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Abstract: This contribution will verify the effectiveness of formal neural networks for predicting drought in a semi-

arid region using a hybrid model of formal neural networks (ANN-MLP) and the standardized precipitation index 

( SPI). Three types of models have been optimized to achieve this objective. A database consisting of SPI values, 

rain, temperature and potential evapotranspiration (PET) at the monthly time step was used as input for these models. 

These data have been standardized between 0 and 1 and subdivided into two blocks: a first block composed of 2/3 of 

the data for learning and a second block composed of 1/3 of the data for the test and the validation of the models. 

These models have been optimized with supervised learning. The activation function chosen is the logistic variant of 

the type sigmoid. The mean square error (RMSE), the correlation coefficient (R), the criterion of Nash-Sutcliffe 

(Nash) and the absolute mean error (MAE) were used to test the performance of these models. The results obtained 

show that the 3rd model is the most efficient. The application of neural networks for the estimation of the dryness of 

the Saïss Plain yielded quite good results. Indeed, the coefficients of correlation between the predicted and the 

measured values range from 0.63 to 0.97. It is therefore noted that the performances obtained are relatively good and 

could be improved by using a larger database. 

Keywords: Drought, Formal neural networks, SPI, RET, Temperature, Rain. 

 

 

1. Introduction 

Drought affects natural environment of an area 

when it persists for a longer period. So, drought 

forecasting plays an important role in the planning 

and management of natural resources and water 

resource systems of a river basin. During last decade 

neural networks have shown great ability in 

modeling and forecasting drought in Saïss Plain. 

Over the last decades, artificial neural networks 

have a great ability to model and predict nonlinear 

and non-stationary time series in hydrology and 

water resource engineering due to their innate 

nonlinear property and their flexibility for modeling. 

Some of the benefits of NAS are [1]. (1) They are 

able to recognize the relationship between the input 

and output variables without explicit physical 

considerations. (2) They work well even when 

training sets contain noise and measurement errors. 

(3) They are able to adapt to solutions over time to 

compensate for changing circumstances. (4) They 

possess other inherent information processing 

characteristics and once trained are easy to use. The 

neural network the models presented in this 

document is based on SPI as a drought index. The 

SPI is used in this study for the following 

advantages, which are discussed by [14]. The main 

reason is that SPI is based on rain only, so drought 

assessment is possible even if other hydro-

meteorological measurements are not available. The 

SPI is extremely disrupted by topography. Another 

advantage of SPI is its variable timing, which allows 

it to describe the severe drought conditions for a 

range of meteorological, hydrological and 

agricultural applications. The third advantage of SPI 

comes from its standardization, which ensures that 

the frequencies of extreme events at any place and 

on any time scale are consistent. SPI can also detect 
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moisture deficiency deeper than the PDSI, which 

has a response time interval of about 8-12 months 

[14]. An application of ANN to solve civil 

engineering problems began in the late 1980s [2]. 

The preliminary concepts of artificial neural 

networks (ANNs) and their adaptability to 

hydrology are well explained [3].  

Its application to simulation and forecasting 

problems in water resources has shown great 

capacity and some of the applications are mentioned 

here. Karunanithi et al. [4], have attempted to 

predict flow at the outlet of the current watershed 

with inputs such as precipitation, upstream flow and 

/ or temperature only. Nagesh Kumar et al. [5], used 

recurrent neural networks to predict river flows. 

Pasini et al. [6],  used a feed-forward neural network, 

formed by means of a backpropagation strategy 

using a generalized Widrow-Hoff rule to update the 

connection weights for the analysis of forced 

relationships / temperatures at different Scales of the 

climate system. Melesse and Hanley [7],    used a 

feed-forward neural network using a back 

propagation algorithm in three different ecosystems 

(forest, grassland, and cultivated land) using shared 

energy fluxes, temperature Air and soil because the 

input variables for predicting the carbon flux are 

present. Sahoo et al. [8],   used ANN to predict the 

occurrence of pesticides in rural household wells 

based on available information. Among the three 

ANN models (a backward propagation (BP), a radial 

basis function (RBF) and an adaptive neural 

network-based fuzzy inference system (ANFIS) 

used in this survey, the BP neural network Was 

found to be superior to RBF and ANFIS type 

networks for the detection of occurrences of 

pesticides in wells, Also the drawback ANFIS is 

sensitive to the initial number of fuzzy rules 

(number of clusters), the computational complexity 

develops as the number of fuzzy rules increases. 

