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1. Introduction

   Human health consequences of climate change are diverse and 

wide-ranging, resulting also in severe outbreaks of vector-borne 

infectious diseases and their likely geographic expansion, which 

pose a serious threat to vulnerable populations[1,2]. The pathways 

between climate change and the health outcomes are often complex 

and indirect. Indirect health impacts of changes in ecosystems or 

species consist on mediate zoonotic or vector-borne infectious 

diseases such as malaria, dengue fever, Hanta viruses, leishmaniasis, 

Lyme disease, schistosomiasis, Henipahvirus, etc. Climate changes 

including rainfall patterns, increase in temperature and humidity 

levels and also extreme events such as heatwaves, storms, cyclones, 

fires and floods constitute favorable conditions for the development 

and change in the distribution of mosquitoes and some other vectors 

leading to new disease patterns mainly in tropical and subtropical 

regionsin Africa[3]. Temperature affects insect’s reproduction rate, 

biting behaviour and survival. Moreover, warmer temperatures tend 

to shorten the incubation period of pathogens inside vectors[1]. 

   The world’s most vulnerable populations, including children, 

pregnant women, elderly people, nomads, poor rural populations, 

refugees and people living in post-conflict settings are the most 

threatened by the already-high impact of changing climatic 

conditions on vector-borne diseases[4]. 
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   Tunisia is one of the identified nations of regional climate change 

hotspots[5]. As arid and semi-arid regions are among the most 

sensitive ecosystems to climate change[6,7], the poor rural population 

of Sidi Bouzid is the most threatened group by climate change 

impact including vector-borne diseases.   

   The transmission cycle of zoonotic cutaneous leishmaniasis (ZCL) 

is complex resulting from interactions between the Leishmania 

major, Psammomys obesus and Meriones shawi rodent reservoirs, 

accidental human hosts, and Phlebetomus papatasi and fly 

vectors. Favorable climate and environmental conditions influence 

all these implicated actors in the cycle and increase the risk of 

transmission[8,9]. 

   ZCL caused by Leishmania major is the most common form of 

leishmaniasis in Tunisia. It is emerging and endemic in the centre 

and south of Tunisia since 1982–1983, and there is a periodicity of 

outbreaks of each 5–8 year intervals[10-14]. The emergence of ZCL 

coincides with the extension of land farming and water forage and 

exploitation in this area since the 1970s and the settlement of human 

population around irrigated fields[15] at the edges of the salt pan 

“Garaat Njila”. Previous studies showed high endemicity in districts 

which are close to this salt pan with agricultural activities as mainly 

occupation such as Hichria, Bir Bader and Zefzef[16]. The most 

common halolphytic plant in the salt pan “Garaat Njila” is chenopods 

which constitute the food of rodent reservoirs. Higher rainfall levels 

would increase the density of chenopods and consequently the 

reservoir density increases and affect ZCL transmission.

   Currently, the biomedical model failed to control the spread of 

the diseases and to prevent epidemics. The used drug (meglumine 

antimoniate, glucantime) in the endemic areas is not always 

available, is expensive, and is not effective against the scar[17]. 

Vaccine prevention of leishmaniasis is not possible because there is 

no available vaccine to use.

   Thus, the prevention of the disease is highly important mainly for 

the prediction of the epidemic and the implementation of control 

measure. Prediction needs the application of statistical models to 

understand the extent to which climate variability and climate change 

are affecting vector-borne infectious diseases burden, particularly 

modeling exposure-response relationships and the development of 

early warning systems (EWS) to develop useful models, which can 

be integrated by decision-makers in managing health risks[18].

   The objective of this study was to investigate the relationship 

between climate and environmental factors and ZCL transmission 

on monthly observation in order to study the possibilities of EWS 

implementation based on climatic and environmental conditions, so 

as to predict epidemics well in advance and then implement control 

measures to limit the magnitude and the spread of the epidemics.

