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1. Introduction

  Mayaro virus (MAYV), belongs to Togaviridae family, triggers 

a febrile arthralgia syndrome close to Dengue and Chikungunya 

fever. The virus isolated in Trinidad in 1954 is a mosquito-borne 

alphavirus reported in the South and Central America[1]. 

  The genome is a single-strand RNA of 11.5 kb[2,3]. It has two 

different open reading frames. The first one translates four 
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non- structural proteins (NSP1–4), whereas the second open reading 

frame encodes a single polyprotein, subsequently being processed 

to five several proteins: capsid protein (C), two envelope surface 

glycoproteins (E1 and E2), and two small peptides (E3 and 6k)[4,5].

  Virus natural cycle involves non-human primates and Haemagogus 
spp. mosquitoes in tropical areas of South America[6]. 

  MAYV causes Mayaro fever (MF), a neglected endemic syndrome 

of tropical Americas. After 7–12 d following a mosquito bite as 

incubation time, patients develop fever, rash, headache, and arthralgia 

that persist for several weeks[6]. The most prominent symptoms, 

represented by joint pain and edema, are typical of the acute phase 

of the disease but can persist chronically for several months[7,8]. 

Even though the disease is not severe and none case of death has 

been reported, MF cause significant morbidity especially in rural 

population[9], in rare case also with hemorrhagic manifestations[10]. 

The disease can determine temporary incapacitation to work and 

hospitalization in some cases[1]. 

  Two different genotypes have been described during MAYV 

epidemics, the D genotyped prevalently isolated in Brazil and the L 

genotype with a more wide distribution[1,10]. Reproducing the path 

of transmission followed by Chikungunya virus (CHIKV), Dengue 

virus (DENV) and Zika virus (ZIKV) in the Western countries 

and Indian regions, MAYV has the potentiality to become a global 

pathogen, due to its transmission mediated by urban mosquitoes 

such as Aedes aegypti[11]. Similarly to CHIKV and ZIKV infection, 

MAYV epidemics can be undiagnosed during DENV outbreaks 

and incorrectly misdiagnosed as DENV infection in about 1% 

of cases[12]. Case definition is clinical definition plus laboratory 

diagnosis of MAYV[1].

  MAYV identification is difficult to be achieved due to the relative 

short duration of the viremic phase[10]. The available treatment for 

MF is based on non-steroidal anti-inflammatory medications and 

chloroquine, and no vaccine or specific antiviral drugs are available 

at the moment[13]. For this reason, MAYV infection should represent 

an emerging public health threat, and improved surveillance and 

preventive measures should be provided to mitigate the already 

burden on health systems in Latin America so as to limit the spread 

of the virus infection. 

  In this study, the genetic diversity of MAYV has been investigated 

with the aim to estimate the phylogenetic relationships between MAYV 

strains circulating worldwide. Since MAYV is considered an emergent 

pathogen, evolutionary analyses have been performed to obtain a 

comprehensible overview positive-selection analyses and homology 

modelling has been also performed to evaluate the pathogen evolution 

and the virus evolution consequences in the protein recognition by host 

immune response. Homology modelling of MAYV proteins has been 

applied to allow mapping of sites under pressure and to put forward 

structural hypotheses about possible consequences of mutations on 

virus protein recognition by host immune response. 

2. Materials and methods

2.1. Sequence dataset 

  Nine different datasets were assembled, eight for each protein 

[C, E1, E2, E3, non-structural protein (NSP) 1, NSP2, NSP3, and 

NSP4] and one for the complete genome, including sequences dated 

from the year 1955 to the year 2015. All the datasets contained 

33 sequences for each protein and the complete genome. All 

the sequences and complete genome were downloaded by the 

availability from the NCBI database (http://www.ncbi.nlm.nih.gov/) 

and all the different genes were analyzed separately. All sequences 

were aligned using MAFFT software v.7 and manually edited using 

Bioedit software[14,15]. Modeltest software version 3.7[16] was used 

to choose the best evolutionary model.