Gevrey et al. [9],    used a feed-forward multi-layer 

network using an error backpropagation training 

algorithm, investigated the exploratory capacity of 

variables to identify environmental factors affecting 

trout abundance, and how these factors contribute to 

Abundance of trout. However, a weakness also 

recognized for linear regression (MLR) and models 

of integral self-regressive progression (ARIMA). 

This limitation with non-stationary data has led to 

the recent formation of hybrid models, where the 

data are preprogrammed for non-stationary 

characteristics and then through a forecasting 

method such as ANNs to face the linear line. 

Support Vector Machines (SVM) are a relatively 

new form of machine learning developed by Vapnik 

[10]. The term SVM is used to designate both 

classification and regression methods as well as the 

terms Vector Classification (SVC) and Support 

Vector Regression (SVR), which refer to 

classification and regression problems respectively. 

The greatest limitation of the support vector 

approach lies in the choice of the kernel. The second 

limit concerns speed and size, both in the learning 

stage and in the test. Although SVMs have good 

generalization performance, they may be 

significantly slow in the test phase. There are 

several studies where SVR has been used in 

hydrological forecasts. ARMA models, pattern 

recognition techniques, physical models using the 

Palmer drought Severity Index (PDSI), standardized 

precipitation index (SPI), a moisture suitability 

index involving Markov chains or the concept Of 

conditional probability seem to offer A potential to 

develop reliable and robust forecasts [11]. Rao and 

Padmanabhane [12], studied the stochastic nature of 

the annual and monthly annual Palmer drought 

index (PDI) and used valid stochastic models to 

predict and simulate PDI series. Kim and Valdés 

[13], used PDSI as a drought parameter to predict a 

drought in the Conchos River basin in Mexico. The 

main objective of the current study is to calculate 

episodes of standardized precipitation index (SPI) 

for several time scales and to compare the neural 

network model with linear stochastic models to 

predict drought. The potential of models to predict 

drought over different horizons is discussed here. 

2. Methodology  

2.1 Presentation of data used 

The data used in this article cover the period of 

January 1979 to December 2014 with a large 

database. These data are among others the potential 

evapotranspiration (PET), the real 

evapotranspiration (RET), rainfall and temperatures) 

these last two are obtained from the Agency of the 

Hydraulic Basin of Sebou (ABHS) concern 

respectively for those stations of Fez-DRH and Fez-

Saïss. For the monthly precipitation the extent of the 

series obtained is 35 years (1979 to 2014) with gaps. 

In fact, 10% of the data of rain collected are outliers. 

The work staff, is has calculated the SPI3, SPI6, 

SPI9, SPI12, SP24 and SPI48 by averaging the data 

of rainfall, the real evapotranspiration (RET) and 

PET used have been estimated using the method of 

Thornthwaite [15]. All these data have been 

observed in the monthly time step. Table 1 presents 

some characteristics of the stations selected for the 

study. 
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Table 1. Characteristics of rainfall stations selected for 

the study 

The 

stations 

Lambert 

coordinats Altitude 

(m) 

Scope 

of 

the 

series 
X (km) Y (km) 

Fez - 

DRH 

535.4 384.8 423 1978-

2014 

Ain-

Bittit 

538.200 370.250 450 1969-

2014 

 

Table 2. Variations of over lapping annual rainfall of the 

station of Fez-DRH during the period (1978-2014) 

 

2.2 Overview of formal neural networks  

A network of artificial neurons (ANN) can be 

defined as a mesh of several neurons (or cells), 

usually organized in layers [16, 17]. It is a powerful 

model to establish the complexity of the input-

output relations of a system [18]. The neural 

network simulates the principle of functioning of the 

human brain which manages an information flow 

from a learning database [22]. Similarities were thus 

established between the elements of the biological 

neurons and the components of the formal or 

artificial neurons. It receives external variables 

descriptive of the state of the system through the 

inputs Xi. The connection between the NAs of order 

i and j is done through the weight Wij. The level of 

activation of the jth NA is modified by the weighted 

sum Sj of the weights of the n NA bonds located 

upstream. Then, in the second step, Sj is subjected to 

the application of the activation function "f", which 

is fixed for each NA according to the objectives of 

the modelization, in order to give a new activation 

threshold. These steps propagate between the input 

neurons until arriving at the output neurons to give 

the system its general appearance. 