2. Materials and methods

2.1. Study area

   The study was carried in Sidi Bouzid, Central Tunisia in three 

districts (Hichria, Bir Bader and Zefzef) (Figure 1), which are 

located at the edge of a sebkha or salt pan, Garaat Njila (35°46' N, 

9°36' E, altitude 280 m), which is covered by a steppe of succulent 

halophilic vegetation composed predominantly of Chenopodiaceae 

of the genera Salsola, Suaedaand Arthrocnemum and occasional 

Atriplex sp.
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Figure 1. Location of the study areas (BirBadr, Hichria and Zefzef) in Sidi 
Bouzid, Central Tunisia.

2.2. Epidemiological data

   We carried out a prospective cohort study for the whole population 

of these areas from July 2009 to June 2014 to detect new ZCL 

cases. ZCL notifications were obtained from an active system of 

epidemiologic surveillance, which was implemented in the three 

endemic districts since July 2009. This surveillance was based on the 

notification of all new cases in people who came to primary health 

care facilities seeking for treatment, and the active research of other 

cases among their neighbors and families by the nursing staff. All 

schools in this area have been asked to seek for and notify all ZCL 

cases among students. Moreover, the members of the research team 

performed a community-based active ZCL surveillance. Physicians 

and nurses from the health care facilities ascertained the diagnosis of 

cases notified in schools based on clinical inspection of the lesion or 

the scar. Parasitologic diagnosis of ZCL lesions was carried out only 

for a group of patients using direct examination, skin culture, PCR 

TaqMan and PCR high-resolution melting. We decided not to confirm 

the disease by laboratory exam because of the good knowledge of 

the disease by the medical staff and the population in this region 

and the high sensitivity and specificity of clinical diagnosis. The 

number of ZCL cases was reported on a standardized form. Then, the 

counting monthly incidence according to the date of the lesion onset 

was registered for the period of July 2009 to June 2014. 

2.3. Environmental data

   Climatic parameters were obtained from a weather forecasting 

station which was implemented in the study area, close by Garaat 

Njila, the focus of rodent reservoirs of ZCL. We collected monthly 

minimum (Tn), maximum (Tx) and mean temperature (Tm) in 

celsius degree, relative humidity (%), monthly cumulative rainfall 

quantity (mm), wind direction and wind speed. For temperatures 

(Tx, Tn and Tm), we calculated the moving average for each 

parameter on three (M-3), six (M-6) and nine (M-9) months ago and 
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one (Y-1), two (Y-2), three (Y-3), four (Y-4) and five (Y-5) years 

ago. Cumulative rainfall quantity was also calculated for the same 

periods. Monthly rodent density was estimated from the count of 

active burrows on three consecutive days. 

2.4. Rodent density

   The density of rodents in the habitat represented by Garaat Njila 

(sebkha) was estimated monthly using a defined protocol. Indeed, 

we randomly selected three plots of one hectare surface area spread 

over the different edges of the sebkha. Each plot was divided into 

10 sectors, and within each sector, we counted active burrows for 

each month and each parcel separately as follows: the first day we 

counted the number of open rodent burrows and we closed them; the 

second day we counted the number of re-opened burrows and we 

closed them again; on the third day, we just counted the number of 

re-opened burrows. The monthly density of rodents in three parcels 

was calculated through this equation: 

Rodent density = × 100
Number of burrows reopened at the 3rd day

Number of burrows opened the first day
   The monthly average density was the average of rodent densities 

in the three plots. This variable was calculated monthly and included 

in the data. We calculated also for each month, the density moving 

average for three, six and nine months ago.

   We configured a monthly ecologic data. The dependent variable 

was the monthly incidence of ZCL and minimum, maximum and 

mean temperatures, relative humidity, rainfall and the average rodent 

density were the explanatory variables. 

2.5. Statistical analyses

   Seasonality of ZCL incidence and climatic variables was assessed 

by box plot representation. The relationship between ZCL occurrence 

and climate and environmental variables was investigated by 

different methods. First, we drew graphics for the dependent variable 

with all explanatory ones to explore possible fitness between ZCL 

number per month and climatic parameters, we also checked for 

graphic correlation between rainfall and rodent density. Then, we 

conducted a bivariate correlation analysis using the Spearman test 

between the dependent variable, monthly number of ZCL, and all 

climatic and environmental parameters. 