2.2. Phylogenetic signal and maximum likelihood analysis

  The phylogenetic signal has been evaluated analyzing randomly 

10 000 groups of four sequences (quartets), by the likelihood 

mapping method using TREE-PUZZLE[17]. The dots inside the 

equilater triangles correspond to the likelihood of the possible trees. 

In the triangle, the corners represent the trees with fully resolved 

topologies, the epicenter area represents the star-like phylogeny, 

and the areas on the sides correspond to the network-like phylogeny 

(presence of recombination or conflicting phylogenetic signals). 

For substitution/saturation analysis assessment, the Xia’s test was 

used with the transitions/transversions ratio vs. divergence graph in 

DAMBE [http://dambe.bio.uottawa.ca/DAMBE/]. The percentage 

of constant sites and parsimony-info sites were estimated using 

MEGA7. 

  The maximum likelihood tree was inferred with the evolutionary 

model previously selected with ModelTest, by using Phyml[18]. 

The phylogenetic tree was confirmed with the bootstrap analysis 

(bootstrap values >75%) as reliability test for the branches.

2.3. Selective pressure analysis

  Adaptive Evolution Server (http://www.datamonkey.org/) was 

used to predict the ratio (氊) of non-synonymous to synonymous 

substitution rates for each codon, with 氊>0 indicating diversifying 

or positive selection[19]. The following selection analyses were 

conducted according to the best-fit substitution model, also 

determined within the Server: adaptive branch-site random effects 

likelihood [aBSREL][20] model for the detection of lineage-specific 

selection, fast unconstrained Bayesian approximation [FUBAR][21] 

for inferring site-specific pervasive selection, Bayesian unrestricted 

test for episodic diversifying selection [BUSTED][21] across the 

region of interest, and the mixed effects model of evolution [MEME] 

to identify episodic selection at individual sites[21]. Sites were 
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considered to have been subjected to statistically significant positive 

or negative selection based on the following cut-offs: likelihood-

ratio test (LRT) P曑0.05 for BUSTED and aBSREL and posterior 

probability (PP)] >0.90 for FUBAR, and LRT曑0.05 [with P曑0.01] 

for MEME. The reference sequence used to trace the amino acid 

position found under selection was Accession Number: KX496990.1.

2.4. Homology modelling and structural analysis

  Homology modeling relied on the software Modeller version 

9.17[22]. Template identification was carried out with the programs 

Blast[23], HHPred[24] or Phyre2[25]. Suitable templates were 

considered those structures sharing the highest sequence similarity 

to the target protein, solved at the best resolution available, and 

with maximum sequence coverage. Sequence alignments were 

calculated with Clustal Omega[26] and were displayed or edited 

with the Jalview editor[27]. Ten models of each target protein were 

built at the highest refinement level and that one showing the lowest 

value of the Modeller target function, which is indicative of model 

quality, was considered the representative model. ProsaII[28] and 

Procheck[29] were utilized for model validation, while protein 

structure visualization and analysis were carried out with the graphic 

software PyMOL[30] or Chimera[31]. B-cell epitopes were predicted 

with a set of publicly available servers[32] listed in Table 1. Protein-

protein interaction site prediction used the meta-PPISP server.

Table 1
B-cell epitope prediction for the Mayaro E1 protein variants. 

Methods
Residue at position 300a)

Input typeb)

Leu Thr
ABCPred[33] + + sequence
BCPred[34] - + sequence
Bepipred[35] - - sequence
SVMtriP[36] - - sequence
Epitopia[37] - + sequence
BePRO[38] - - PDB
DiscoTope 2.0[39] - - PDB
EPCES[40] + - PDB
EPSVR[41] +/- +/- PDB
ElliPro[42] + + PDB
CBTope[43] + + sequence

a) + and – denote predicted presence or absence of an epitope, respectively. b) 

PDB indicates homology model coordinates. 

3. Results

3.1. Phylogenetic analysis and likelihood mapping

  As a first step, the phylogenetic signal for all the genomic regions 

of the MAYV (C, E1, E2, E3, NSP1, NSP2, NSP3, NSP4, and 

complete genome) by likelihood mapping (Figures 1A–1I) was tested. 

