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ABSTRACT

Objective: To evaluate gene polymorphisms and their association with susceptibility to
dengue.
Methods: A retrospective case-control study was performed with 262 subjects,
comprising 78 dengue fever (DF) patients, 49 dengue hemorrhagic fever (DHF) patients
and 135 healthy controls. Genotypic and allelic profiles were identified using polymerase
chain reaction based in real time and amplification-refractory mutation system.
Results: We observed a protective association of IL-10 (−819 C/T) C allele (P = 0.028,
OR = 0.56, CI = 0.34–0.91) against DHF, while the C/T (P = 0.047, OR = 2.10,
CI = 1.01–4.38) and T/T (P = 0.008, OR = 3.82, CI = 1.38–10.59) genotypes were
associated with DHF and DF, respectively. The dominant model TNFA −308 GA + AA
(P = 0.043, OR = 0.45, CI = 0.20–1.00) genotypes were found to have protective effect
against dengue infection. A protective association among the IFNG (+874 A/T) A/T
genotype against DF (P = 0.02, OR = 0.46, CI = 0.24–0.89) and DHF (P = 0.034,
OR = 0.43, CI = 0.19–0.95) was observed. When the studied single-nucleotide poly-
morphism was analyzed in combination, the combination GTA (P = 0.022, OR = 2.95,
CI = 1.18–7.41) was statistically significantly associated with susceptibility to DF and the
combination GCT (P = 0.035, OR = 0.28, CI = 0.08–0.90) with protection against the
development of DHF.
Conclusions: This research identifies the association of the IFNG (+874 A/T), TNFA
(−308G/A), IL-10 (−819 C/T) genotypes as a factor for protection, susceptibility and
severity to dengue.
1. Introduction

Dengue is a public health problem and its incidence has a
wide geographical spread [1,2]. It is endemic in more than 100
countries and the World Health Organization estimated a 50–
100 million dengue infections reported worldwide each year
[3]. However, a cartographic study estimated that there are
approximately 390 million dengue cases per year around the
world including symptomatic and asymptomatic [4]. According
to the Pan American Health Organization in 2015, Brazil was
the country that reported most cases of dengue in the
Americas with 1 649 008 of suspected dengue records and an
incidence rate of 820.27 cases [5].

Dengue infection presents diverse a wide spectrum of clinical
presentation, from asymptomatic and mild dengue fever (DF), to
the most serious forms: dengue hemorrhagic fever (DHF) and
dengue shock syndrome. DHF is characterized by increased
vascular permeability, followed by vascular leakage, which
promotes the appearance of hemorrhagic manifestations and
ticle under the CC BY-NC-ND license (http://
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thrombocytopenia, while dengue shock syndrome includes hy-
potension and hypovolemic shock [6]. Clinical manifestations of
dengue to severe clinical conditions may lead to death [7].

The mosquito Aedes aegypti is the main vector transmitting
the viruses that causes dengue in tropical and subtropical re-
gions, and there are four serotypes distinct: DENV 1–4 [8].
Environmental factors, the serotype/genotype of dengue virus,
the immune response and genetic background of host have
significant influence on the development of clinical
manifestations of dengue, as well as in disease severity [9].
Additionally, single nucleotide polymorphisms (SNPs) in
cytokine genes have significantly contributed to the
comprehension of the physiopathology and the role of host
genetic in dengue infection [10].

There are various factors associated with the development of
dengue, and the host immune response has been highlighted as
a genetic biomarker for the disease with the production of
several cytokines [11]. Therefore, polymorphisms in genes
coding can influence the production and function of these
proteins, protection, susceptibility or disease progression [12].

Tumor necrosis factor alpha (TNF-a) is a pro-inflammatory
cytokine involved in several physiological processes, immune
conditions and tumor growth. TNF-a has been associated with
DHF and dengue shock syndrome influencing the activity in
endothelial cells, induction of inflammatory mediators, recruit-
ment of inflammatory cells, survival of inflammatory cells, in-
duction of tissue-destructive enzymes, apoptosis, among others
[13]. The SNP −380G/A (rs1800629) has been reported to
directly affect TNF-a expression in autoimmune and infectious
diseases [14].

Interleukin 10 (IL-10) presents a pleiotropic role with im-
mune regulation and inflammatory in infectious diseases. In
DENV pathogenesis, IL-10 has immunomodulatory activity
with consequences in persistent infection viral enable an in-
flammatory that promotes aggravation of infection [15]. There are
few studies investigating the role of polymorphisms of IL-10
gene (SNP −819C/T-rs1800871) in the pathogenesis of dengue.