   We used three methods of multivariable analysis in order to 

identify strong and steady relationships between ZCL incidence and 

one or some of the climatic variables so that we could further use to 

study possibilities to implement EWS to predict ZCL epidemics.  

   Multivariate analysis was treated by multiple linear regressions 

using the incidence rate as dependent variable, as well as all the 

explanatory variables was quantitative and continuous. Backward 

stepwise elimination was used to generate the parsimonious model. 

We used R2, also known as coefficient of determination, and the 

Durbin-Waston test to evaluate the model fit, the most appropriate 

linear model that fit well with observed data expected to have higher 

R2 and a Durbin-Waston test value close to one. 

   The negative binomial regression with log link in generalized 

linear models was used instead of the Poisson regression, since the 

number of ZCL cases had a Poisson distribution, but the application 

condition of Poisson regression was not satisfied because the 

esperance of the number of ZCL cases was not equal to its variance. 

All significant independent parameters and those with a P value less 

than 0.20 were incorporated in the initial model, then many iterations 

were performed and compared through likelihood ratio until the final 

model with all statistically significant regression coefficients (at the 

5% level) for each independent variable .

   Finally, monthly ZCL number was estimated using an optimal form 

of an autoregressive integrated moving average (ARIMA) model 

with square root transfer function. The ARIMA transfer function 

models produced the closest fit[19]. The log transfer function was 

not possible because there were many months with zero ZCL cases. 

Cross-correlation method was used to select significant independent 

parameters and those with a P value less than 0.20. All possible 

combinations of these parameters were incorporated in ARIMA 

models using square transfer function for the dependent variable and 

then evaluated for the quality of fit. The closest fit ARIMA models 

were expected to exhibit a low normalized Bayesian criterion 

(BIC), a low mean absolute error (MAE), a large coefficient of 

determination (R2) and statistically significant regression coefficients 

for each climatic parameter and ARIMA components [constant, 

autoregression (AR), moving average (MA)]. The quality of fit was 

further confirmed through autocorrelation and partial correlation 

functions analyses of model residuals. 

   The ARIMA model plots was used to predict the occurrence of 

epidemics by estimating the expected number of cases for each 

month from the observed data.

   All statistical analyses and model developments were conducted 

using SPSS 19.0 at the two-tailed significance level of P < 0.05 (or 

the confidence level of 95%).

3. Results

   From July 2009 to June 2014, a total of 859 (51.1% male, 48.9% 

female) new ZCL cases were registered in the three districts, with 

393 (46%) cases between July 2013 and June 2014, only 80 cases 

for the season 2012–2013, 122 cases for the period 2011–2012, 206 

ZCL cases in 2010–2011 and only 58 human ZCL cases between 

July 2009 and June 2010. The median age was 11 years (inter 

quartile range: 7–28), ranging from 2 months to 87 years and 

most of the patients were assigned to the 0–9 and 10–19 years age 

groups with approximately 40% and 30% of the total recorded ZCL 

cases respectively for each group. The analysis of the occurrence 

of cases over time showed that the number of ZCL cases started to 

increase from September. The ZCL number peaked in October, with 

an average number of ZCL of 50 and a total of 249 cases over the 

period, and November which cumulated 112 cases of ZCL with an 

average of 46. The monthly Tn and Tx reached their maximum in 

July, and high quantity of rainfall was observed during the warm 

season with a peak in September (Figure 2).

   The peaks in the number of human cases of ZCL coincided 

exactly with those of the six months moving average of the mean 

temperature [Tm (M-6)], and with the ones of the cumulative rainfall 

of the previous three months [rainfall (M-3)], (Figures 3 and 4). 

   The emergence of a large number of human cases of ZCL was 

often preceded by a relatively high and sustained average density 
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of rodents (Figure 5). The average density of rodents in the three 

parcels was dependent on cumulative rainfall quantity a year earlier 

[rainfall (Y-1)] (Figure 6).