The percentage of likelihood points in the central area of the triangles 

was 12.9% for the first dataset (Capsid gene), 7.5% for E1 gene, 

3.4% for E2 gene, 19.9% for E3 gene, 3.8% for NSP1 gene, 3.1% for 

NSP2 gene, 7.0% for NPS3 gene, 9.4% for NSP4 gene, and 1.2% for 

the main dataset, complete genome region. All the datasets showed 

sufficient phylogenetic signal (30%). All the genetic signal values and 

phylogenetic information of the MAYV datasets are shown in Table 

2. The percentage of the Parsimony-Info sites ranged from 1.74% (E2 

dataset)–19.65% (E1 dataset); instead the percentage of the constant 

sites ranged from 73.62% (E1 dataset)–81.72% (NSP1 dataset). 

  In the maximum likelihood tree, two main clades (A and B) were 

highlighted (Figure 2). The clade A included six sequences, sampled 

from 1955 to 2015, of which five from Brazil and one from Haiti. 

The Brazilian sequence sampled in 2014 clusters with the Haitian 

sequence sampled in 2015 with high bootstrap value (100%), 

suggesting a very close phylogenetic relationship. The clade B 

included the remaining 27 sequences sampled in the Central and 

Southern America (Bolivia, Brazil, French Guiana, Peru, Trinidad 

and Tobago and Venezuela) from 1957 to 2013. Inside the clade 

B, there is a statistically supported clade (B1) where one Peruvian 

sequence sampled in 2010 can be considered outgroup of the clade 

B1. Inside the clade B1, there are several statistically supported 

clusters, grouping mostly according the geographic location.

 3.2. Selective pressure analysis

  Genetic variability was determined by nucleotide sequencing of 
fragments ranging from 198 nt for the E3 protein to 2 394 nt for the 

NSP2 protein. The 毩 parameter of the 毭 distribution for all the 
proteins analyzed was <1, demonstrating L-shape characteristic of 
the distribution and proposing that rate heterogeneity of nucleotide 
substitution is across sites. Selective pressure analyses performed 
considering all the analyzed genomic regions (C, E1, E2, E3, NSP1, 

NSP2, and NSP4) highlighted eight sites (107, 215, 243, 11, 231, 

497, 251, and 64) under strong negative selection (by using FUBAR) 
indicated by 氊<0, suggesting high degree conservation in the 
genomic region analyzed (Table 2). Using BUSTED, it has been 
highlighted episodic diversifying selection only in E3 and NSP4. 
No branch-specific episodic diversifying selection was found using 
aBSREL. Few sites with episodic diversifying selection were found 
in E1, NSP1 and NSP3 with LRT P曑 0.01. There was one on each 
gene: amino acidic position 300 in E1, amino acidic position 242 in 
NSP1 and amino acidic position 31 in NSP3 (using MEME).

3.3. Homology modeling and structure analysis 

  Homology model of the MAYV E1 protein (GenBank code 
ANY58848) was built using the templates represented by the E1 
envelope proteins from Semliki Forest virus (SFV) (PDB code 
2ALA, resolution 3.0 Å) and CHIKV (PDB code 3N44, 2.35 Å). The 
sequence alignment on which the modeling was based is displayed 
in Figure 3. MAYV E1 shares 76% and 60% sequence identity 
with SFV and CHIKV proteins, respectively. Figure 4 reports the 
superposition between the best MAYV E1 model and the structures 
of the template proteins, and it also shows the location of sequence 
position 300 which was found to be under selective pressure. 
This site is located in the domain III of the E1 protein within a 毬
-strand of the immunoglobulin-like fold, before a conserved Cys 
involved in a disulfide bond. A multiple sequence alignment of 
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a set of 58 homologous E1 proteins from various alphaviruses 
shows that position 300 can hold Ser (with frequency 58%), Glu 
(18%), Lys (12%), Thr (5%), Leu (3%) or Ala (1%). Interestingly, 
MAYV E1 displays a two-residue deletion in correspondence of 
positions 344–345 of the SFV and CHIKV E1 proteins (Figure 
3). This deletion occurs within a 毬-strand of the 毬-barrel of the 
immunoglobulin fold and may induce a partial local conformational 
rearrangement of the MAYV E1 loop encompassed by the sequence 
positions 346–349 of domain III. Epitope prediction (Table 2) of 
protein E1 variants which possess Thr or Leu at position 300 was 
carried out using 11 methods listed in Table 1[32]. Epitope prediction 

