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1. Introduction

   HIV infection attacks human immune system. It could develop 

into AIDS if the infection is not treated properly. A weakened 

immune system of patients with HIV infection or AIDS will lead 

to a variety of bacteria/virus infections (opportunistic infections). 

Until now, there is still no effective cure or vaccine available for 

HIV infection or AIDS. However, antiretroviral (ARV) drugs 

could be used for treatment. ARV drugs could control the growth 

of HIV[1]. Currently, ARV drugs have been used widely in many 

countries.Without proper use of ARV drugs, HIV strains could be 

drug-resistant[2]. ARV drug resistance could cause failure of HIV 

treatment and spread of the infection among population.

   Tuberculosis (TB) is usually transmitted through the air 

contaminated with Mycobacterium tuberculosis that is released 

when patients with TB cough, talk or sneeze. TB can be prevented 

and cured with anti-TB drugs. Treatment of TB cases is one of 

the main strategies for TB control because it can break the chain 

of transmission. Despite the effective treatments that have been 

developed, TB remains one of the most destructive bacterial 

infections in humans. TB infection is a very common opportunistic 

infection that affects HIV patients. TB is one of the leading causes 

of death among HIV patients. In 2015, almost 35% of deaths among 

HIV patients are due to TB[3].

   Mathematical models could be used for understanding the dynamic 

of the spread of HIV and TB co-infection. Many researchers 

have modeled the dynamics of HIV and TB co-infection[4-6]. For 

instance, Mallela et al.[4] developed a novel mathematical model 

that evaluates treatment strategies for HIV and TB co-infected 

individuals. A research[5] proposed a mathematical model to study 

the dynamic of TB for the spread of HIV in a logistically-growing 

population. Sharomi et al.[6] used a deterministic model to study 

the synergistic interaction between TB and HIV co-infection, with 

many of the essential biological and epidemiological characteristics 

of TB and HIV infection. Mathematical models with optimal 
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control considering HIV and TB co-infection also have been 

established. Recently, Augusto and Adekunle[7] have used optimal 

control strategies associated with treating symptomatic individuals 

with TB using the two-strain TB-HIV/AIDS transmission model. 

A simple model to control the spread of HIV and TB co-infection 

was proposed[8]. In this paper, the model proposed previously[8] was 

developed by adding the factor of ARV drug resistance.

   In the present paper, we constructed a model of HIV drug 

resistance and TB co-infection transmission with controls of anti-

TB and ARV treatment. Then the model was analyzed, and some 

numerical simulations were performed to illustrate the effectiveness 

of the treatments.

2. Model formulation

   We assumed that population is homogeneous and closed. We 

considered two strains of HIV, namely, the sensitive strain of HIV 

and the resistant strain of HIV which resists to ARV drugs. 

   The total population, denoted by N, was classified into seven 

disjoint subpopulations, namely, the susceptible subpopulation 

(S), the TB-infected subpopulation (I), the sensitive-HIV infected 

subpopulation (Hh), the resistant-HIV infected subpopulation 

(Hr), the TB and sensitive-HIV infected subpopulation (Hst), the 

TB and resistant-HIV infected subpopulation (Hrt) and the AIDS 

subpopulation (A). 

   We assumed that the susceptible subpopulation could not get TB 

and HIV infections simultaneously. The subpopulations A, Hst and 

Hrt were assumed to be isolated, so that they cannot infect anyone. 

The TB infected subpopulation (I) was assumed to be not susceptible 

to HIV.

   We supposed the anti-TB treatment (u1) and the ARV treatment (u2) 

as the control efforts to reduce TB and HIV infections, respectively. 

The control functions u1 and u2 were defined on closed interval [0,tf], 

where 0 ≤ ui(t) ≤ 1, t ∈ [0,tf], i = 1,2 and tf denotes the end time of 

the controls.

   We used the transmission diagram in Figure 1 for deriving our 

model. 

   The model is as follows: 

dS

dI

dHs

dHr

dHst

dHrt

dA

dt

dt

dt

dt

dt

dt

dt

=Λ+ u1α t I – β t SI – (βhsHs+ βhr Hr)S – δS

= β t SI – u1α t I – (δ + μ t)I

= βhsSHs – Ϭ s β t HS I – (δ + (1 – u2)γ1)Hs + u1αsHst

= βhrSHr – Ϭ r β t Hr I – (δ + (1 – u2)γ2)Hr + u1α r Hrt

= Ϭ s β t HS I – u1αsHst – (δ  + μst + (1 – u2)γ3)Hst

= Ϭ r β t Hr I – u1α r Hrt – (δ + μrt + (1 – u2)γ4)Hrt

= (1 – u2)(γ1Hs + γ2Hr + γ3 Hst + γ4Hrt) – (δ + μα)A.