   Univariate analysis (Table 1) showed that there was a negative 

correlation between the incidence of ZCL and the average density 

of rodents and the average temperature during the same month [Tm 

(M0)]. Tn (M-3), Tn (M-6), Tx (M-3), Tx (M-6) Tm (M-3) and Tm 

(M-6) were highly correlated to the monthly number of human ZCL 

cases. We didn’t find any significant association between ZCL cases 

and both wind direction and wind speed.

   The multiple linear regression showed a positive association of the 

monthly incidence rate of ZCL with the Tm (M0) and the Tm (M-6), 

and a negative association with the Tx (M-3) and rainfall (Y-1). Tm 

(M-6) had the most important coefficient and a very small significant 

level P. The regression parameters were: R2 = 0.720, Durbin-Waston 

= 1.118 and the multiple linear regression equation was:

ZCL incidence = 0.831 Tm (M0) + 3.42 Tm (M-6) – 1.034 Tx (M-3) 

– 0.228 rainfall (Y-1) – 489.33

   The negative binomial regression (Table 2) showed that the 

increase of Tm (M-6) and rainfall (M-3) increased the monthly ZCL 

number and the increase of rainfall (Y-1) decreased ZCL incidence.
Table 2
Correlations between monthly ZCL cases and climate parameters, results 
from negative binomial regression.

Parameter β Exp β 95% confidence interval for Exp β P
Rainfall (M-3)  0.280 1.028 1.003–1.053 0.025
Tm (M- 6)  0.403 1.497 1.367–1.639 0.000
Rainfall (Y-1) -0.088 0.916 0.872–0.962 0.001
Constant -5.291 - - 0.000

Table 1
Univariate correlations between monthly ZCL incidence and seasonal climate variables 3 (M-3), 6 (M-6), 9 (M-9) months before, or during the same month 
(M0), and one year (Y-1),  two years (Y-2), three years (Y-3), four years (Y-4) and five years (Y-5) before.

Variables M0 M-3 M-6 M-9 Y-1 Y-2 Y-3 Y-4 Y-5
r P r P r P r P r P r P r P r P r P

ARD -0.362 0.004 0.133 NS 0.155 NS -0.148 NS - NS - NS - NS - NS - NS
Tx -0.216 0.097 0.583 < 0.000 0.705 < 0.000  0.298 0.210 - NS - NS - NS -0.187 0.152 -0.176 0.179
Tn -0.187 0.153 0.636 < 0.000 0.826 < 0.000  0.222 0.088 - NS - NS - NS - NS -0.172 0.190
Tm -0.292 0.023 0.579 < 0.000 0.837 < 0.000  0.142 NS - NS - NS - NS - NS - NS
Rainfall  0.289 0.148 0.219 0.093 0.041 NS -0.780 NS -0.168 0.20 - NS - NS - NS - NS
RH (day)  0.152 NS - - - - - - - - - - - - - - - -
RH (night)  0.174 0.184 - - - - - - - - - - - - - - - -

ARD: Average rodent density; RH: Relative humidity; r: Spearman coefficient; NS: Not significant.

Figure 2. Box plot of the seasonal pattern of ZCL incidence (A), monthly average Tx (B), monthly average Tn (C), and monthly cumulative rainfall (D).
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Figure 3. Reported cases of ZCL per month and the six months moving average of Tm, July 2009–June 2014.
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Figure 4. Monthly reported cases of ZCL and the cumulative rainfall of the three previous months, July 2009–June 2014.
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Figure 5. Reported cases of ZCL and the average of rodent density, July 2009–June 2014.
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   In time series analysis, predictors are fitted with an ARIMA, AR 

(1) model using square root transfer function (168 total models 

were realized and compared according to their normalized BIC, 

MAE, R2, all significant regression coefficients and residuals). 

The final model satisfied all performance expectations (lower 

normalized BIC, lower MAE, larger R2, significant coefficients, 

and the remaining residuals exhibited no significant trend or 

autocorrelation (Figure 7).
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Figure 7. Residual autocorrelation and partial autocorrelation functions 
from the final ARIMA AR(1) model.
ACF: Autocorrelation function; PACF: Partial autocorrelation function.

   The ARIMA AR(1) model showed a positive association between 

the monthly incidence of ZCL and the Tm (M0), rainfall (M0), 

rainfall (M-3) and Tm (M-6). The Tx (M0) and rainfall (Y-1) were 

negatively associated with the monthly incidence of ZCL (Table 3). 