Interferons are a family of pleiotropic cytokines which are
produced by T helper cells and natural killer cells during the
initial phase of infection. Interferon-gamma (IFN-g) is note-
worthy due to its essential role in the regulation of the inflam-
matory response [16], in which it enhances the transcription of
genes involved in antiviral response and antitumor activity
[17]. The increase of IFNG expression was identified as a
consequence of a functional polymorphism A/T (rs2430561),
located at the +874 position in the first intron [18].

The investigation of SNPs in pro-inflammatory cytokines
such as TNF-a and IFN-g, as well as the anti-inflammatory
cytokine of IL-10, has been associated with the variation of
cytokine levels in the immune response. In this study, we
investigated the possibility of SNPs from IL-10, TNFA and
IFNG gene regions (−819C/T, −308G/A and +874A/T, respec-
tively) influence the susceptibility to infection or dengue pro-
gression in a sample of Brazilian patients.

2. Materials and methods

2.1. Study design and samples

Dengue patients attended in the city of Arapiraca by Unified
Health System, Northeast Brazil, during the years between 2010
and 2015 were recruited for this research. The patients were
classified by medical records and clinical laboratory results
which were obtained at hospital or health center. The classifi-
cation of dengue cases were in accordance with the criteria of
World Health Organization guidelines [6]. DF was characterized
by the presence of high fever accompanied by the following
symptoms: myalgia, severe headache, retro-orbital, abdominal
pain, arthralgia or rash. The DHF has the same clinical condition
with hemorrhagic manifestations. We recruited patients in hos-
pitals, who presented medical records of hemorrhagic manifes-
tations and thrombocytopenia were less than 80000/mm3. Case
population was positive for ELISA anti-dengue IgM realized in
the Municipal Laboratory of Arapiraca (Dengue IgM Capture
Elisa, PanBio, Brazil).

Control population was a group of healthy volunteer's blood
donor. They all reported no history, signs and symptoms of
dengue infection, and consequently without hospitalization. The
laboratories tests in this group were performed by using
immunochromatographic rapid test (Bioeasy/Abon, Brazil) and
enzyme linked immunosorbent assay (Dengue IgM Capture
Elisa, PanBio, Brazil). This retrospective case-control study was
reviewed and approved by the Research Ethics Committee of
Federal University Alagoas, and consent from all study partici-
pants was obtained (Protocol: 1.073.204).

2.2. DNA extraction and genotyping

Genomic DNA was extracted from peripheral blood in anti-
coagulant solution Ethylenediamine tetraacetic acid, and it was
performed in accordance to the manufacturer instructions (Qia-
gen FlexiGene® DNA Handbook, Qiagen, Germany). For pa-
tients with dengue laboratory confirmed before, samples were
obtained from swab oral mucosa cells for NaCl solution
extraction method [19]. DNA was quantified in a BioPhotometer
plus (Eppendorf® AG, Hamburg, Germany), and visualized in a
1% agarose gel electrophoresis stained with ethidium bromide.
The DNA samples were stored at −20 �C.

Polymorphisms in the TNFA gene (−308G/A − rs1800629)
and IL-10 gene (−819 C/T − rs1800871) were genotyped by
real-time polymerase chain reaction (PCR), performed by allelic
discrimination method using TaqMan assays (Applied Bio-
system®, California, USA). Amplification of the target DNA
was performed in Step One Plus equipment (Applied Bio-
system®, California, USA) with the following conditions: 95 �C
for 10 min, followed by 40 cycles of 92 �C for 15 s and 60 �C
for 1 min. Data were analyzed by Step One Plus software.

The polymorphism of IFNG (+874A/T − rs2430561) gene
was identified by amplification refractory mutation system –

PCR. The primer sequences were as follows [20]: IFNG primer A
allele, 50-TTCTTACAACACAAAATCAAATCA-30; IFNG
primer T allele, 50-TTCTTACAACACAAAATCAAATCT-30;
GH (growth hormone) internal control 1, 50-GCCTTCCC-
AACCATTCCCTTA-30; GH (growth hormone) internal
control 2, 50-TCACGGATTTCTGTTGTGTTTC-30; and IFNG
generic primer, 50-TCAACAAAGCTGATACTCCA-30. Ampli-
fication of the target DNA was performed in a thermocycler
(Esco technologies®, USA) under the following conditions:
heating at 95 �C for 3 min, 10 cycles of denaturation at 95 �C
for 15 s, annealing at 65 �C for 50 s, elongation at 72 �C for
40 s, followed by 20 cycles of denaturation at 95 �C for 20 s,
annealing at 55 �C for 50 s, elongation at 72 �C for 50 s, final
elongation at 72 �C for 7 min, and final hold at 4 �C for
5 min. Amplification refractory mutation system − PCR
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amplicons were then submitted to a 2% agarose gel
electrophoresis stained with ethidium bromide (Amresco Inc.,
USA), and visualized under ultraviolet light.

