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1. Introduction

  Tuberculosis (TB) is known as one of the oldest communicable 

diseases in human and still a foremost cause of high death in 
the world. The etiological agent of tuberculosis, Mycobacterium 
tuberculosis (M. tuberculosis), which multiplies within macrophages. 
TB tends to impact more on poorest, migrant communities, 
young and weak children, immunocompromised people (HIV and 
aged) and people who have diabetes and cancer. World Health 
Organization (WHO) has estimated that over 10.4 million people 

have fallen ill with TB in which around 1.7 million people died 
in 2016. Further WHO estimates around 600 000 new cases with 
resistance to rifampicin, of which 490 000 had multiple drug 
resistant tuberculosis (MDR-TB) (WHO global tuberculosis report-
2017). Therefore TB poses serious health problem around the 
world by way of increase in the rate of MDR- TB, extensive drug 
resistance (XDR-TB), HIV-TB, paediatric TB and latent TB. The 
latent tuberculosis infection is asymptomatic and not infectious, 
but it is at risk of progression to active disease at any point of time. 
TB treatment requires 6 to 8 months for newly diagnosed patients 

Tuberculosis (TB) is a communicable disease caused by Mycobacterium tuberculosis (M. 
tuberculosis). WHO estimated that 10.4 million new (incident) TB cases worldwide in year 
2016. The increased prevalence of drug resistant strains and side effects associated with the 
current anti-tubercular drugs make the treatment options more complicated. Hence, there 
are necessities to identify new drug candidates to fight against various sub-populations of 
M.  tuberculosis with less or no toxicity/side effects and shorter treatment duration. Bacteriocins 
produced by lactic acid bacteria (LAB) attract attention of researchers because of its “Generally 
recognized as safe” status. LAB and its bacteriocins possess an effective antimicrobial 
activity against various bacteria and fungi. Interestingly bacteriocins such as nisin and 
lacticin 3147 have shown antimycobacterial activity in vitro. As probiotics, LAB plays a vital 
role in promoting various health benefits including ability to modulate immune response 
against various infectious diseases. LAB and its metabolic products activate immune system 
and thereby limiting the M. tuberculosis pathogenesis. The protein and peptide engineering 
techniques paved the ways to obtain hybrid bacteriocin derivatives from the known peptide 
sequence of existing bacteriocin. In this review, we focus on the antimycobacterial property 
and immunomodulatory role of LAB and its metabolic products. Techniques for large scale 
synthesis of potential bacteriocin with multifunctional activity and enhanced stability are also 
discussed.
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and 18 to 24 months for MDRTB patients. However, the treatment 
is ineffective for XDR-TB which complicates the treatment options 
with adverse side effects such as hepato toxicity that discourages 
both patients and providers. 
  Antimicrobial peptides such as bacteriocins have many advantages 
including less immunogenicity, specific affinity to bind on negatively 
charged prokaryotic cell envelope, and various modes of action[1]. 
Studies reported that the immunomodulation potential of lactic acid 
bacteria (LAB) and its metabolites show immune response towards 
macrophage enhancement by up-regulation and down-regulation 
of Th1 and Th2 cytokines respectively[2]. Antimicrobial peptides 
found in most living organisms usually consist of 20 to 60 amino 
acid residues, which are cationic, amphipathic and have a wide range 
of activity against microbes[3]. Antimicrobial peptides produced 
by bacteria are classified into two different types as ribosomally 
synthesized peptides or bacteriocins and non-ribosomally synthesized 
peptides which exhibit relatively narrow range of antimicrobial 
activity and broader antimicrobial activity respectively[4]. Marr et 
al.[5] reported that antimicrobial peptides are mainly bactericidal 
in nature which induce rapid killing of microbial pathogens and 
also reveal that an increased concentration is not required to fight 
against drug resistant strains, as compared to antibiotics. According 
to Riley and Wertz[6], most of bacteria (> 99%) produce at least one 
bacteriocin. Bacteriocins derived from LAB, are likely to enter into 
the pharmacopeia as oral or gastrointestinal antibiotics[7]. There are 
many reports on LAB producing bacteriocins which show prominent 
antimicrobial activity against wide range of microbial pathogens 
and also have strong probiotic potential. Hence, bacteriocin can 
act either as potent alternative or in synergy with antibiotics to 
enhance the therapeutic effects and also to decrease the prevalence 
of resistant strains[8]. Bacteriocins of LAB have all the advantages 
to be developed as peptide based drugs for multidrug resistant 
pathogens. Although the advantages of bacteriocins with respect to 
antimicrobial properties are enormous, the peptide can be hindered 
by high production costs and potency. Owing to the heterogeneous 
nature of bacteriocins, unique purification procedures have been 
considered for each producer strains[9,10]. 
  Recently, the focus has been shifted to immunological functions of 
LAB with considerable attention on a promising strategy for health-
promoting effects[11]. Probiotic LAB has been shown to have the 
capacity to boost the immunity against infections. According to 
WHO, the probiotics are described as, “Live microorganisms when 
administrated in adequate amounts, confer a health benefit on the 
host”[12]. The proteins secreted and released into the gastrointestinal 
environment by probiotics might mediate interactions with epithelial 
cells and immune cells[13]. In this article, research works pertaining 
to antimycobacterial activity and immunomodulatory property of 
LAB and its bacteriocins are reviewed. The protein and peptide 
engineering approaches for the preparation of bacteriocin derivatives 
with improved activity and stability are also discussed.