Several neural network architectures exist [14]. 

Multilayer perceptron (PMC) or radial function 

(RNF) type ANNs are commonly used to simulate 

nonlinear relationships [29]. In particular, the PMCs 

 

 
 

Figure.1 Schematization of a Formal neuron [21] 

 

 
Figure.2 Time series of monthly precipitation data for the 

two Fes-DRH and Ain Bittit stations for the period 

1978/79 to 2013/14 

 

are the most used and the most sophisticated [22] 

reason why they were chosen in the framework of 

this work. At the level of this architecture (PMC), 

each neuron in a layer is connected to all the 

neurons of the previous layer and the next layer and 

there are no connections between the cells of the 

same layer. Fig.4 shows a multilayer Perceptron 

with a single layer of hidden neurons. In this study, 

to avoid that during the learning of neural networks 

the smallest values have no influence and to ensure 

a convergence of the network the data have 

therefore been normed between 0 and 1. This is 

done through l the following equation: 

 

𝑥̅ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
                               (1) 

 
With: x is the actual value to be normalized, x min is 

its minimum value, x max is its maximum value and 

x ̅ is the normalized value. This transformation 

places the data of the input base between [0, 1]. 

Once the variables have been standardized, the 

70% of the data will be chosen for the learning 

phase (model calibration), 15% for the test phase 

and the remaining 15% to validate the model. 

Neural networks are calibrated using iterative 

techniques. The most commonly used technique for 

calibration is the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) algorithm. Generally, it is 

gourmand in memory and requires a massive 

calculation. Nevertheless, it may require only a 

small number of iterations to calibrate an ANN by 

achieving a rapid convergence rate. 

 

Station Fez - DRH Ain-Bittit 

Minimum (mm) 181 231,0 

Maximum (mm) 838 854,0 

Average (mm) 415,5 500,9 

Écartype 153 159,1 

Coefficient of 

variation 

37% 32% 

Coefficient of 

skewness 

85% 57% 
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Table 3. The values of the Standardized Precipitation 

Index (SPI) [20] 

Values of the SPI Categories of drought 

2.0 and more Extremely damp 

1.5 to 1.99 Very wet 

1.0 to 1.49 Moderately Wet 

-0,99 to 0.99 Close to the normal 

-1.0 to -1,49 Moderately dry 

-1.5 to -1,99 Very Dry 

-2 and less Extremely dry 

 
Table 4. The criterion of Nash-Sutcliffe and Category of 

the model 

criterion of Nash-

Sutcliffe 

Category of the model 

 90% Excellent 

80% to 90%, Very good 

60% to 80%, Good 

 60% Bad 

 
Table 5. The Performance of the model according to the 

Correlation Coefficient 

 

𝐸𝐴𝑝𝑝 = ∑(𝑦𝑟𝑒𝑎𝑙

𝑛

𝑖=1

− 𝑦𝑒𝑠𝑡𝑖𝑚)              (2) 

 

With EApp: Learning error, y real: calculated value,  

y estim: observed value and n: number of observations. 

2.3 Normalized precipitation index (SPI)  

The standardized precipitation index (SPI) [17] 

is a simple and robust index based both on rainfall 

data adopted by the World Meteorological 

Organization (WMO) [24] in 2009 as a global 

instrument for Measures of meteorological droughts. 

It can be used to check wet periods / cycles as well 

as dry periods / cycles. The SPI is applied to 

estimate the rainfall series of the two stations (Fez-

DRH and Ain Bittit) for the period (1978-2014). 

However, at least monthly rainfall surveys over 20 

to 30 years (preferably 50 to 60 years) are needed to 

calculate the SPI [25]. 

MCKEE [20] used the SPI index classification 

system (Tab.3) to define the intensity of drought 

episodes as a function of the index value. The 

mathematical formula of SPI is as follows: 

 

𝑆𝑃𝐼 =
𝑃𝑖 − 𝑃𝑚

𝜎
                              (3) 

 

With Pi is the precipitation of year i, Pm is the mean 

precipitation and σ is the deviation. They also 

defined the criteria for a drought event for any time 

scale: 

2.4 Evaluation of the performance of the models 

The performance of a model derived from a 

method of learning is assessed by its ability to 

prediction or of generalization [17]. In effect, the 

performance criteria to measure the quality or the 

confidence that can be given to the results of a 

forecast in view even, in a legal framework, a 

certification. The coefficient of determination (R2), 

the mean square error (RMSE), the coefficient of 

Nash-Sutcliffe (NA), and the coefficient of 

correlation (r) have been used to compare the 

performance of the models and choose the best. 