2.3. Statistical analysis

The data were presented as mean and standard deviation.
Hardy–Weinberg equilibrium was tested using goodness-of-fit
chi-square test to compare the observed and expected geno-
type frequencies among cases and controls. Statistical analysis
was performed using BioEstat version 5.0 for allelic frequencies
and associations. For association analysis, a logistic regression
model was carried out by using SNPstats software, the intrinsic
factors that could influence the profile of the population and thus
adjusted by the data in relation to age and gender. Codominant
model, dominant model, recessive model, over dominant model
and log-additive model were considered to evaluate the risk of
dengue associated with each SNP. Akaike information criterion
and Bayesian information criterion were used to determine the
best model of inheritance. Odds ratios (OR) and 95% confidence
intervals (CI) were calculated considering OR < 1 associated
with protection and OR > 1 associated with susceptibility/risk.
Values P < 0.05 were considered statistically significant. The
power of sample size was calculated by G*power software
version 3.0 using as test family: chi-squared test; statistical test:
goodness-of-fit tests-contingency tables and type of power
analysis (post hoc) [21].

3. Results

The genotypic distribution was based on the Hardy–Wein-
berg equilibrium. Seventy-eight patients with DF [age
(32.77 ± 15.40) years], 49 [(35.40 ± 18.10) years] patients with
DHF and 135 [age (22.40 ± 4.90) years] control subjects were
recruited for this study. Tables 1 and 2 showed the genotypic
and allelic frequencies of TNFA (−308G/A), IL-10 (−819 C/T)
and IFNG (+874 A/T) SNPs in dengue clinical forms and
healthy controls.
Table 1

Genotypic frequency of TNFA, IL-10 and IFNG in healthy controls and den

Groups TNFA −308 (G/A) IL-1

G/G G/A A/A C/C

Control 99 (73.3) 33 (24.4) 3 (2.2) 72 (53.3) 5
DEN 102 (80.3) 24 (18.9) 1 (0.8) 54 (42.5) 5
DF 63 (80.8) 14 (17.9) 1 (1.3) 37 (47.4) 2
DHF 39 (79.6) 10 (20.4) 0 (0.0) 17 (34.7) 2

For IFNG it was used 122 controls due to used of PCR-ARMS did not get

Table 2

Allelic frequency of TNFA, IL-10 and IFNG in healthy controls and dengue

Groups TNFA −308 (G/A) IL

G A C

Control 231 (85.6) 39 (14.4) 199 (73.
DEN 228 (86.3) 36 (13.7) 162 (63.
DF 140 (89.7) 16 (10.3) 102 (65.
DHF 88 (89.7) 10 (10.3) 60 (61.

For allelic frequencies of IFNG it was used 122 controls due to used of PC
Genotypic frequencies between group dengue (DEN) and
controls were compared, and an association of protection with
TNFA (−308G/A) polymorphism gene G/A + A/A was found in
model dominant (P = 0.043, OR = 0.51, CI = 0.26–0.99).
Comparing DF group and healthy controls for TNFA (−308G/A)
polymorphism in a dominant model (GG vs G/A + A/A), G/
A + A/A genotypes were positively associated with protection
for DF (P = 0.043, OR = 0.45, CI = 0.20–1.00) (Table 3).
Genotypic (Table 3) and allelic (Table 4) frequencies were not
significantly different between DF and DHF.