The 2013–2014 season corresponded to an epidemic year over the 

5 years period, and the number of observed cases exceeded the 

upper limit of the confidence interval (Figure 8).

Table 3
Correlations between monthly ZCL cases and climate parameters, results 
from times-series analysis with ARIMA AR(1) model.

Parameters Estimate Standard error P
Tm (M0)  0.102 0.046 0.030
Tx (M0) -0.077 0.032 0.019
Rainfall (M0)  0.014 0.006 0.025
Rainfall (M-3)  0.076 0.070 0.000
Tm (M-6)  0.509 0.070 0.000
Rainfall (Y-1) -0.123 0.049 0.014
Constant -6.608 2.130 0.003
AR(1)  0.673 0.110 0.000

Model expectations: R2 = 0.864; MAE = 5.26; Normalized BIC = 5.41.
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epidemic season by the ARIMA model plots.
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4. Discussion

   ZCL is a vector-borne disease common in tropical and 

subtropical regions including North Africa. In Tunisia, ZCL is 

a major public health problem for the health care system, an 

epidemic emerged in some central areas first and expanded 

rapidly to the whole central and southern parts of the country 

since 1982[11-14,20]. ZCL is not a severe disease, but it leaves 

an indelible scar on the faces of patients, after the skin 

lesions which lead to significant social consequences such as 

stigmatization, mainly in girls and women. 

   In this study, we monitor simultaneously human new cases of 

ZCL, climate parameters and rodent density over a period of five 

years at a local scale. The aim was to investigate the relationship 

between monthly ZCL incidence and temperatures, precipitation 

and rodent density in order to assess the possibilities of the 

establishment of an early warning system based on one or some 

of these variables to detect epidemics seasons in advance and 

implement control measure with the local population. 

   Our data suggested that ZCL is still highly endemic in Central 

Tunisia areas and the 2013–2014 was an epidemic season over 

the five years-period. The influence of meteorological factors 

on ZCL transmission during 2009–2014 has been established 

at monthly time scales throughout different statistical analyses 

methods. Significant bivariate correlation between monthly ZCL 

number and local climate parameters were identified. Positive 

associations were found for the Tx, Tm and Tn lagged for three 

and six months, whereas negative associations were observed 

for the average rodent density and Tm during the same month. 

All multivariate analyses showed positive association between 

monthly ZCL incidence and the six months moving average 

temperature (Tm (M-6)) with high correlation coefficients and 

very small significant level, whereas negative association was 

observed for the cumulative rainfall of the last year [rainfall 

(Y-1)]. 

   In this work, some limitations should be pointed out. ZCL 

reported number could be incomplete since some cases should 

be missed. However leishmaniasis occurs commonly in this area 

so that it is not necessary for all cases to be reported and this 

should not reduce the effectiveness of surveillance.

   This work is interesting since it is the first study in Tunisia 

which used data from ZCL active surveillance system and 

climate variables monitored by private weather station that was 

implemented in the study area giving more precision for these 

parameters.

   Simultaneous monitoring ZCL cases,  meteorological 

parameters and environmental conditions in the study area gave 

us more real and precise data. These ecological data of sixty 

observations allowed us to investigate relationship between ZCL 

transmission and climate parameters using different statistical 

methods and found consistent results. Multivariate autoregressive 

models with square root transformation showed precision (high 

R2) and skill (low MAE, low normalized BIC). As in previous 

studies[19], the ARIMA transfer models in times-series analysis 

produced the most appropriate fit in modeling transmission of 

infectious diseases for early warning system implementation. 

However, it needs time series sufficiently long for developing 

and evaluating forecasting models. 