is quite inaccurate and for that reason a consensus approach is 
generally recommended[32]. Overall, although no clear consensus is 
evident, position 300 is predicted to be part of a region possessing 
potential epitope propensity. In fact, the 5th and 6th methods out of 
the 11 prediction methods employed indicate the occurrence of a 
potential epitope with Leu or Thr at position 300, respectively (Table 
2). Since the region bearing Thr is predicted as a potential epitope by 
six methods, it may be conceived that the occurrence of this residue can 
attribute a marginally higher epitope propensity. No suitable template 
was found for the protein NSP1 and for that reason no homology 
model could be built in our study. Modelling of the macrodomain 
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Figure 1. Likelihood mapping of all datasets. 

Each dot represents the likelihoods of the three possible unrooted trees for a set of four sequences (quartets) selected randomly from the dataset: dots close to 

the corners or the sides represent, respectively, tree-like, or network-like phylogenetic signal in the data. The central area of the likelihood map represents star-

like signal. The percentage of dots in the central area is given at the basis of each map.

Table 2
Evidence of selection pressure among codon sites in all the coding regions analyzed capsid, E1, E2, E3, NSP1, NSP2, NSP3 and NSP4 genes. 

Analysis item Method Capsid E1 E2 E3 NSP1 NSP2 NSP3 NSP4
Number of sites with evidence of purifying selection FUBARa 107 215 243 11 231 497 251 64
Evidence of episodic diversifying selection BUSTEDb No No No Yes No No No Yes

MEMEc No 1 site: 300 No No 1 site: 242 No 1 site: 31 No
Branches aBSRELd 0 out of 47 0 out of 47 0 out of 49 0 out of 39 0 out of 63 0 out of 51 0 out of 43 0 out of 39

aFast unconstrained Bayesian approximation of pervasive selection (PP>0.90); bBayesian unconstrained test for episodic diversifying selection (LRT P曑0.05); 
cSite-specific episodic diversifying selection (LRT P曑0.01); dBranch-specific episodic diversifying (adaptive) selection (LRT P曑0.05). 



198  Eleonora Cella et al./Asian Pacific Journal of Tropical Medicine 2018; 11(3): 194-201

of MAYV NSP3 protein (Genbank code ALJ56198.1) utilized the 
following templates: a fragment of the NSP from Sindbis virus (PDB 
code 4GUA, resolution 2.85 Å); macrodomain from CHIKV (3GPG, 
1.65 Å) and macrodomain of venezuelan equine encephalitis virus in 
complex with ADP-ribose (3GQO, 2.60 Å). The complex between 
MAYV NSP3 and ADP-ribose was predicted following the geometry 
of the complex reported in 3GQO. MAYV NSP3 shares 52%, 66% and 
56% sequence identity with 4GUA, 3GPG, and 3GQO, respectively. 
According to the homology model, sequence position 31 of the MAYV 
NSP3 is predicted at the mouth of the macrodomain binding site of the 
ADP-ribose (Figure 5) in proximity of residues (for example Asn24 and 
Val33) considered to be important for ADP-ribosylhydrolase activity 
in the homologous CHIKV NSP3 macrodomain[44]. Prediction of 
protein-protein interaction sites attributed position 31 a high interaction 
propensity (Figure 5).
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Figure 2. Maximum likelihood tree of Mayaro virus. 

° along the branches indicating a statistical value from bootstrap (>70%). The 

legend for the location classification is in the left corner of the figure.