To analyze the association of IL-10 (−819 C/T) poly-
morphism with disease susceptibility, the genotype frequency
was compared between DEN and controls. In a codominant
model (P = 0.014, OR = 4.07, CI = 1.52–10.85), dominant
model (P = 0.040, OR = 1.78, CI = 1.02–3.11) and recessive
model (P = 0.008, OR = 3.41, CI = 1.33–8.72) the T/T genotype
was significantly associated with DEN. The genotypic distri-
bution of IL-10 (−819 C/T) were compared between DF group
and healthy controls, and a high frequency of genotype C/C was
observed in group control. The T/T genotype of IL-10 (−819 C/
T) was significantly associated with DF but not with the severe
form DHF (Table 1) in a co-dominant model (P = 0.027,
OR = 4.21, CI = 1.45–12.25) and recessive model (P = 0.008,
OR = 3.82, CI = 1.38–10.59). When compared DF group with
DHF, the C/T genotype was significantly associated with the
progression for DHF in an over dominant model (P = 0.047,
OR = 2.10, CI = 1.01–4.38) (Table 3). Interestingly, the C allele
was significantly associated with protection for DEN (P = 0.018,
OR = 0.62, CI = 0.43–0.91) and DHF (P = 0.028, OR = 0.56,
CI = 0.34–0.91) when compared to healthy controls (Table 4).

We also evaluated the association of IFNG (+874 A/T)
polymorphisms with DEN group and healthy controls, in a
codominant model (P = 0.026, OR = 0.45, CI = 0.24–0.83),
dominant model (P = 0.033, OR = 0.54, CI = 0.30–0.96) and
over dominant model (P = 0.007, OR = 0.46, CI = 0.26–0.82),
the T/A genotype was significantly associated with protection
infection for DENV. The T/A genotype of IFNG (+874 A/T)
polymorphism was statistically associated with protection when
gue patient groups [n(%)].

0-819 (C/T) IFNG +874 (A/T)

C/T T/T A/A A/T T/T

5 (40.7) 8 (5.9) 43 (35.2) 64 (52.5) 15 (12.3)
4 (42.5) 19 (15.0) 54 (42.5) 46 (36.2) 27 (21.3)
8 (35.9) 13 (16.7) 35 (44.9) 28 (35.9) 15 (19.2)
6 (53.1) 6 (12.2) 19 (38.8) 18 (36.7) 12 (24.5)

ting amplification of some samples.

patient groups [n(%)].

-10 −819 (C/T) IFNG +874 (A/T)

T T A

7) 71 (26.3) 58 (37.2) 98 (62.8)
7) 92 (36.3) 136 (39.7) 206 (60.3)
4) 54 (34.6) 94 (38.5) 150 (61.5)
2) 38 (38.8) 42 (42.8) 56 (57.2)

R-ARMS did not getting amplification of some samples.



Table 3

Association of genotype distributions with protection and susceptibility.

SNP Model Control vs DEN Control vs DF Control vs DHF DF vs DHF

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

TNFA Codominant 0.52 (0.26–1.05) 0.120 0.45 (0.20–1.03) 0.130 0.49 (0.19–1.27) 0.170 1.21 (0.48–3.02) 0.540
−308 (G/A) Dominant 0.51 (0.26–0.99) 0.043 0.45 (0.20–1.00) 0.043 0.46 (0.18–1.18) 0.092 1.12 (0.45–2.77) 0.800

Recessive 0.36 (0.03–3.92) 0.380 0.58 (0.05–6.32) 0.640 – – – –

Over dominant 0.54 (0.27–1.07) 0.072 0.46 (0.20–1.04) 0.054 0.50 (0.19–1.30) 0.140 1.23 (0.49–3.07) 0.660
Log additive 0.53 (0.29–0.98) 0.039 0.50 (0.24–1.04) 0.052 0.45 (0.18–1.13) 0.073 1.03 (0.44–2.41) 0.950

IL-10 Codominant 4.07 (1.52–10.85) 0.014 4.21 (1.45–12.25) 0.027 3.37 (0.89–12.82) 0.170 1.05 (0.34–3.20) 0.140
−819 (C/T) Dominant 1.78 (1.02–3.11) 0.040 1.62 (0.86–3.08) 0.130 1.83 (0.84–3.97) 0.120 1.78 (0.84–3.77) 0.130

Recessive 3.41 (1.33–8.72) 0.008 3.82 (1.38–10.59) 0.008 2.66 (0.75–9.43) 0.140 0.71 (0.25–2.01) 0.510
Over dominant 1.13 (0.65–1.97) 0.670 0.95 (0.50–1.83) 0.890 1.32 (0.61–2.83) 0.480 2.10 (1.01–4.38) 0.047
Log additive 1.79 (1.18–2.73) 0.005 1.75 (1.09–2.82) 0.020 1.75 (0.97–3.18) 0.064 1.21 (0.30–2.02) 0.460

