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1. Introduction

  Advanced glycation end products (AGEs) are formed in vivo by 
metal-catalyzed glucose auto-oxidation and lipid peroxidation. A 
reducing sugar reacts with a protein (free amino groups in lysine, 
arginine or hydroxylysine residues) to form a labile, subsequently 
stabilized product, which produces an irreversible, non-enzymatic 
post-translational modification[1,2]. Once these are formed, 
AGEs are only degraded in the case of protein degradation that 

is prone to AGE formation[3]. The accumulation of AGEs affects 
the extracellular and intracellular structure and function in many 
different tissues and cell types. The most massive accumulation 
of AGEs will produce in tissues with low turnover, for instance, 
crystalline in the lens and collagen in the extracellular matrix of 
connective tissues, e.g., amyloid plaques[4,5], skin[6], tendon[7], 
bone and cartilage[8,9].
  AGEs accumulation affects the function of tissues, contributing to 
the pathogenesis of diseases. Recent studies found that AGEs play 
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a significant role in the development of age-related diseases, such 
as osteoarthritis[10,11]. Articular cartilages are prone to accumulate 
AGEs contributing to their low turnover. The accumulated AGEs 
increase the brittleness and stiffness of articular cartilage by reducing 
the synthesis of proteoglycan and collagen in the chondrocytes[11]. 
As such, AGEs accumulation adversely affects the mechanical 
properties of the matrix driving the development of osteoarthritis. 
  Autophagy refers to the cellular degradative pathway that involves 
on turnover of cell constituents and serves as a short-lived survival 
mechanism under starvation environment by clearing away unfolded 
protein. Autophagy occurs at the low level in virtually all cells to 
perform the homeostatic function. However, it is rapidly up-regulated 
when cells need to generate intracellular nutrients and energy under 
certain stress conditions, such as starvation, infection, oxidative 
stress, protein aggregate accumulation and another irritation[12]. It 
is reported that AGEs also can induce autophagy in vascular smooth 
muscle cells and endothelial cells[13,14]. Generally, autophagy can 
promote cell survival by blocking apoptosis. However, autophagy 
also can result in cell death under certain conditions[15].

  This study examined the effect of AGEs on cell viability, TNF-毩 

and NF-毷B expression, ROS accumulation and apoptosis in human 
chondrocytes. Meanwhile, the role of autophagy on AGEs-induced 
adverse effect was investigated.  

2. Materials and methods

2.1. Samples collection and cell culture

  Cartilages were harvested from osteoarthritis patients with surgical 
procedures of total knee replacement (n=5, three males and two 

females, age range: 49–56 years old). The harvested cartilage 
was stored with amicrobic physiological saline. The cartilage was 
cut into 5–10 mm3 slices after removing the subchondral lamina. 
Consequently, the complete treatment procedures were followed. 
Trypsin solution was used to soak the cartilage slices at room 
temperature for 30 min and then washed with phosphate buffer saline 
(PBS), followed by type II collagenase solution treatment at 37 曟 
for 10 h. The isolated cells were maintained at 37 曟 with 5% CO2 in 
DMEM/F12 supplemented with 10% fetal bovine serum (HyClone, 
Logan, Utah, USA). The above procedures were performed under 
sterile conditions. Phase contrast images of the live chondrocytes 
were obtained using Olympus microscope.

2.2. AGEs treatment

  AGE-BSA full-length protein was purchased from Abcam 
Company (ab51995). When the confluence of chondrocytes reached 
80%, 100 μg/mL AGE-BSA was administered in the medium during 
the culture.

2.3. Cell viability assay

  After AGEs treatment for 12, 24 and 48 h, the viability of 
chondrocyte populations in culture was quantified by 3-[4,5-
dimethylthiazol2-yl]-2,5-diphenyl tetrazolium bromide (MTT). 
Cells were seeded at 3×103 cells/well in a 96-well microplate in 

culture media with 10% FBS. MTT solution (0.5 mg/mL in PBS) 
was put into each well and then incubated at 37 曟 for 4 h. Dimethyl 
sulfoxide (DMSO) was added after removing the supernatant. The 
absorbance was quantified using a microplate reader at 490 nm. 