Model (1) has region of biological interest

+Ω = {(S, I, Hs, Hr, Hst, Hrt, A)∈R 7 : 0 ≤ N ≤ Λδ },

and the vector field of model (1) on the boundary does not point 

to the exterior, so model (1) is well-posed in the region Ω. All 

of the parameters used in the model (1) are non-negative and the 

description of the parameters is given in Table 1.

Table 1
Parameters of model (1).

Description Parameter
Recruitment rate  Λ
Natural death rate  δ
Infection rate of TB  βt

Recovery rate of TB  αt

TB-induced death rate  μt

AIDS-induced death rate  μα

Sensitive 
strain

Resistant 
strain

Infection rate for HIV  βhs βhr

Recovery rate from TB of HIV-TB co-infection  αs αr

Progression rate from HIV infection to HIV-TB co-
infection 

 Ϭs Ϭr

Disease HIV-TB induced death rate  μst μrt

Progression rate from HIV infection to AIDS  γ1 γ2

Progression rate from HIV-TB co-infection to AIDS  γ3 γ4

βt SI

u1α t I
(δ+μt)I

(1-u2)γ1Hs

(δ+μrt)Hrt

(1-u2)γ4Hrt

(1-u2)γ3Hst(1-u2)γ2Hr

(δ+μα)A

HrtHr

δHr

Ϭs βt HsI

u1α s H st

u1α r Hrt

Ϭ r βt Hr I

(δ+μ st)Hst

β hsSHs

β hrSHr

s

δS

I

Hs

Λ

A

δHs

Hst

Figure 1. A two strain HIV and TB co-infection transmission diagram.

   We want to minimize the number of HIV and TB co-infections 

while keeping the costs of applying anti-TB and ARV treatment 

controls as low as possible. The cost function is defined as

J(u1, u2) = I+Hst+Hrt+A+ u u dt, (2)+
c1 c22 2

1 22 2
tf

0∫ ( )
where, c1 and c2 are the weighting constants for anti-TB and ARV 

treatment efforts, respectively. We take a quadratic form for 

measuring the control cost[7,9,10]. The terms c1u
2
1 and c2u

2
2  represent 

the cost associated with anti-TB and ARV treatment controls 

respectively. Larger values of c1 and c2 will imply higher 

implementation cost for anti-TB and ARV treatment efforts.
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   Our aim is to find an optimal control pair u *
1  and u *

2  such that 

J(u *
1 , u *

2 )=min J(u1, u2),                                                              (3)
Γ

where, Γ={(u1, u2)|0≤ui≤1, i=1,2}.

3. Model analysis

 Consider model (1) without the control functions u1 and u2. Let 

Rt=

Rs=

Rr=

Λβt

Λβhs

Λβhr

δ(δ+µt)

δ(γ1+δ)

δ(γ2+δ)

   Parameters Rt, Rs and Rr are basic reproduction ratios 

corresponding to the TB infection, the sensitive-HIV and resistant-

HIV infections, respectively. These ratios represent the number of 

secondary cases of primary case during the infectious period due to 

the type of infection[11,12].

   By setting u1 = u2 = 0, model (1) has six equilibria [with respect to 

coordinate (S, I, Hs, Hr, Hst, Hrt, A)], these are,  

1.   The disease-free equilibrium  E0 = ( ,0,0,0,0,0,0)Λ
δ

2.   The TB endemic equilibrium Et = , ,0,0,0,0,0( )δ+µ t δ(Rt -1)
β t β t

 

which exists if Rt  > 1. 

3.     The sensitive-HIV endemic equilibrium

 Es = ,0, ,0,0,0,( )δ+γ1 δ(Rs -1) γ1δ(Rs -1)
β hs β hs β hs(δ+µα)

 which exists if Rs  > 1. 

4.   The resistant-HIV endemic equilibrium

 Er = ,0,0, ,0,0,( )δ+γ2 δ(Rr -1) γ2δ(Rr -1)
β hr β hr β hr(δ+µα)

 which exists if Rr  > 1. 

