone values τi are limited by

lim
t → ∞

Ti(t) ≤ (1
1-ρ⁄) . (𝑘

f(sopt)⁄) (29)

It is clear that the limits of T can be very

different depending on the pheromone updating rule

itself and the amount of pheromone added in each

step, which is a function of the solution quality.

Here, we rewrite the pheromone updating rules for

hypercube framework of Ant System [23].

Ant System’s new updating rule is obtained via a

normalization of Eq. (11-12)

τij(t)= ρ
g
. τij(t-1)+ (1-ρ

g
)∑ ∆τij

kNA
k=1 (30)

Received: February 2, 2017 82

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

∆τij
k = (1

VMPk
⁄) (∑ 1

VMPk
⁄NA

k=1)⁄ (31)

The new update rule restricts the pheromone

values to lie between 0 and 1.

3.5 Hyper cube framework for Max-Min Ant

System (HC-MMAS)

In hypercube framework of MMAS, instead of

using only one solution per iteration for updating the

pheromone values, a weighted average of the three

solutions is used. The modified update rules are as

given in Eq. (32) and Eq. (33).

τij(t)= ρ
g
τij(t-1)+ (1-ρ

g
) .∆τij

bestsol (32)

∆ij
bestsol= wibest.∆ij

ibest+ wrbest.∆ij
rbest+ wbbest. ∆ij

bbest

 (33)

In Eq. (33) wibest wrbest and wbbest are the weights

of the iteration best (ibest), restart best (rbest) and

best so far (bbest) solutions. The update rules given

in Eq. (32) sets the pheromone values that exceed

τmax, back to τmax..Δij
bestsol in Eq. (33) allows choosing

how to schedule the relative influence of the three

solutions used for updating pheromones.

The Setting of weights based on the convergence

factor and Boolean variable for updating Eq. (33) is

given by Blum and Dorigo [23].

3.6 Hyper cube framework for Ant Colony

System (HC-ACS)

The modified update rules and the process of VM

placement for HC-ACS is given in next section.

4. Application of Hyper cube Ant colony

system framework for Virtual Machine

Placement

In this section, we apply the hypercube

framework of Ant colony system approach for

virtual machine placement. The given procedure

works as follows: in an initialization phase, the

parameters are initialized and all the pheromone

trails associated with every VM to PM mapping are

set to τ0 as given in Eq. (34).

Then we generate initial solution by mapping

VM-PM in a random manner. In the iterative

optimization phase, each ant receives all VM

requests, introduces a physical server and starts

assigning VMs to servers. Here, we use pseudo

random proportional rule which describes the

desirability for an ant to choose a particular VM for

placing in the current server based on pheromone

and heuristic information. A local pheromone

update is performed once an artificial ant has built a

solution. After all ants have constructed their

solutions, a hypercube framework based global

update rule is used to update the pheromone values

of the current Pareto set. The initial pheromone

value is calculated using Eq. (34)

τ0=1/[n.(P'(S0)+RW(S0))] (34)

The heuristic information denoted as ηij indicates

the desirability of assigning VM i to server j. The

partial contributions of assigning VM i to the server

j are given in Eq. (35-36).

η
ij1

= 1 (ε+ ∑ (Pv/Pv
max)

j

v=1)⁄ (35)

η
ij2

=1 (ε+ ∑ Wv
j

v=1)⁄ (36)

The total desirability of each movement using

Eq. (37)

η
ij
= η

ij1
+η

ij2
 (37)

In the process of choosing the next VM to place

in current server, the ant k selects the VM according

to the pseudo-random-proportional rule given in Eq.

(23-24). The local updating rule of ACS is given in

Eq. (25) and the global update of the pheromone

values in HCF framework is computed using the

following modified global update rule:

τij(t)=(1-ρ
l
)τij(t-1)+ρ

g
Δτij

best (38)

 Δτij
best= (

λ

VMPbest) ∑
λ

VMPpareto

paretoset_n

pareto=1⁄ (39)

The best solutions are the non-dominated

solutions (Pareto set) and each of the solution

components are updated such that the values lie

between 0 and 1.

5. Computational Experiments

In this paper, we have conducted experiments on

six ant colony optimization algorithms for virtual

machine placement problem.