2.4. Rapamycin treatment induced autophagy  

  Autophagy inductor rapamycin (1 mmol/L) (Sigma, Co., St. Louis, 
MO, USA) was pretreated 2 h before AGEs incubation. MTT 
was used to measure cell viability at 12, 24, and 48 h after AGEs 

treatment. The time points for the experiments of TNF-毩 and NF-

毷B expression, intracellular ROS level and apoptosis were decided 
based on the result of MTT assay.

2.5. Western blot analysis
 
  The chondrocytes were lysed using radio immunoprecipitation 
lysis buffer to extract protein. The protein in cell lysates was 
quantified using a spectrophotometer. The western blot analyses 
were performed using the rabbit monoclonal microtubule-associated 
protein 1 light chain 3 antibody (1:1 000 dilution; Cell Signaling 
Technology, Boston, MA, USA) and 毬-actin antibody (1: 3 000 
dilution; Wuhan Sanying, Hubei, China), then labeled by horseradish 
peroxidase-conjugated antibody. The binds were visualized using 
enhanced chemiluminescent. Immunoblot signals were quantified 
using Gel-Pro Analyzer 4.0. 

2.6. Expression of cellular TNF-毩 and NF-毷B using 
quantitative real-time polymerase chain reaction (qRT-
PCR)

  The expression of TNF-毩 and NF-毷B were evaluated using 
qRT-PCR. Total RNA of chondrocytes was extracted using Trizol 
regent (Sigma, Co., St.Louis, MO, USA) and reverse-transcribed 
into cDNA according to instruction manual of an iScriptTMcDNA 
Synthesis Kit. The mRNA expression was quantified by two step 
SYBR Green RT-PCR. Relative fold change of gene was calculated 
using the comparative Ct equation. The relative amount of transcript 
was normalized against glyceraldehyde phosphate dehydrogenase 
(GAPDH) transcript. The amplification was in the presence of 

the following specific primer sets: 5´-CCT CAT CTA CTC CCA 

GGT-3´ and 5´-TAG ATG GGC TCA TAC CAG-3´ for TNF-毩, 5´-
TGG TGG AGG ATT TGC TGA GG-3´ and 5´-CCG TTG GGG 

TGG TCA AGA AG-3´ for NF-毷B, 5´-CGG AGT CAA CGG ATT 
TGG TCG TAT-3´ and 5´-AGC CTT CTC CAT GGT GGT GAA 
GAC-3´ for GAPDH.

2.7. Measurement of intracellular ROS

  Intracellular ROS level was measured using Carboxy-2’,5’-
dichlorofluorescein diacetate (Carboxy-H2DCFDA) molecular probe 
(Invitrogen, Spartak Calder, CF, USA). After treatment, cells were 
incubated in medium containing 1 μmol/L DCFDA for 30 min at 37 

曟 in the dark. Cells were washed with PBS twice and dissociated 
enzymatically with trypsin added EDTA. Then cells were harvested 
by centrifugation and re-suspended in 500 μL PBS. Fluorescence 
absorbance was detected using a microplate reader (FCM, Thermo 
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Fisher Scientific, Boston, MA, USA) with 488 nm/535 nm 
(excitation/emission wavelength). 

2.8. Apoptosis analysis

  The apoptosis rate was measured by flow cytometer (FCM, Thermo 
Fisher Scientific, Boston, MA, USA) using the Annexin V-FITC/
propidium iodide (PI) apoptosis detection kit (Nanjing Jiancheng, 
Jiangsu, China) according to the manufacturer’s instruction. Briefly, 
the chondrocytes were harvested by enzymolysis and centrifugation, 
re-suspended in binding buffer and added into FCM tube. Annexin 
V-FITC and PI were added in cells-suspension and incubated in the 
dark for 15 min before FCM measurement. 

2.9. Statistical analysis

  Statistical analysis was performed using Statistical Package for the 
Social Sciences (SPSS, Inc.). Statistically significant differences of 
means between three groups were determined by one-way ANOVA 
followed by the Post-Hoc test. The results are showed as mean ± 
standard deviation (Mean ± SD). P<0.05 was considered significant.