 

𝑅 = 1 −
∑ (𝑦0 − 𝑦𝑒)2𝑁

𝑖=1

∑ (𝑦0 − 𝑦̅0)2𝑁
𝑖=1

                 (4) 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦0−𝑦𝑒)2𝑁

𝑖=1

𝑁
                       (5) 

 

𝑁𝑎𝑠ℎ = 1 −  
∑ (𝑦𝑒 − 𝑦̅𝑒)2𝑁

𝑖=1

∑ (𝑦0 − 𝑦̅0)2𝑁
𝑖=1

            (6) 

 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑦0 − 𝑦𝑒|

𝑁

𝑖=1

                        (7) 

 

The criterion of Nash-Sutcliffe varies from -∞ to 1 

and the following scale is generally used [18]. 

 

𝑟 =
∑ (𝑦𝑜 − 𝑦̅0)(𝑦𝑒 − 𝑦̅𝑒)𝑁

𝑖=1

√∑ (𝑦0 − 𝑦̅0)2 ∑ (𝑦𝑒 − 𝑦̅𝑒)2𝑁
𝑖=1

𝑁
𝑖=1

          (8) 

 

According to Koffi & a [11] by convention. 

Where yo, ye and N are SPI values observed, the 

values Estimated SPI and the number of data, 

respectively. In the coefficient of performance of the 

model, an efficiency of 1 corresponds to a perfect 

match of the data provided with the observed data. 

 

 

Correlation 

Coefficient 
Performance of the model 

R = 1 Perfect 

R> 0.8 Very high 

0.5 <R< 0.8 Strong 

0.2 <R< 0.5 Average 

0 <r< 0.2 Low 

R = 0 Zero 
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Figure.3 Geographical situation of the Saïss plain 

 

 
Figure.4 Structure of modeling by artificial neural 

networks applied to the prediction of drought 

 

An efficiency of zero indicates that the predictions 

of the model are as accurate as the average of the 

observed data [20]. 

2.5 Study area 

The Saïss Plain is part of the Fez-Meknes basin. 

The latter is located in the north of Morocco 

between the Middle Atlas in the south and the pre-

Hainan hills in the north with a total area of around 

6000km2 (Lambert coordinates: 467 <X <552 km 

and 320 <Y <390 km). 

Because of its geographical location between 

two mountainous areas in northern Morocco, 

according to the Sebou Hydraulic Basin Agency 

(ABHS), the region is characterized by a 

Mediterranean climate with a semi-arid climate in 

temperate and humid winter and been hot and dry in 

a semi-continental diet. Rainfall is one of the most 

useful parameters for defining different climatic 

parameters. 

The average annual precipitation of the basin is 

on average 600 mm with a maximum of 1000 mm 

on the height further north in the rif and a minimum 

of 300 mm and the valleys of the Beht. In the Saïss 

basin, the average annual maximum temperature is 

23 ° C, while the minimum temperature is 11 ° C 

[27]. 

2.6 Design of the model 

The characterization of drought by explanatory 

factors is an axial step for the design of a neural 

model for modeling. In this part we approach the 

prediction of meteorological drought from a 

simulated model. There must first be an effective 

data collection system that will provide us with the 

quality of the data. It must then be able to represent 

these data efficiently and compatible with the 

subsequent processing steps. 

The steps in the development of the ANN model 

are listed in Fig.4. 

 

3. Results and analysis 

During the course of this study has been 

conducted in the development of four models 

(ANN-MLP1, ANN-MLP2, ANN-MLP3, ANN-

MLP4) for the prediction of the SPI that differ by 

the number and types of variables of entries. The 

evaluation of the modeling has been performed from 

the results of the validation. Table 6 illustrates the 

different Results evaluated according to the criteria 

of digital performance (MAE, RMSE, R and Nash). 