5.   The sensitive-HIV and TB endemic equilibrium

 EHs= ,Is, Hs,0,Hs ,0,Hs ,0,As( )δ+µt

β t

s
st st , where

Is =

=

=

=

,

.

(Rt-1)- (H

H

As

-1),

-1),s

s

s

st

((δ+γ 1)

δ (δ+γ 1)

Ϭs β tHsI
s

γ 1Hs+γ 3Hst

Rs

Rs

Ϭs β t

βhs βhsϬs

δ+µ st+γ 3

δ+µa

Rt

Rt

    

The equilibrium EHs exists if Rs > Rt > 1 and δϬsRt(Rt - 1) > (δ+γ1)(Rs 

- Rt).
6.   The resistant-HIV and TB endemic equilibrium

 EHr= ,Ir,0,H  , 0, H  , Arr r
r rt

δ+µ t

βt( )  , where

Ir=

r

r

r

rt

H  =

H  =

Ar=

,

.

(Rt-1)- (

(δ+γ2)

δ

Ϭr βt Hr I 
r

γ2Hr+γ4Hrt

(δ+γ2) Rr

Rr( -1),

-1),

Ϭr βt

βhr

δ+µ rt+γ4                       

δ+µa

βhrϬr Rt

Rt

   The equilibrium EHr exists if Rr > Rt > 1 and δϬrRt(Rt - 1) > (δ+γ2)

(Rr - Rt).

   The following theorems give the stability criteria of the equilibria.

   Theorem 1. The disease-free equilibrium E0 is locally 

asymptotically stable if Rt ,Rs ,Rr < 1 and unstable if Rt ,Rs ,Rr  > 1. 

   Proof. Linearizing model (1) near the equilibrium E0 gives 

eigenvalues –δ, –(δ+γ3+µ s), –(δ+γ4+µ r), –(δ+µa), (δ+µ t)(Rt-1), (δ+γ1)

(Rs-1) and (δ+γ2)(Rr-1). It is clear that all of the eigenvalues are 

negative if Rt , Rs , Rr < 1. So, if Rt , Rs , Rr < 1, the equilibrium E0 is 

locally asymptotically stable. Otherwise, it is unstable. 

   Theorem 2. Supposing the TB endemic equilibrium Et exists. It is 

locally asymptotically stable if Rt > 1, Rt  > Rs and Rt  > Rr , otherwise 

it is unstable. 

   Proof. Linearizing model (1) near the equilibrium Et gives eigenvalues 

–(δ+µ a) ,  – (δ+µ s t+γ 3) ,  – (δ+µ r t+γ 4) ,  –Ϭsδ(Rt-1)- (Rt-Rs)
Λβhs

δRtRs

, 

–Ϭrδ(Rt-1)- (Rt-Rr)
Λβhr

δRtRr
, and the roots of quadratic equation x2+δRt x 

+δ(δ+µ t)(Rt-1) = 0. It is observed that all of the eigenvalues are 

negative if Rt  > 1, Rt  > Rs and Rt  > Rr . 

   Theorem 3. Supposing the sensitive-HIV endemic equilibrium Es 

exists. It is locally asymptotically stable if Rs  > 1, Rs  > Rr and Rs  > Rt , 

otherwise it is unstable. 

   Proof. Linearizing model (1) near the equilibrium Es gives 

eigenvalues –(δ+µ a), –(δ+µ s+γ3), –(δ+µ r+γ4), –(δ+γ2)
(Rs-Rr)

Rs

, 

–(δ+µ t)
(Rs-Rt)

Rs
,  a n d  t h e  r o o t s  o f  q u a d r a t i c  e q u a t i o n 

x2+δRsx+(δ2+δγ1)(Rs-1) = 0. Clearly, all of the eigenvalues are negative 

if Rs  > 1, Rs  > Rr and Rs  > Rt . 

   Theorem 4. Supposing the resistant-HIV endemic equilibrium Et 

exists. It is locally asymptotically stable if Rr  > 1, Rr  > Rs and Rr  > Rt , 

otherwise it is unstable. 

   Proof. Linearizing model (1) near the equilibrium Er gives 

eigenvalues –(δ+µ a), –(δ+µ st+γ3), –(δ+µ rt+γ4), –(δ+γ1)
(Rr-Rs)

Rr
, 

–(δ+µ t)
(Rr-Rt)

Rr

 and the roots of quadratic equation x2+δRr x+(δ2+δγ2)

(Rr-1) = 0. It is observed that all of the eigenvalues are negative if Rr > 

1, Rr > Rs and Rr > Rt . 