3. Results

3.1. Effects of AGEs and autophagy amelioration on cell 
viability

  MTT assay showed that chondrocytes viability was remarkably 
decreased to 91.91% after 12 h incubation with AGEs (P<0.001), 
to 85.69% after 24 h incubation (P<0.001), and to 80.06% after 48 
h incubation (P<0.001). At the same time point, the chondrocytes 
viabilities were 94.44%, 86.98% and 79.94% when the rapamycin 
was pretreated before AGEs incubation; It was significant only at 
12 h (P=0.010) which suggested the response time to rapamycin. 
The chondrocytes viability under AGEs treatment or AGEs-added 
rapamycin treatment is shown Figure 1. The following results were 
that of experiments for chondrocytes treated with AGEs for 12 h.
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Figure 1. Effect of advanced glycation end products (AGEs) on chondrocytes 

viability. 

This data were compared between no treatment group, AGEs group and 

AGEs+raspamycin group. *P<0.05, **P<0.01 and #P<0.001.

 

 3.2. LC3 expression after rapamycin indicating autophagy

  Rapamycin was administered to chondrocytes to induce autophagy. 
LC3 involved in formation of autophagosomal vacuoles, especially 
LC3-II is regarded as the biomarker of autophagy. Hence, the 
expression of cellular LC3 protein was measured using western 
blot to present the level of autophagy. Compared to that with no 
treatment, the total LC3 (including LC3-I and LC3-II) expression of 
chondrocytes was significantly increased both with AGEs treatment 
(P=0.015) and with AGEs-added rapamycin treatment (P<0.001) 
(Figure 2). The densitometry of LC3-II/毬-actin in chondrocytes 
treated with AGEs added rapamycin was much higher than that in 
chondrocytes without treatment and AGEs treatment (both P<0.001). 
There was no significance between chondrocytes with AGEs 
treatment and chondrocytes without treatment (Figure 2).
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Figure 2. Densitometric analysis of cellular light chain (LC3) protein. 

In the bar, n = 5 in each group. *P<0.05, **P<0.001.

 

3.3. AGEs increased the expression of TNF-毩 and NF-毷B 
of chondrocytes and autophagy receded the change

  The effects of AGEs and autophagy on the expression of TNF-

毩 and NF-毷B in chondrocytes were measured by qRT-PCR. 
Compared to that without treatment, the RNA expression levels of 

TNF-毩 and NF-毷B in chondrocytes with AGEs incubation were 
significantly higher (2.46-fold and 2.16-fold, both P<0.001). In the 
case of AGEs-added rapamycin treatment, the RNA expression levels 

of TNF-毩 and NF-毷B in chondrocytes were reduced compared 
to that with single AGEs incubation. However, they were also higher 
than those without treatment (1.75-fold and 1.62-fold, P=0.004 and 

P<0.001, respectively). 

3.4. AGEs increased intracellular ROS accumulation and 
autophagy reversed the change

  To test the effect of AGEs on the cellular ROS levels, cells were 
stained with DCFDA and detected by FCM. The levels of cellular 
ROS increased when chondrocytes were with AGEs incubation 
for 12 h (P<0.001). The fluorescence absorbance of cellular ROS 
production was 284.4–334.4. When the chondrocytes were pretreated 
with rapamycin before AGEs incubation, the average fluorescence 
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absorbance of cellular ROS production was 308.4, which was lower 

than that with AGEs incubation (P=0.012) but higher than that with 

no treatment (P=0.007).

3.5. AGEs accelerated chondrocytes apoptosis and autophagy 
suspended apoptosis

  To evaluate the apoptosis of chondrocytes under different 

conditions, the chondrocytes were stained by Annexin V-FITC/PI 

and detected by FCM (Figure 3). AGEs accelerated chondrocytes 

apoptosis, and the rates of apoptosis were from 6.41% (95% CI: 
4.32%–8.50%) to 24.31% (95% CI: 18.00%–30.63%). With the 

rapamycin pretreatment, the rate of apoptosis returned to 15.18% 

(95% CI: 13.48%–16.88%) under the autophagy protection. 
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Figure 3. Chondrocytes apoptosis after culture with advanced glycation end 

products (AGEs) treatment and AGEs-added rapamycin treatment. 

Dot-plots depict live cells (lower left quadrant), early apoptotic (lower right 

quadrant), late apoptotic (upper right), and necrotic (upper left).