 

 

Figure 4. Structural superposition among the MAYV E1 homology model 

(orange cartoon) and the homologous proteins from Semliki Forest virus 

(grey) and Chikungunya virus (green). 

Cyan subunit is the E2 protein from Chikungunya virus. Side chain of Leu at 

positions 300 of MAYV E1 is reported as red stick model. Disulfide bonds 

are displayed as yellow sticks. Red areas in the 毬-strands of the Semliki 

Forest and Chikungunya virus E1 proteins denote the two-residue insertions 

found with respect to the MAYV E1 sequence.
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Figure 5. Prediction of structural protein position. 

[A] Structural superposition between the homology model of the MAYV 

NSP3 macrodomain (light cyan cartoon 0 and the template macrodomain 

from Venezuelan Equine Encephalitis virus [orange]. The ligand ADP-ribose 

is depicted by yellow sticks. Arrow indicates the position 31 occupied by an 

Asp residue. [B] Surface of the MAYV macrodomain colored according to 

the protein-protein interaction potential using a scale ranging from blu (low 

potential) to red (high potential). Arrow marks the position 31. ADP-ribose is 

displayed as in panel A.

Figure 3. Sequence alignment among the Mayaro E1 protein (labeled by HAITI) and the sequences of the E1 envelope proteins from Semliki Forest virus 

(indicated by 2ALA) and Chykungunya virus (3N44 chain F). 

Colors follow the Clustal scheme. Dashes mark sequence insertions/deletions.
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4. Discussion

  MAYV has been reported in several tropical countries in the Central 

and South America, as Brazil[1,45]. MAYV has the potentiality to 

become a global pathogen, being its transmission mediated by urban 

mosquitoes such as Aedes aegypti, as happened in the recent past for 

CHIKV[46,47]. This analogy can also be supported by similar clinical 

symptoms. Indeed the illness, which can cause chills, malaise, 

headache, stomach pains and joint pains, is transmitted by that same 

vector Aedes aegypti mosquito which transmits ZIKV, DENV, yellow 

fever virus and CHIKV. As recently reported in CHIKV and ZIKV 

epidemics, MAYV outbreaks can pass undiagnostigsate during 

DENV epidemics[46,48]. Indeed the clinical symptoms of Mayaro are 

so similar to Chikungunya and several other ailments that it is easy 

to be misdiagnosed. Moreover dual infections from these viruses can 

further complicate accurate diagnosis. MAYV is the one of the long 

list of recently emerging viral pathogens that has received global 

attention due to various outbreaks in tropical areas and its rapid 

spread in several countries. Maximum likelihood analysis confirmed 

the MAYV previous presence in Haiti and successful spread to areas 

such as the Caribbean and USA[49].

  Selective pressure analysis performed in this study revealed a 

strong presence of negatively selected sites in all genomic regions 

analyzed, suggesting a probable exclusion of deadly polymorphisms 

in functionally genes. At the same time, this analysis highlighted a 

few sites with episodic diversifying selection in E1, NSP1 and NSP3 

with LRT P曑0.01 located in the amino acidic position 300 in E1, 

amino acidic position 242 in NSP1 and amino acidic position 31 in 

NSP3.

  The contemporary lack of presence of high percentage of positively 

selected sites also suggests and enforces the idea of highly adapted 

phenotypes. Probably, the alternation cycle between arthropod vector 

and human and no human hosts may impose a sort of barrier to non-

synonymous mutations in important genes. Amino acid conservancy 

within MAYV sequences can be considered in combination with 

potential immune escape amino acid mutations. The homology 

modeling analysis showed localized high mutation frequency in the 

structural and non-structural proteins (NS3 and NS5) corresponding 

to a considerable alteration in the protein stability. 