2. LAB and characteristics of bacteriocins

  LAB possess various industrial applications in the dairy industry, 
pharmaceutical and special dietary applications[14]. LAB produces 
various compounds including organic acids, diacetyl hydrogen 

peroxide, bacteriocins, etc[15]. They also play a key role in 
maintaining healthy microbiota and have many benefits including 
managing diarrhoea, food allergies, inflammatory bowel diseases, 
gastrointestinal disorders and also possess the potential in the 
prevention of colon cancer[16-19]. Lactobacilli are known to be 
highly suitable vehicles for the delivery of compounds to the mucosa 
homeostasis[20].
  Bacteriocins are extracellularly released peptides, which are 
produced by Gram positive (+) and Gram negative (-) bacterial 
species. Gram (+) bacteria, particularly LAB, produce bacteriocins 
in different sizes, structures and inhibitory spectra[21]. Bacteriocins 
of LAB are categorized into class I, class II, class III based on 
physicochemical properties. The class I bacteriocins are small 
peptides (<5 kDa) and also known as lantibiotics (lanthionine 
containing antibiotics), possess unusual post-translationally modified 
lanthionine or 3-methyllanthionine[22]. Class II bacteriocins are 
non-lantibiotics, which are relatively small (<10 kDa), heat stable 
and have fewer post-translational. They are subdivided into class 
IIa, class IIb, class IIc and class IId[23]. Class III bacteriocins are 
large molecular weight (>30 kDa), heat labile proteins. Since this 
class of bacteriocins are lytic enzymes rather than peptides, it was 
suggested to be excluded from group of bacteriocins and renamed 
as bacteriolysins. In contrast to antibiotics, bacteriocins from LAB 
are believed more natural and safe because of their presence in 
food items[24]. In recent years, bacteriocins of LAB have potential 
application in both food and pharmaceutical industries[25]. Nisin, 
produced from Lactococcus lactis subsp. Lactococcus lactis is the first 
bacteriocin that obtained regulatory approval by FDA for use in 
certain foods in 2005. They are also known for its ability to enhance 
food safety and increase health benefits[26]. Another bacteriocin, 
pediocin produced by Pediococcus pentosaceus also got approved later 
for their use in food industry[27]. 
  Typically, bacteriocins form pores on cell wall of target pathogens, 
especifically in Gram (+) bacteria as they possess high anionic lipid 
contents in the membrane. The formation of pores in the membrane 
causes small intracellular components leakage which leads to cell 
death and the debauchery of the proton motive force[28]. Perez et 
al.[29] reported that the general cationic nature of bacteriocins plays a 
very important role in their initial interaction with the cell membrane 
of target strains. The negative charge of bacterial cell membranes 
and the positive charge of bacteriocin create an electrostatic 
attraction between them thereby facilitating the interaction of 
the molecules to the membranes. Due to the cationic nature of 
bacteriocin, the anionic lipids role in membrane binding has been 
emphasized. The binding of nisin (class I bacteriocin) to lipid II, 
which is necessary for bacterial cell-wall synthesis, results in the 
prevention of proper cell wall synthesis, thereby causing cell death. 
The nisin-lipid II molecule complex initiates membrane insertion at 
higher concentrations forming pores in the bacterial cell membrane. 
Thus, the binding of nisin to lipid II facilitates the preventive action 
involving cell wall synthesis and membrane pore formation[30,31]. 
Corr et al[32], demonstrated that Lactobacillus salivarius UCC118 
produced bacteriocin in vivo, which protected mice against Listeria 
monocytogenes infection. The possible bactericidal mechanism of 
nisin on Gram (+) bacterial cell wall including mycobacteria is 
illustrated (Figure 1). 
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Figure 1. Bactericidal mechanism of nisin on cell wall of Gram positive 