4. Discussion 

  AGEs are lipids or proteins which turn glycated after sugars 

exposure. AGEs accumulation plays a pivotal role in osteoarthritis 

which is predisposed by aging[10,16,17]. Accumulation of AGEs 

decreases collagen synthesis and turnover, increases matrix 

metalloproteinase (MMP)-1, MMP-3, and MMP-13 in human 

osteoarthritic chondrocytes[18], and alters the tensile properties of 

articular cartilage[19]. Our results indicate that AGEs decreased 

cell viability, increased TNF-毩 and NF-毷B expression, up-

regulated ROS production and induced apoptosis in human articular 

chondrocytes; however, autophagy significantly reversed AGEs-

induced above damages.

  AGEs-bound AGEs receptor stimulates signaling pathways linked 

to pro-inflammatory, activating various inflammatory genes and 

many signaling cascades[20,21]. Some researchers have showed that 

TNF-毩 is in the upstream in the signaling cascades. In human 

umbilical vein endothelial cells, the evoked sequences by TNF-毩 

include the following events: NADPH oxidase stimulation to ROS 

generation to mitochondrial respiratory chain activation to NF-毷B 

activity stimulation to RAGE expression induction[22]. But some 

researches showed that TNF-毩 is in the downstream of AGEs-

bound AGEs receptor and NF-毷B[23]. In this study, although we 

cannot identify the relationship of sequenced activation between 

TNF-毩 and NF-毷B, we verified AGEs increased TNF-毩 and NF-毷B 

expression in human chondrocytes. 

  AGEs play a crucial role in the oxidative stress injury and 

the apoptosis[24]. In the endothelium, AGEs block nitric oxide 

activity and induce mitochondrial dysfunction thus cause the ROS 

production, which facilitates the production of mitochondrial 

superoxide afterward[25,26]. The mitochondrial dysfunction and 

high levels of ROS cause apoptosis through caspase activation. 

The results of this study also showed AGEs increased the levels 

of ROS accumulation and the apoptosis in chondrocytes. AGEs-

induced ROS generation is partly through NF-毷B activation in 

human aortic endothelial cells[27]. Additionally, as mentioned above, 

ROS generation also can induce NF-毷B activity. TNF-毩 can 

activate both apoptotic and survival signals mediating apoptosis, 

proliferation, differentiation, and survival of cells[28]. Tumor necrosis 

factor (TNF) activates apoptosis and anti-apoptosis pathways 

simultaneously. TNF binding to TNF receptor 1 sequentially recruits 

TNF receptor-associated death domain, Fas-associated death 

domain, Fas-associated death domain-like interleukin-1毬 converting 

enzyme, and caspase-3, leading to apoptosis[29]. However, both 

effects of TNF are mediated through the production of reactive 

oxygen intermediates. There may be a cross talking among TNF-毩, 

NF-毷B, ROS generation and apoptosis under AGEs provoking. 

  Autophagy is a protection mechanism that involves in the 

homeostasis maintenance of cells in reaction to many forms of 

stress such as oxygen, nutrient, chemotherapeutics and growth 

factor deprivation. The relationship between ROS and autophagy is 

mutual. ROS accumulation induces autophagy, in turn, autophagy 

serves to lower ROS level[30,31]. In general, autophagy is valuable to 

cell survival in a diverged condition; however, excessive autophagy 

can cause cell death. In this study, we showed that AGEs exerted 

their adverse effects on the cell viability, TNF-毩 and NF-毷B 

expression, ROS accumulation and apoptosis. Meanwhile, when 

the chondrocytes were pretreated with the autophagy inductor 

rapamycin, all the adverse effects were improved. This indicated 

autophagy was a defense mechanism to protect cartilage damage 

when it is adversely attacked by AGEs against damaged organelles 

and harmful metabolites, delaying the ROS accumulation and 

reducing apoptosis. 

  In conclusion, this study confirms autophagy plays a protective role 

in AGEs-induced apoptosis of chondrocytes possibly via regulation 

of TNF-毩, NF-毷B and ROS. However, the potential molecular 

mechanisms are still elusive to a large extent. The future studies 

should focus on the important question. The results also suggest 

that the novel pharmacological actions against AGEs-stimulated 

oxidative stress and apoptosis of chondrocytes are a potential 

measure for treating osteoarthritis. 
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