Received: February 2, 2017 83

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

Figure.1 Flow-chart of the HC-ACO algorithm applied to virtual machine placement problem

Repeat

End For
virtual

machine that

can be packed

into the

current server

Initialize the number of iterations (M) and number of ants (NA)

Assign the No. of VMs (n) and No. of servers (m)

Let the vector I be set of VMs and vector J be set of PMs

Set q0, NA, M, α, ρl, ρg, tpj, tmj, ϵ

Initialize the Pareto set P as empty matrix

Generate problem instances

Construct Initial Solution

Determine the normalized power consumption and resource wastage of the initial solution

Initialize n×m pheromone values to τ0

Sort the server list J in random order

Host a new server from the server list J

Generate a random number q

Compute the total desirability of the movement using Eq. (37)

Compute the probability of the movement using Eq. (24)

q<=q0

Perform Exploitation

Perform

Exploration

Apply the local update rule given in Eq. (25)

Calculate the objective functions.

Add the solution to the Pareto set P, if it is not dominated by any other solution and the

non-dominated solutions in the Pareto set P. Further all the solutions dominated by the

newly added one are removed from the set P.

Apply the global update rule using Eq. (38)

Return Pareto Set P

Until all VMs are placed

Repeat

Until no remaining VM fits in the server anymore

For each ant k

End For

For each virtual machine that can be hosted into the current server

For each non-dominated solution in the Pareto set P

End For

For iteration=1: M

End For

Prerequisites

Initial Solution

Yes

No

Received: February 2, 2017 84

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

Firstly, we have used the traditional ant system

approach for placing virtual machines in optimal

number of servers. The initial pheromone values for

AS are initialized as n/ Pʹ(S0)+RW(S0). The

algorithm performs global update of pheromone

values once all ants construct the solution.

Secondly, we have used Max-Min ant system

where the initial pheromone values are initialized as

1/ρ.Pʹ(S0)+RW(S0) and the updating of pheromone

values during solution construction process are

restricted between τmin and τmax..

Thirdly, we use ant colony system where it has

additional characteristics of local update done for

each solution constructed by the ants and the global

update as in other variants. The initial pheromone

values for ACS are as given in Eq. (34).

In the next three experiments related to

hypercube framework, the Eq. (30-39) is used to

update pheromone values. The programs were coded

in the MATLAB and ran on an Intel Pentium®

Dual-Core processor with 2.50 GHz CPU and 3 GB

RAM. The random sequences of problem instances

are generated using the procedure given by Gao with

reference values set as 35% [18]. The procedure

used for generating solutions is given in Fig. 1.

By conducting experiments, we have determined

the power consumption and resource wastage of the

placement solutions generated by ACO and its

variants. The results recorded in Table 4 – Table 8

are average of 20 runs of 100 iterations.

From the results obtained, we observe that as the

numbers of virtual machines are increased gradually,

among the classical ACO techniques Ant colony

System (ACS) variant which performs both

exploration and exploitation performed better in

obtaining placement solutions which had minimum

power consumption and resource wastage. Further,

compared to classical ACO techniques like AS,

MMAS and ACO, the hyper cube ACO variants

generated still better solutions with much lesser

power consumption and resource wastage than

classical variants.

Table 4. Power consumption and resource wastage of

VMP using Variants of ACO for 50 VMs

Algorithm Power

(W)

Resource

Wastage

CPU time

(Sec)

AS 8621 2.00 0.99

MMAS 8821 1.60 0.97

ACS 8732 1.37 0.88

HC-AS 8950 2.04 1.23

HC-MMAS 8860 1.91 1.81

HC-ACS 8775 1.82 1.36

Table 5. Power consumption and resource wastage of

VMP using Variants of ACO for 100 VMs

Algorithm Power

(W)

Resource

Wastage

CPU time

(Sec)

AS 15757 2.61 1.01

MMAS 15343 3.11 1.84

ACS 15518 4.21 1.66

HC-AS 15586 4.39 1.42

HC-MMAS 16096 2.12 2.24

HC-ACS 15757 2.61 1.01

Table 6. Power consumption and resource wastage of

VMP using Variants of ACO for 150 VMs

Algorithm Power

(W)

Resource

Wastage

CPU time

(Sec)