bacteria including Mycobacteria.

3. Antimycobacterial activity of bacteriocins and LAB

  The bacteriocins from LAB have potent activity against various 

Mycobacterium species. The LAB bacteriocin, nisin was tested 
against Mycobacterium smegmatis (M. smegmatis) at 10 µg/mL and 
the results showed that (97.7±2.0)% reduction in internal ATP and 
leakage of intracellular ATP[33]. Mota-Meira et al[34], have shown 
that nisin A and mutacin B-Ny266 (type A lantibiotics), have ability 
to kill a broad range of bacteria including M. smegmatis. Donaghy 

et al[35], reported that the cell free supernatant of Lactobacillus 
paracasei isolated from cheese has strongly inhibited the growth of 

Mycobacterium avium subsp. paratuberculosis (MAP) in vitro. On 
treating sterile milk with this strain, MAP growth was completely 
undetectable up to 50 d. Bacteriocin of LAB isolated from Boza 
(Turkish beverage) was tested for antimycobacterial activity. Among 
the isolates, bacteriocin produced by Lactobacillus plantarum (L. 
plantarum) ST194BZ have shown activity against M. tuberculosis 
and growth was repressed up to 69% whereas Lactobacillus paracasei 
ST242BZ, L. plantarum ST414BZ and ST664BZ showed 50% 
of growth repression. In another study, L. plantarum ST202Ch, L. 
plantarum ST216Ch, Lactobacillus sakei ST153Ch, Lactobacillus 
sakei ST154Ch and Enterococcus faecium ST211Ch were isolated 
from Portuguese fermented meat products and bacteriocins 
produced from the isolates have significantly reduced the growth 
of M. tuberculosis by 38.3%, 48.6%,16.2%, 16.1% and 21.7% 
respectively[36,37]. Sosunov et al[38], reported that bacteriocin 
isolated from Lactobacillus salivarius, Streptococcus cricetus 
and Enterococcus faecalis, shown to have more promising 
antimycobacterial activity than equal rifampicin concentrations 
in an in vitro model. These bacteriocins were non-toxic for mouse 
macrophages with activity of >90 MIC at a concentration of 
0.1 mg/L. They administered the bacteriocins as a complex with 
phosphatidylcholine-cardiolipin liposomes in TB infected mice 
model and have demonstrated its capacity to inhibit intracellular 

M. tuberculosis and to extend the survival of mice. James Carroll et 
al[39], showed that antimycobacterial activity of lacticin 3147 against 