   Next, we investigated the sensitivity of the basic reproduction 

ratios Rr , Rs and Rr  to the parameters in the model. The aim of this 

analysis is to determine the parameters that have a high impact on 

the basic reproduction ratios. Using the reported approach[13], we 

derived the sensitivity indices of Rt , Rs and Rr to each parameters.

   The normalized forward sensitivity index of variable which 

depends differentially on parameter l is defined as 

γ 伊ӘR0 l
Әl R0

:=R0
l

                                                                              (4)

   For example, the sensitivity index of Rt with respect to βt is 

γ 伊ӘRt β t
Әβ t Rt

:= =1 Rt

βt

                                                                           (5)

   By using the parameter values in Table 2, the sensitivity indices of    

Rt , Rs and Rr with respect to parametersΛ, δ, µ t , βhs , γ1 , βhr  and γ2 
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are listed in Table 3.

Table 2 
Parameter values.

Parameter  Value Reference Parameter  Value Reference 
Λ 50 000/year [7] αr 1/year Assumed 
δ 0.02/year [7] µt 0.02/year [6] 

βt 0.000 31/year Assumed µst 0.03/year [6] 

βhs 0.000 45/year Assumed µrt 0.03/year Assumed

βhr 0.000 35/year Assumed µα 0.03/year Assumed

Ϭs 1.2/year [6] γ1 0.01/year  Assumed
Ϭr 1.2/year [6] γ2 0.05/year  Assumed

αt 1.4/year Assumed γ3 0.08/year  Assumed

αs 1/year Assumed γ4 0.08/year  Assumed

Table 3 
Sensitivity indices to some parameters of model (1).

Parameter 
(o)

Sensitivity 

index γo
Rt

Parameter 
(o)

Sensitivity 

index γo
Rs

Parameter 
(o)

Sensitivity 

index γo
Rr

Λ 1 Λ 1 Λ 1

βt 1 βhs 1 βhr 1
δ  –1.5 δ –1.667 δ –1.286

µt  –0.5 γ1 –0.333 γ2 –0.714

   The interpretion of the sensitivity index γ =1Rt

βt
 is as follow. If there 

is an increment (decrement) in infection rate of TB βt by 10%, then 

there will be an increment (decrement) of the basic reproduction 

number R t by 10%. For γ = –1.5Rt

δt
, if there is an increment 

(decrement) in natural death rate δ by 10%, then there will be a 

decrement (increment) of basic reproduction ratio Rt by 15%.

4. Analysis of optimal control

   In this section, we analyzed model (1) with its control functions u1 

and u2 and the cost function (2). We used the Pontriyagin Maximum 

Principle to obtain the optimal controls u*
1  and u*

2  such that 

condition (3) with constraint model (1) holds[14]. The Pontriyagin 

Maximum Principle converts equations (1–3) into a minimizing 

Hamiltonian function problem with respect (u1 , u2). The Hamiltonian 

function H is as follow.

H(S,I,Hs,Hr,Hst,Hrt,A,u1,u2,λ1,λ2,...,λ7)=I+Hst+Hrt+A+
c1 c2u u
2 2+ +Σλigi

2 2
7

i=1
1 2

where gi denotes the right hand side of model (1) which is the i-th 

state variable equation. The variables λi , i=1,2,...,7, are called adjoint 

variables satisfying the following co-state equations

dλ1

dλ2

dλ3

dλ4

dλ5

dλ6

dλ7

dt

dt

dt

dt

dt

dt

dt

=(λ1-λ2)βtI+(λ1-λ3)βhsHs+(λ1-λ4)βhrHr+λ1δ,

=–1+(λ1-λ2)βtS+(λ2-λ1)u1αt+(λ3-λ5)ϬsβtHs+(λ4-λ6)ϬrβrHr+λ2(δ+ut)

=(λ1-λ3)βhsS+(λ3-λ5)ϬsβtI+(λ3-λ7)(1-u2)γ1+λ3 δ,

=(λ1-λ4)βhrS+(λ4-λ6)ϬrβtI+(λ4-λ7)(1-u2)γ2+λ4 δ,

=–1+(λ5-λ3)u1αs+(λ5-λ7)(1-u2)γ3+λ5 (δ+ust)                                     (6)

=-1+(λ6-λ4)u1αr+(λ6-λ7)(1-u2)γ4+λ6 (δ+urt)

=–1+λ7(δ+ua)

where the transversality conditions  λi(tf ) = 0, i = 1,...,7.