For a forecast of SPI (t+1) (Table 6), the Nash 

criterion does not show a significant difference. This 

brings us to compare the models through the criteria 

RMSE, MAE and R. These criteria indicate 

satisfactory results and eligible for all combinations 

with the exception of Model ANN-MLP1.  

The ANN model the more efficient is the model 

Number 5 with the architecture ANN-MLP5 (12-4-

1) (Fig. 5) with variables of rains, SPI and FTE of 

the month t and the 2 previous months (t-1) and (t-2). 
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Table 6. Performance of 4 models of neural networks developed 

The models 

ANN -MLP 
Inputs of the model 

Validation 

MAE RMSE 
R Nash 

Value Model Value Model 

ANN-MLP1 P(t), P(t-1), P (t-2) 0.698 0.835 0.055 Low 27% Bad 

ANN -MLP2 
P(t), P(t-1), P (t-2); 

0.247 0.497 0.806 
Very 

hard 
64.63% Good 

SPI(t), SPI(t-1), SPI (t-2) 

ANN -MLP3 

P(t), P(t-1), P (t-2);  

0.242 0.492 0.811 
Very 

hard 
65.32% Good SPI(t), SPI(t-1), SPI (t-2); 

PET(t), PET(t-1), PET(t-2) 

ANN -MLP4 

P(t), P(t-1), P (t-2); 

0.234 0.24 0.820 
Very 

hard 
66.48% Good SPI(t), SPI(t-1), SPI (t-2); 

T(t), T(t-1), T(t-2) 

ANN-MLP5 

P(t), P(t-1), P (t-2); 

0.211 0.459 0.836 
Very 

hard 
69.80% Good 

SPI(t), SPI(t-1), SPI (t-2); 

PET(t), PET(t-1), PET(t-2); 

T(t), T(t-1), T(t-2) 

 
Layer of inputs Hidden layer The output layer 

 
Figure.5 Simplified architecture of the ANN model-

MLP5 retained for the prediction of drought, with a single 

layer of hidden neurons 

 

 
Figure.6 Variation of the number of neurons in the hidden 

layer according to the MAE criterion for the station Ain 

Bittit 

 

In fact, the addition of the information of the 

temperature (tem) and the PET to the rainfall (P) in 

a same model of prediction of drought changes their 

influences vis-a-vis this model as well as the results 

products. The different combinations have produced 

an ANN model improved compared to the other 

(Tables 7 and 6). 

The Optimal architectures and the forecasts of 

the ANN model-MLP5 by comparison of actual 

values and the predicted values for the two stations 

 

 
Figure.7 Comparison of performance criteria with SPI at 

different time scales at the Fez-DRH station level 

 

 
Figure.8 Comparison of performance criteria with SPI at 

different time scales at the Ain Bittit station level 
 

Fez-HRD and Ain Bittit for SPI to different time 

windows and models are presented in (Tables 7 and 

8). 

For the number of neurons in the hidden layer, it 

must be optimized using the available data. To do 

this, the process was by trial and error based on the 

measurement of the absolute value average (MAE) 

for data used to test for each model. Fig. 6 shows the 

variation in the number of neurons in the 

 

0

0.1

0.2

0.3

0.4

4 12 10 30 17 12

M
A

E

Nomber of neurones

Ain Bittit station
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Table 7. Results of the prediction of SPI values at different time-scales for the model of RNA-MLP5 in the station Fez-

DRH 

 
Table 8. Results of the prediction of SPI values at different time-scales for the model of ANN-MLP5 in the station Ain 

Bittit 

 

hidden layer as a function of the criterion MAE for 

the station Ain Bittit for the SPI models developed 

and shows that, 12 neurons in the hidden layer is the 

optimal number. 
To see the evolution of the performance 

indicators based on the SP time window), the results 

of the table (7 and 8) have been transformed into the 

following two graphs (Figs. 7 and 8). 

Fig. 9 shows the comparison of the simulated 

and observed data of SPI which forms a cloud of 

points situated around the linear straight line for the 

test phase of the model. The results obtained show a 

significant agreement illustrated by a high 

correlation coefficient, with the exception of SPI3 

and SPI6, which indicate average performances 

between observed and predicted values. It is also 

found that the correlation between the predicted 

values and the observed values of the model 

increases significantly at a higher time scale. This 

can be explained by way of the time series SPI is 

calculated. Unlike the series of precipitation, SPI 

follows a standard normal distribution. This sudden 

conversion eliminates peaks leaving a slowly 

variable smooth curve that is easier to predict by 

using neural network models. 