   Our study suggested that the epidemic curve displays peak 

and inter-epidemic periodicity of 5 years as shown by Toumi 

et al.[10] on a long series observation. Key factors driving 

temporal dynamics of ZCL transmission in Tunisia are not well 

studied. Based on our time series analysis, climate parameters 

play a significant role in ZCL transmission. We showed for the 

first time, that the average temperature six months ago is the 

most important predictor for ZCL incidence. Toumi et al.[10] 

demonstrated the relation between humidity and rainfall lagged 

for 13–15 months and ZCL incidence in Sidi Bouzid, but the 

temperature was not associated to ZCL incidence. However, 

Toumi et al.[10] used different source of data and different 

area for the study. They used the number of ZCL cases from 

the routine passive detection and climate variables from the 

Tunisian National Institute of Metrology. Data were collected 

and analyzed for all the governorate of Sidi Bouzid. In our 

study, we used data from an active monitoring system that was 

implemented in a small area. 

   Although, it’s well known that the ambient temperature 

determines insect’s reproduction rate, biting behaviour and 

survival. Moreover, the incubation period of pathogens inside 

vectors tends to be shorter at warmer temperatures. Previous 

studies showed that temperature affects significantly the 

density and dynamics of Phlebotomus papatasi[21-24]. The 

work of Kassem et al.[25] in the Nile Delta revealed that sand 

fly densities were strongly correlated to temperature but not 

to relative humidity or wind velocity. However, the study of 

Bounoua et al.[26] in Algeria demonstrated that the establishment 

of new endemic foci in regions that were not previously endemic 

was related to sufficient increase in minimum temperatures. 

Cutaneous leishmaniasis in Brazil[27] has a marked seasonality 

and is linked with dry and warm conditions of the following 

season, which favor the vectors and fly development.

   The increase of cumulative rainfall level for the previous 

three months increases the ZCL incidence but, the decrease of 

rainfall for the last year increases ZCL number. Higher rainfall 

quantities in the previous three months would increase the 

density of chenopods, a halophytic plant that constitute the main 
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source of rodent’s reservoirs feeding. Consequently the reservoir 

density increases, and affects the ZCL transmission. The negative 

association between rainfall lagged for 12 months and the 

incidence of the disease could be explained by indirect factors 

such as the exposition of the farmers and their family member’s 

to the sand fly bites due to intensive and frequent irrigation 

after a dry season. Also, very high levels of rainfall during the 

previous 12 months would cause flooding which would reduce 

the density of chenopods and thus the population of rodents.

   Similar findings was observed in Golestan Province in Iran[28] 

and in French Guiana[29] where ZCL incidences were negatively 

correlated with rainfall, and the number of rainydays and 

positively correlated with temperature. Gholamrezaei et al.[30], 

found that mean annual temperature and seasonal precipitation 

contribute to the potential distribution of main reservoir hosts of 

ZCL in Iran.

   CL incidence rates in Jordan, Syria, Iraq and SaudiArabia[31] 

seem to have a positive relationship with precipitation and 

negative relationship with temperature. Though, no relationship 

was identified betweenthe disease incidence rates and the 

humidity.

   As there is no vaccine against ZCL and the treatment is not 

effective for the scar, rapid case detection and treatment can’t 

reduce the epidemic. Moreover, control measures against 

rodents and vectors are also not effective and very harmful to 

the environment[17]. Thus, predicting epidemics well in advance 

and control measures implementation within the population such 

as self protection from sandfly bites by reducing their exposure 

outside and inside habitation could reduce the impact of the 

epidemic mainly in most vulnerable people such as children and 

women.      

   Prediction of epidemics through early warning systems is 

a high research priority to improve the response of control 

programs of ZCL. The present study established that early 

warning systems based on climate parameters is a feasible 

application for ZCL. However, some questions need to be 

addressed when modeling ZCL transmission: first, a sustained 

surveillance and monitoring efforts of ZCL and climate 

and environmental factors is needed to provide time series 

sufficiently long for developing and evaluating forecasting 

models. A minimum of ten years period is needed to establish a 

time series data, so that model can be developed in 70% of the 

data and assessed and validate in the other 30%. Second, the 

appropriate functional form to introduce also the dependent and 

climate variables[32] and the appropriate approach for modeling 

seasonality[33] should be further investigated. Finally, models 

should be evaluated and compared for predictability with “out-

of-fit” data and not simply quality of fit[34-36] and for the 

robustness of the relationship with covariates in the selected 

model[37].
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