   The procedure to obtain the optimal controls u = (u*
1 ,u*

2 ) are as 
follows[15,16].  

1.  Minimize the Hamilton function H with respect to u, that is 

ӘH
Әu  = 0 .The stationary condition gives 

u

u

=

=

(λ6-λ4 )αrHrt+(λ2-λ1)αtI+(λ5-λ3)αsHst

(λ7-λ3 )γ1Hs+(λ7-λ4 )γ2Hr+(λ7-λ5 )γ3Hst+(λ7-λ6 )γ4Hrt

 for  0 < u1 < 1

 for  0 < u2  < 1

1         for       u1 ≥ 1

1         for       u2 ≥ 1

0         for      u1 ≤ 0

0         for      u2≤0

c1

c2

{
{

*

*

1

2

2.  Solve the state system x(t)= ӘH
Әλ

.
 where x = (S, I, Hs ,Hr ,Hst ,Hrt , 

A),  λ = (λ 1, λ 2,..., λ 7) and the initial condition x(0). 

3.  Solve the co-state system λ(t)= – ӘH
Әx

.
 with the end condition 

λ 1(tf) = 0, i = 1,...,7. 

   Applying the procedure, we obtained the optimal controls as 

follows. 

Theorem 5. The optimal controls (u*
1 , u*

2 ) that minimize the 

objective function  J(u1,u2) on Γ is given by 

u*
1 =max

u*
2 =max

0,min

0,min

1,

1,

c1

c2

(λ6-λ4)αrHrt+(λ2-λ1)αtI+(λ5-λ3)αsHst

(λ1-λ3)γ1Hs+(λ7-λ4)γ2Hr+(λ7-λ5)γ3Hst+(λ7-λ6)γ4Hrt

{
{

}
}

(
(

)
)

where λi, i = 1,...,7 is the solution of the co-state equation (6) with 

the transversality conditions λi(tf ) = 0, i = 1,...,7. 

   The optimal system is obtained by substituting the optimal control 

(u*
1 , u*

2 ). The solutions of the optimality system will be solved 

numerically for some parameter choices. Most of the parameter 

values are assumed within realistic ranges due to lack of data. 

5. Numerical simulation
 

   In this section, we investigated the dynamic of model (1) with and 

without the optimal controls. We used iteration of 4-order Runge-

Kutta method to obtain the optimal controls[17]. First, we solved the 

state equations using the forward 4-order Runge-Kutta method. Then 

we solved the co-state equations with the terminal conditions using 

the backward 4-order Runge-Kutta method. After that, we updated 

the controls using a convex combination of the previous controls and 

the value from the characterizations of u*
1  and u*

2 . This procedure 

was iterated. The iteration was stopped if the values of unknowns 

at the previous iteration are very close to the ones at the current 

iteration.

   We considered three scenarios to explore the dynamics of TB-HIV 

co-infection. We considered the anti-TB treatment control u1 in the 
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first scenario. In the second one, we considered the ARV treatment 

control u2. In the third scenario, we used the optimal anti-TB and 

ARV treatment controls u1 and u2. 

   For these numerical simulations, we used parameters’ values as in 

Table 2. Moreover, we used initial condition

[S(0), I(0), Hs(0), Hr(0), Hst(0), Hrt(0), A(0)] = (5 000, 100, 50, 30, 10, 

10, 10), and weighting constants c1 = 80, c2 = 100 .

5.1. First scenario

   We deployed the anti-TB treatment control u1 and set the ARV control 

u2 to zero. The profile of the optimal control u*
1  is depicted in Figure 

2. To reduce HIV resistance and TB co-infection in 10 years, the anti-

TB treatment should be given intensively in the first nine years before 

decreasing to the lower bound in the end of the 10th year. 

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

C
on

tr
ol

 p
ro

fi
le

u1

0                  2                   4                   6                    8                10
Time (years)

Figure 2. The profile of the optimal anti-TB control u*
1  .