Mycobacterium kansasii, MAP and M. tuberculosis H37Ra at MIC90 

values of 60.0 mg/L, 15.0 mg/L and 7.5 mg/L respectively. Whereas, 

nisin showed MIC90 values of 60 mg/L for Mycobacterium kansasii 
and >60 mg/L for MAP and M. tuberculosis H37Ra. Hence, lacticin 
3147 found as a more effective antimycobacterial peptide than nisin. 
Lantibiotics certainly possess sufficient potential for future therapies 
treating tuberculosis. A study demonstrated that nisin and lacticin 
3147 arrest the mycobacterial lipid II moiety and suggest that 
inherent cell wall modifications do not provide lantibiotic resistance 
to Mycobacteria[40]. Bacteriocins of Pediococcus pentosaceus 
VJ13 exhibited activity against various pathogens including M. 
smegmatis. Zahir et al[41], reported that Aerococcus sp. ZI1 produces 
proteinaceous inhibitory substances which showed antagonistic 
effect against M. smegmatis. The process of developing a potential 
bacteriocin peptide library active against different mycobacteria and 
its characterization are illustrated in Figure 2. Breifly, the partially 
purified bacteriocins of LAB are screened for antimycobacterial 
activity against M. tuberculosis H37Rv, MDR M. tuberculosis and 
drug sensitive M. tuberculosis using Luciferase reporter phage assay. 
The active bacteriocin are further subjected to purification by HPLC 
methods. The lyophilized purified bacteriocins are subjected for 
anti-TB activity against the M. tuberculosis strains. The potential 
bacteriocin are characterized by LC-MS, peptide mass finger 
printing. Peptide library is created for each potential bacteriocin 
showing activity against different mycobacterial strains. 
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Antimycobacterial activity by LRP assay
             Mycobacterial cell
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Photon emission 
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Figure 2. Schematic representation of characterization of bacteriocin 

screening for activity against M. tuberculosis, bacteriocin purification and 

proteomics analysis.
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  LAB have shown to be a natural effective antimicrobials in 

food industries that exert inhibitory activity against various 
microorganisms that cause food spoilage. Studies by Mariam[42,43], 
have reported that milk fermented with Lactobacillus starters has a 
pronounced antagonistic effect on the Mycobacterium bovis (M.   bovis) 
BCG and also found undetectable growth of M. tuberculosis in 
the milk by day 7. It is believed that when the Mycobacterium-
contaminated milk is fermented, the indigenous LAB confer 
protective effect. The study suggested that selected LAB may have 
potential applications as antimycobacterial agents. Macuamule et 
al[44], reported that long term fermentation of raw milk with LAB 
may inactivate M. bovis BCG present in milk. It was shown that 
during fermentation of milk, factors such as non-bacterial and heat-
stable components as well as the LAB populations have played a 
major role in the bactericidal effect against M. bovis BCG. 

4. Immunomodulatory effects of probiotic LAB and 
their metabolic products

  LAB offer attractive opportunities for infectious disease treatment 

vis-à-vis their immune modulating capabilities[45]. M. tuberculosis 
replicates within macrophage, thereby inhibiting the maturation of 
phagosome which is involved in the elimination of M. tuberculosis. 
Autophagy is an immune response which targets bacteria thereby 
controlling the proliferation of M. tuberculosis in macrophages 
following its infection[46]. Activation of autophagy may also control 
the inflammation enabling the host immune response against 

M.  tuberculosis. Hence, many tuberculosis therapies have been 
focused on the activation of autophagy with innovative approaches. 
TB infection itself relatively increases the level of Th2 cytokines 
and inhibits Th1 cytokines[2]. The interaction of LAB and their 
products with macrophages and T-cells can lead to the cytokines 
production[47]. A pilot study conducted by Suarez-Mendez et al.[48] 
for drug resistant therapy by administring IFN-毭as an immune 
adjuvant. IFN-毭activates autophagy which stimulates the delivery 
of mycobacteria to lysosomes[49,50]. Kato et al[51], demonstrated that 
male BALB/c mice received intraperitoneal injection of Lactobacillus 
casei (LC 9018) have shown the activation of macrophages and 
natural killer cells. Some strains of LAB have increased the 
production of reactive oxygen, nitrogen radicals, monokines of 
phagocytic cells. Studies demonstrated that the Lactobacillus 
acidophilus derived non-lipopolysaccharide component stimulates 
the IL-1αand TNF-毩production[52,53]. LAB enhance the bactericidal 
ability of mononuclear phagocytes by increasing autophagy-inducing 
cytokine such as IFN-毭levels and by reducing IL-4 and IL-13 that is 
adequate to down-regulate the lung Th2 response, which is known to 
restrict autophagy[54]. The treatment with probiotic can modulate the 
immune responses in the lung which enhances the regulatory T cell 
response in the airway, emphasizing the potential therapeutics[55]. 
Noverr et al.[56], reported that cytokine profiles at the intestinal 
level and systemically were modulated by orally administered 
Lactobacilli. LAB can protect airway infection in host animals 
through an interaction of Peyer’s Patches in the gut and enhance 
respiratory immunity indirectly[57]. LAB probiotics play a key role 
as immunomodulatory substances and activators of host defence 
pathway. Increasing evidences suggest that delivered probiotics 