  The position of the site 300 under positive selective pressure has 

been mapped onto the predicted three-dimensional structure of 

the MAYV E1 protein. In particular, model inspection indicates 

that this site is located in the domain III of the E1 protein within 

a 毬-strand of the immunoglobulin-like fold, before a conserved 

Cys involved in a disulfide bond[50,51]. In the E1 envelope protein 

of Sindbis virus, belonging to the Alphavirus genus, the position 

equivalent to the MAYV E1 300 was proven to be part of a set of 

transitional epitopes that become accessible only after virus particle 

exposures to agents, such as heat, low pH and the like[50,51]. Change 

in epitope accessibility was observed also upon virus particle 

exposure to susceptible cells, which suggests that a conformational 

modification of the envelope proteins takes place during cell binding. 

Moreover, the structure site of the SFV E1 protein equivalent 

to the MAYV Leu 300 is involved in E1–E1 contact within the 

virus protein shell[52]. The high similarity between the MAYV E1 

and the homologous protein sequences from other alphaviruses 

suggests that the position 300 may have properties similar to 

those attributed in the other viruses. Moreover, within the limits 

of intrinsic inaccuracy, B-cell epitope prediction suggests that the 

region surrounding the position 300 might have an immunogenic 

potential. Interestingly, Thr at position 300 apparently may attribute 

a higher epitope potential than the presence of Leu at the same 

position. A multiple sequence alignment of a set of 58 homologous 

E1 proteins from various alphaviruses shows that position 300 can 

in other viruses hold other residues mostly polar such as Ser (with 

frequency 58%). Furthermore, MAYV E1 displays a two-residue 

deletion in correspondence of positions 344–345 of the SFV and 

CHIKV E1 proteins. This deletion occurs within a 毬-strand 

of the 毬-barrel of the immunoglobulin fold and may induce a 

partial local conformational rearrangement of the MAYV E1 loop 

encompassed by the sequence positions 346–349 of domain III. 

All these observations hint at the potential existence of an ongoing 

fine process of MAYV E1 protein adaptation to cope with host 

immunological surveillance. 

  MAYV protein NSP3 contains a N-terminal domain homologous to 

the highly conserved macrodomain[53], which, in CHIKV, has been 

demonstrated to possess ADP-ribosylhydrolase activity essential 

for virus replication and virulence[44]. According to the homology 

model, the position 31 found to be under selective pressure is located 

in the edge of the ADP-ribose binding site and is predicted to possess 

a high potential of protein-protein interaction. It may be conceived 

that this position is involved in the recognition of the intracellular 

targets of the MAYV macrodomain and consequently is subjected to 

functional constraints. Currently, no licensed vaccines are available 

for MF, and the only control strategy is based on human exposure to 

potential vectors reduction. Two attempts of vaccine are described 

in literature, one in human diploid cells and the other in murine 

models[54]. A protective vaccine could decrease the potential risk of 

MAYV urbanization through adaptative mutation that enhance the 

vectorial ability of transmission, as happened with CHIKV[55] and 

could be of great impact on public health.

  MAYV has many undiscovered features of concern, and since it 

was first isolated in Trinidad in 1954, it has been linked with limited 

epidemics in Southern America[56] near the Amazon rainforest. 

MAYV infection syndrome includes a group of symptoms such as 

arthralgias, fever, headache, myalgias, rash, and sporadically nausea 

and vomiting[57]. MAYV infections are underdiagnosed because of 

a possible misleading with other mosquito-borne virus infections, 
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especially dengue fever, endemic in common areas. Recently, 

CHIKV has added disorientation in the diagnosis, especially due 

to the prolonged arthralgia connected with CHIKV and MAYV 

cases[56]. Our findings confirmed that MAYV is spreading in Brazil 

since its isolation in the 1950s[49]. A serious concern arises from the 

easy interaction and proclivity for MAYV/DENV co-infections. That 

phenomenon should be the subject of careful studies and include 

other arboviruses from the same geographic regions to clarify 

the nature of the MAYV epidemic or other similar pathogens. In 

addition, in light of these considerations, conducting molecular and 

evolutionary studies are important to reveal the potential abilities 

of this virus to trigger a significant epidemic, and help to elucidate 

the MAYV way of transmission by Aedes and Haemagogus spp. 

mosquitoes.
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