4. Discussion 

Similar studies have shown that the more data 

available for learning, the more faithfully the models 

would reproduce the flows. Among these studies, 

we can mention those of [28] on the forecasting of 

flows of the Apalachicola River (Florida, USA) with 

the Artificial Neural Networks. Indeed, these 

authors predicted flows at several time steps (daily, 

monthly, quarterly and yearly) and obtained 

respective Pearson correlation coefficients of 0.98; 

0.95; 0.91 and 0.83. The analysis of these 

performances shows that the smaller the time step 

considered, which is equivalent to a large number of 

data, the developed forecast models appear to 

perform better. The work of [23] also concluded that 

the more input data from neural networks are, the 

more efficient these models are. 

The poor prediction by neural networks in studies 

could be due to the separation of calibration bases 

and validation. A random separation could improve 

the performance of these models.  In our case, the 

application of neural networks for the estimation of 

the dryness of the Saïss plain has yielded quite good 

results. Indeed, the coefficients of correlation 

between the predicted and the measured values 

range from 0.63 to 0.97. It is therefore noted that the 

performances obtained are relatively good and could 

be improved by using a larger database. The choice 

of good quality explanatory variables could also 

lead to better results   

Indeed, a multilayered Perceptron, with a single 

hidden layer and a few neurons are sufficient to 

make the prediction of the drought at the level of the 

Saïss Plain, with good performances. The number of 

 SPI on different time scales 

SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 SPI 48 

Architecture 12-4-1 12-29-1 12-29-1 12-4-1 12-4-1 12-17-1 

MAE 0.211 0.251 0.158 0.091 0.066 0.027 

RMSE 0.459 0.501 0.395 0.303 0.254 0.165 

R 0.836 0.890 0.923 0.993 0.969 0.987 

Very hard Very hard Very hard Very hard Very hard Very hard 

Nash 69.80% 77.11% 84.76% 86.64% 94.02% 97.57% 

Good Good Very good Very good Excellent Excellent 

 SPI on different time scales 

SPI 3 SPI 6 SPI 9 SPI 12 SPI 24 SPI 48 

Architecture 12-4-1 12-12-1 12-10-1 12-30-1 12-17-1 12-12-1 

MAE 0.364 0.306 0.107 0.104 0.047 0.030 

RMSE 0.581 In 0.497 0.322 0.323 0.217 0.173 

R 0.732 0.835 0.934 0.956 0.980 0.988 

Fort Very hard Very hard Very hard Very hard Very hard 

Nash 52.31% 68.94% 87.21% 91.15% 95.77% 99.04 

Bad Good Very good Excellent Excellent Excellent 
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neurons 4 for the Fez-DRH station and 12 for the 

Ain Bittit station on the hidden layers of the 

developed networks gave impressive results. From 

this study, rainfall and potential evapotranspiration 

with temperature are sufficient as inputs of the 

Multilayered Perceptron Directed to predicting 

droughts in a semi-arid climate. 

 

 

 

 
Figure.9 Comparison between SPI measured values and SPI values predicted for Fez station –DRH 
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5. Conclusion 

This study attempted to determine the most 

efficient model for forecasts of the drought SPI 

index in the Saïss Plain in Morocco. The ANN-

MLP5 model has proven to be the most efficient 

model for SPI 3 to SPI 12 prediction at both weather 

stations. The model showed a greater correlation 

between the observed SPI and the predicted SPI 

compared to the other models. Thus, the ANN-

MLP5 model also consistently displayed lower 

RMSE and AEM values compared to the other 

models in this study. The model selected showed 

enhanced forecasting results for SPI 12 compared to 

SPI 3.  

Forecast results deteriorated with the increase in 

forecasting time for all models. ANN methods have 

proved their effectiveness in the prediction of SPI as 

automatic learning techniques. This trend has 

occurred in the Saïss Plain and should be studied in 

other regions and should be compared with other 

techniques to determine if ANNs are the most 

effective tools for predicting drought versus models. 

Future studies should attempt to explore Wavelet-

ANN models with wavelet decompositions, and 

explore SPI predictions using these new methods in 

other regions with different characteristics. Future 

studies should also try to quantify time change error, 

as it is part of the forecasting problems with 

regression models. 
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