regulate the immune responses in the respiratory system[58]. The 
peptidoglycan, polysaccharide, and teichoic acid of LAB cellwall 
have shown to possess immune-stimulatory properties[59].
  Antimicrobial peptide helps in stimulation of innate immune 
response while reducing associated harmful inflammatory 
responses[60]. Mitsuma et al.[61], reported that pentapeptide 
(CHWPR) produced by Bifidobacterium animalis subsp. lactis 
BB-12 up-regulates the c-myc and IL-6 genes in HL-60 cell line. 
Herawati et al[62], also reported that the bacteriocins isolated 
from Lactobacillus acidophilus were able to improve phagocytosis 
activity of macrophage. Chen et al.[63], showed that live LAB, heat-
inactivated LAB or LAB-SCS were able to induce macrophages 
and show immunopotentiating activities, including the induction of 
tumour necrosis factor-毩, interleukin-6 and NO. 

5. Improvement of efficiency of bacteriocins and 
synthesis of hybrid bacteriocins-protein and peptide 
engineering approach

  Several natural antimicrobial peptides which are isolated from 
natural sources have common characters among their chemical 
features, which may be linked with their biological activities. Thus, 
the penetration of the molecule into the target cells can be increased 
through the modification of molecular structures[64]. Many different 
processes have been applied to produce antimicrobial peptides 
in a cost-effective manner through advanced approaches like 
chemical synthesis, r-DNA technology, cell-free expression systems 
and transgenic animals or plants. All the processes offer a large 
production of material required for therapeutic use[65]. Bacteriocins 
identified with functional activity and sequence have been 
chemically synthesized in order to increase the scale of production 
and also to improve the thermal and cleavage stability. Many of 
the bacteriocins were synthesized by using a Wang resin and by 
sequentially adding N-Fmoc-protected amino acids by manual 
or automated synthesis[66]. For instance, Samar Lasta et al.[67], 
have synthesized the bacteriocin J46 by FMOC peptide synthesis. 
NMR characterization and biophysical studies are carried out for 
the synthesized peptides to determine the structural confirmation 
of the peptide in lipid or polar environment for understanding the 
mechanism of action. The advantages of chemical synthesis of 
bacteriocins are bulk production, short duration, combinatorial 
synthesis and peptide back bone engineering for hybrid stable 
peptides[68,69]. Bacteriocins with engineered functions or increased 
stability can be produced by combination of chemoenzymatic 
approach. This integrates the chemical biology (synthesis) followed 
by molecular biology (r-DNA technology and use of enzymes for 
modifications) or vice versa. In the first case, the bacteriocins are 
synthesized by FMOC synthesis followed by enzyme mediated 
addition of specific functional groups or linkages. Xinya et al.[70], 
described the total synthesis of a circular AS-48 bacteriocin with 
butelase 1 enzyme by the chemoenzymatic approach. Here the 
linear AS-48 peptide was synthesized using microwave stepwise 
synthesis followed by using an Aspargine specific butelase mediated 
cyclization. The advantage of this approach is that the circular 
bacteriocin produced, has the ability to withstand pasteurization and 
this has opened up an arena in the field of food preservation using 
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bacteriocin. In the second case, the bacteriocins are produced using 
recombinant DNA technology in Escherichia coli or other expression 
systems followed by the addition of specific functional groups by 
specific chemical reactions[71].  
  The synthetic bacteriocins have been shown to be more stable 
and absence of contaminating proteases than those which are 