AS 19628 3.96 2.05

MMAS 19621 4.14 3.45

ACS 18617 3.61 2.06

HC-AS 19078 4.00 2.57

HC-MMAS 19728 3.96 3.76

HC-ACS 18538 3.24 2.96

Table 7. Power consumption and resource wastage of

VMP using Variants of ACO for 200 VMs

Algorithm Power

(W)

Resource

Wastage

CPU time

(Sec)

AS 25029 7.79 4.90

MMAS 25763 6.55 3.91

ACS 25159 4.92 3.46

HC-AS 25297 4.85 4.97

HC-MMAS 25143 4.85 5.54

HC-ACS 25053 3.58 4.53

Table 8. Power consumption and resource wastage of

VMP using Variants of ACO for 250 VMs

Algorithm Power

(W)

Resource

Wastage

CPU time

(Sec)

AS 31219 8. 46 5.39

MMAS 31330 8.12 5.73

ACS 31298 8.31 5.49

HC-AS 31198 8.41 6.45

HC-MMAS 29576 6.64 6.08

HC-ACS 31192 7.61 6.22

Received: February 2, 2017 85

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

 Figure. 2 Running time of ACO variants relative to

number of virtual machines

From Fig. 2, we find that among hypercube

algorithms, HC-ACS takes less time to get optimal

results compared to other variants when numbers of

VMs are increased gradually.

6. Conclusion

In this paper, we have applied hypercube ant

colony optimization framework for optimal and

efficient placement of static multi objective virtual

machine placement problem. In using traditional

ACO techniques, generally the upper limit of the

pheromone values is unknown and it majorly

depends on the values of an optimal solution

obtained.

However, if the ACO algorithm is implemented

in the Hyper cube framework (HCF), especially the

Max- Min ant system gets benefited as the upper

and lower limit for pheromone values are known to

be respectively 1 and 0. The HCF framework also

automatically handles the scaling of the objective

function values. The HCF solution performance is

compared to that of an existing ACO variant,

without hypercube framework and within hypercube

framework. The results demonstrate that HCF

algorithm gives on average a more robust behaviour

of ant colony optimization algorithms for virtual

machine placement. Finally the scalability of the

proposed algorithm is also considered and verified

by conducting several experiments varying the

number of virtual machines.

The possible future research directions related to

virtual machine placement is to make an attempt on

parallel implementation of ant colony optimization

techniques for the execution of placement

algorithms. The other direction would be to

investigate on dynamic placement strategies with

load prediction and live migration techniques as a

part of server consolidation and placement problem.

References

[1] M. Dorigo, Optimization, learning and natural

algorithms, PhD thesis, Politecnico di Milano,

Italy, [in Italian], 1992.

[2] M. Lopez-Ibanez, and C. Blum, “Beam-ACO for

the travelling salesman problem with time

windows”, Computers & Operations Research,

Vol. 37, pp.1570–1583, 2010.

[3] F. Neumann, and C. Witt, “Ant Colony

Optimization and the minimum spanning tree

problem”, Theoretical Computer Science, Vol.

411, pp. 2406–2413, 2010.

[4] A. Andziulis, D. Dzemydiene, and C.

Steponavicius, “Comparison of two heuristic

approaches for solving the production scheduling

problem”, Information Technology and Control,

Vol. 40, No.2, pp. 118–122, 2011.

[5] W. Chen, Shi, H.-F. Teng, X.-P. Lan, and L.-C.

Hu, “An efficient hybrid algorithm for resource-

constrained project scheduling”, Information

Sciences, Vol. 180, pp. 1031–1039, 2010.

[6] A. Berrichi, F. Yalaoui, L. Amodeo, and M.

Mezghiche, “ Computers Bi-Objective Ant

Colony Optimization approach to optimize

production and maintenance scheduling”,

Operations Research, Vol. 37, pp. 1584–1596,

2010.

[7] W.-N.Chen, J. Zhang, H. S. - H.Chung, R.-Z.

Huang, and O. Liu, “Optimizing Discounted

Cash Flows in Project Scheduling—An Ant

Colony Optimization Approach”, IEEE

Transactions On Systems, Man, And

Cybernetics—Part C: Applications And Reviews,

Vol .40, No. 1, pp. 64-77, 2010.