   From Figure 3A, we observed that the TB-infected subpopulation 

I decreased to zero by deploying the optimal control u*
1  and it 

increased without deploying u*
1 . Contrary, the result in Figure 3B 

shows that the AIDS subpopulation A tends to increase by deploying 

the optimal control u*
1  compared with the case without control 

because there is no intervention against AIDS. For the sensitive-

HIV-TB co-infection subpopulation Hst, a decrease in the number of 

infected hosts is observed in Figure 4A in the presence of the optimal 

control u*
1  compared to an increase in the number of infected hosts 

in the absence of the control u*
1 . Similarly, in Figure 4B, this control 

strategy results in a significant decrease in the number of resistant-

HIV and TB co-infection subpopulation Hrt as against an increase in 

the uncontrolled case. Hence, the anti-TB treatment control u*
1  gives 

a significant effect in controlling the TB-infected, sensitive-HIV and 

TB co-infection subpopulations.

5.2. Second scenario

   Here, we deployed the ARV treatment control u2 and set the anti-

TB treatment control u1 to zero. The optimal control profile of ARV 

treatment u*
2  is shown in Figure 5. We can see that to eliminate 

resistant-HIV and TB co-infection in 10 years, the ARV treatment 

should be given intensively during the first year before it drops 

gradually and vanishes at the end of second year. 

   With this strategy, we observed in Figures 6 and 7 that there is 

not a significant difference in the number of TB infection, AIDS 

infection, HIV-TB co-infection with and without the ARV control 

treatment only. The result in Figures 6 and 7 clearly suggests that 

this strategy is not very effective in the control of the number of the 

infected cases.

5.3. Third scenario

   In the third scenario, the anti-TB and ARV treatment controls u1 and 

u2 are used simultaneously. The profile of the optimal anti-TB treatment 

control u*
1  and ARV control u*

2  of this scenario is given in Figure 8. To 

reduce resistant-HIV and TB co-infection in 10 years, the anti-TB and 

ARV treatment should be given intensively during the first nine years 
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Figure 3. The dynamics of I (A) and A (B) using the optimal control u*
1 .
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and it drops gradually and vanishes at the end of the 10th year.
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Figure 5. The profile of the optimal ARV control u*
2 .

   Using the optimal controls in Figure 8, the dynamics of the TB, 

AIDS, HIV-TB co-infection subpopulations are given in Figures 9 

and 10. For this strategy, we observed in Figure 9 that the control 

strategies resulted in a decrease in the number of TB infected and 

AIDS infected subpopulations compared to the number without 

control. A similar decrease is observed in Figure 10 for HIV-TB 

co-infection with drug-sensitivity and drug-resistance to ARV in 

the control strategy, while an increased number for the uncontrolled 

case was observed.

   Our numerical results suggest that the combination of anti-TB 

treatment and ARV treatment is the most effective to eliminate the 

number of TB infection, AIDS infection and HIV-TB co-infection 

with drug-sensitivity and drug-resistance. Thus, if we can employ 

one treatment only, then anti-TB treatment is better than ARV 

treatment to reduce the number of TB infected and two strains 

HIV-TB co-infected populations.
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Figure 4. The dynamics of Hst (A) and Hrt (B) using the optimal control u*
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Figure 6. The dynamics of I (A) and A (B) using the optimal control u*
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6. Conclusion

   In this paper, we have developed a deterministic mathematical 

model for the spread of two strains HIV and TB co-infection 

that incorporates anti-TB and ARV treatment as optimal control 

strategies. For the model without controls, we obtained three 

thresholds Rt, Rs and Rr which are the basic reproduction ratios for 

the TB and two strains of HIV infections respectively. These ratios 

determine the existence and stability of the equilibria of the model. 

If the thresholds are less than unity, the diseases-free equilibrium is 

locally asymptotically stable. Finally, the conditions for existence 

of optimal control were studied analytically using the Pontryagin 

Maximum Principle. Our numerical simulation of the optimal 

control indicates that the best strategy is to combine the anti-TB and 

ARV treatments in order to reduce the two strains HIV and TB co-

infection. However, if we have to use only one control, the anti-TB 
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treatment is more effective than ARV treatment to eliminate the 

number of two strains HIV and TB co-infected subpopulations.
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Figure 10. The dynamics of Hst (A) and Hrt (B) using the optimal controls u*
1  and u*

2  .

4

3.5

3

2.5

2

1.5

1

0.5

0

T
B

-H
IV

 A
R

V
 s

en
si

tiv
e

A B