produced from bacterial strains. Many studies have attempted to 
create bacteriocin variants with enhanced activity[72]. Fimland et 
al[73], have constructed four new hybrid bacteriocins from various 
pediocin-like bacteriocins by interchanging corresponding modules 
which are biologically active. All hybrid bacteriocins had significant 
bactericidal activity. The peptide’s hinge region facilitates C-terminal 
of the bacteriocin insertion into membrane of cell, which leads to cell 
death through pore formation. James Carroll and Jim O’Mahony[74], 
have identified numbers of nisin variants with enhanced activity 
against Streptococci, Staphylococci, Clostridium, Bacillus spp, MRSA. 
Previous study by Carroll et al[75], reported that nisin variants such 
as K22T N20P and M21V have improved antimycobacterial activity 
against pathogenic mycobacteria. 
  An improved bacteriocin activity could be obtained by addition 
of disulphide bridge which results in rigidifying a specific 
conformation. Moreover, it also enhances the net positive charge 
of a bacteriocin which promotes the initial electrostatic interaction 
with the outer cell membrane of target[76,77]. Derksen et al.[78], 
explored the essential of N-terminal disulfide bridge for class IIa 
bacteriocins activity. The replacements of allylglycine, norvaline, 
and phenylalanine resulted in retention of leucocin A activity.  
Oppegard et al.[79], synthesized analogues of class IIb bacteriocin 
such as lactococcin G by replacement of N- and C-terminal residues 
with D-amino acids. The resulted anologues were less susceptible 
to exopeptidases without compromising on the activity. Tominaga 
and Hatakeyama[80], constructed improved version of pediocin 
PA-1 (Chimera EP) by fusing C-terminal half of pediocin PA-1 and 
N-terminal half of enterocin A, which showed increased activity 
against Leuconostoc lactis. Authors believed that the design of hybrid 
bacteriocins with broad spectrum of high specific antibacterial 
activity through fusing microcins (active on Gram-negative bacteria) 
and class IIa bacteriocins (Gram-positive bacteria). A novel 
recombinant hybrid peptide such as Ent35–MccV was designed 
by combining enterocin CRL35 and microcin V which displayed 
activity against entero-hemorrhagic Escherichia coli and Lactobacillus 
monocytogenes[23,81]. 

6. Conclusions

  Due to adverse side effects, long duration and emergence 
of MDR M. tuberculosis and XDR M. tuberculosis, the current 
antimycobacterial drugs still exhibit many barriers for effective 
treatment to cure the disease. Hence, novel TB drugs from natural 
sources with non-toxic and shorter treatment durations are needed 
to target all sub-populations of M. tuberculosis. Bacteriocins of LAB 
exhibit broad spectrum of activity in targeting M. tuberculosis that can 
be developed as a leading molecule for the treatment of tuberculosis. 
Increasing evidences suggest that enhancement of immune response 
especially autophagy can control the proliferation of M. tuberculosis 
in macrophages following infection. In this regard, LAB and its 

metabolites have shown to impact on the immune system thereby 
enhancing macrophage activation. As LAB is considered “Generally 
recognized as safe”, the LAB can be developed as probiotic 
supplements for the enhancement of autophagy to kill intracellular 
pathogens like M. tuberculosis. Synthesis and production of large 
quantity of bacteriocins with increased stability and enhanced 
activity from an identified peptide sequence of existing bacteriocin 
are possible with protein and peptide engineering techniques. It 
is known that multi-drug resistant variants of M. tuberculosis have 
emerged during inadequate tuberculosis treatment. This may be 
overcome by fusing sequences of two or more known bacteriocins 
into a new hybrid bacteriocin. 
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