[8] H.-Y. Lee, H.-H .Tseng, M.-C. Zheng, and P.-Y.

Li, “Decision support for the maintenance

management of green areas”, Expert Systems

with Applications, Vol. 37, pp. 4479–4487, 2010.

50 100 150 200 250
0

1

2

3

4

5

6

7

Number of Virtual Machines

T
im

e
(S

e
c
o

n
d

s
)

AS

MMAS

ACS

HCAS

HCMMAS

HCACS

Received: February 2, 2017 86

International Journal of Intelligent Engineering and Systems, Vol.10, No.5, 2017 DOI: 10.22266/ijies2017.1031.09

[9] S. Schockaert, P.D. Smart, and F.A. Twaroch,

“Generating approximate region boundaries from

heterogeneous spatial information: An

evolutionary approach”, Information Sciences,

Vol.181, pp. 257–283, 2011.

[10] F.J. Martinez, F. Gonzalez-Vidosa, A.

Hospitaler, and V. Yepes, “Heuristic

optimization of RC bridge piers with rectangular

hollow sections”, Computers and Structures, Vol.

88, pp. 375–386, 2010.

[11] T. Rama Rao, C. Srinivasan, and C.

Venkateswarlu, “Mathematical and kinetic

modeling of biofilm reactor based on Ant Colony

Optimization”, Process Biochemistry, Vol. 45,

pp. 961–972, 2010.

[12] S. Pothiya, I. Ngamroo, and W.

Kongprawechnon, “Ant colony optimisation for

economic dispatch problem with non-smooth

cost functions”, Electrical Power and Energy

Systems, Vol. 32, pp. 478–487, 2010.

[13] B. Xu, Q. Chen, J. Zhu, and Z. Wang, “Ant

estimator with application to target tracking”,

Signal Processing, Vol. 90, pp. 1496–1509, 2010.

[14] A. Ketabi, A. Alibabaee, and R. Feuillet,

“Application of the ant colony search algorithm

to reactive power pricing in an open electricity

market”, Electrical Power and Energy Systems,

Vol. 32, pp. 622–628, 2010.

[15] M. S. Kwang, and H. S. Weng, “Ant Colony

Optimization for routing and load balancing:

Survey and new directions”, IEEE Transactions

on Systems, Man, and Cybernetics, Vol. 33, No.5,

pp. 560–572, 2003.

[16] P. Amilkar, B. Rafael, and H. Francisco,

“Analysis of the efficacy of a two-stage

methodology for Ant Colony Optimization: Case

of study with TSP and QAP”, Expert Systems

with Applications (Elsevier), Vol. 37, pp. 5443–

5453, 2010.

[17] C. Blum, A. Roli , and M. Dorigo, “ HC-ACO:

The Hyper-Cube Framework for Ant Colony

Optimization”, In: Proc. 4th Metaheuristics

International Conference, pp. 399-403, 2001.

[18] Y. Gao , H. Guan , Z. Qi , Y. Hou, and L. Liu,

“A multi-objective ant colony system algorithm

for virtual machine placement in cloud

computing”, Journal of Computer and System

Sciences, Vol. 79, pp. 1230–1242, 2013.

[19] M. Dorigo, V. Maniezzo, and A. Colorni, “The

ant system: Optimization by a colony of

cooperating agents”, IEEE Transactions on

Systems, Man, and Cybernetics—Part B, Vol. 26,

pp. 29-41, 1996.

[20] T. Stützle, and H.H. Hoos, “MAX–MIN ant

system”, Future generation computer systems,

Vol. 16, No.8, pp. 889-914,2000.

[21] M. Dorigo, and L. M. Gambardella, “ Ant

Colony System: A cooperative learning approach

to the traveling salesman problem”, IEEE

Transactions on Evolutionary Computation, Vol.

1, No. 1, pp. 53–66, 1997.

[22] V.Maniezzo, “Exact and approximate

nondeterministic tree-search procedures for the

quadratic assignment problem” , INFORMS J.

Comput, Vol. 11, No.4, pp. 358–369, 1999..

[23] C. Blum, and M. Dorigo, “The Hyper-Cube

Framework for Ant Colony Optimization”, IEEE

Transactions on Systems, Man and Cybernetics,

PART B: Cybernetics, Vol. 34, No. 2, 2004.