IFNG Codominant 0.45 (0.24–0.83) 0.026 0.45 (0.22–0.92) 0.066 0.45 (0.19–1.07) 0.100 1.15 (0.50–2.61) 0.790
+874 (A/T) Dominant 0.54 (0.30–0.96) 0.033 0.53 (0.27–1.03) 0.061 0.58 (0.26–1.29) 0.180 1.23 (0.58–2.60) 0.590

Recessive 1.39 (0.64–3.05) 0.400 1.39 (0.56–3.44) 0.480 1.81 (0.66–5.00) 0.260 1.31 (0.54–3.23) 0.550
Over dominant 0.46 (0.26–0.82) 0.007 0.46 (0.24–0.89) 0.020 0.43 (0.19–0.95) 0.034 1.02 (0.48–2.15) 0.960
Log additive 0.80 (0.54–1.20) 0.290 0.79 (0.49–1.27) 0.330 0.91 (0.51–1.60) 0.730 1.18 (0.30–1.92) 0.500

Table 4

Association of allelic distributions with protection and susceptibility.

SNP Allele Control Control vs DEN Control vs DF Control vs DHF DF vs DHF

OR (95% CI) P OR (95% CI) P OR (95% CI) P OR (95% CI) P

TNFA G 231 (85.6) 1.06 (0.65–1.74) 0.880 1.47 (0.79–2.74) 0.270 1.48 (0.71–3.10) 0.370 1.00 (0.43–2.31) 0.840
−308 (G/A) A 39 (14.4)
IL-10 C 199 (73.7) 0.62 (0.43–0.91) 0.018 0.67 (0.43–1.03) 0.088 0.56 (0.34–0.91) 0.028 0.83 (0.49–1.41) 0.590
−819 (C/T) T 71 (26.3)
IFNG T 58 (37.2) 1.11 (0.75–1.64) 0.650 0.94 (0.62–1.42) 0.860 1.19 (0.74–1.92) 0.530 1.26 (0.75–2.12) 0.440
+874 (A/T) A 98 (62.8)

For allelic frequencies of IFNG it was used 122 controls due to used of PCR-ARMS did not getting amplification of some samples.

Table 5

Combination frequency of TNFA, IL-10 and IFNG in healthy controls

and dengue patient groups [n(%)].

No Cytokines Control Frequencies (%)

TNFA IL-10 IFNG DEN DF DHF

1 G C A 41.48 38.85 35.43 40.61
2 G C T 21.09 19.75 21.65 16.53
3 G T A 11.10 14.55 20.24 12.45
4 G T T 12.40 14.79 12.43 20.19
5 A C A 4.94 5.05 5.20 4.08
6 A C T 5.04 4.42 3.10 0.00
7 A T A 3.95 2.59 1.95 –

For combinations it was used 122 controls due to used of PCR-ARMS
did not getting amplification of some samples.

Table 6

Association of combinations distributions with protection and susceptibility.

No Cytokines Controls vs DEN Control

TNFA IL-10 IFNG OR (95% CI) P OR (95% C

1 G C A 1.00 – 1.00
2 G C T 0.60 (0.28–1.26) 0.180 0.89 (0.38–2
3 G T A 1.28 (0.68–2.42) 0.450 2.95 (1.18–7
4 G T T 2.22 (0.97–5.08) 0.060 1.04 (0.48–2
5 A C A 0.82 (0.22–2.98) 0.760 0.72 (0.15–3
6 A C T 1.04 (0.30–3.66) 0.950 0.86 (0.17–4
7 A T A 0.22 (0.03–1.41) 0.110 0.29 (0.04–2

For combinations it was used 122 controls due to used of PCR-ARMS did
The values in bold show comparisons with a significant association.
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compared DF group with healthy controls for dengue infection
(P = 0.02, OR = 0.46, CI = 0.24–0.89) and when compared DHF
group with healthy controls (P = 0.034, OR = 0.43, CI = 0.19–
0.95) in an over dominant model (Table 3). There were no
observed differences in allelic and genotypic frequencies be-
tween DF and DHF (Tables 3 and 4).

Tables 5 and 6 showed the combinations distribution of the
analyzed polymorphisms. TNFA/IL-10/IFNG GTA was associ-
ated with the susceptibility for dengue infection (P = 0.022,
OR = 2.95, CI = 1.18–7.41) and TNFA/IL-10/IFNG GCT
(P = 0.035, OR = 0.28, CI = 0.08–0.90) was significantly
associated with protection for DHF. The post hoc power ana-
lyses in this paper were 68% (TNFA −308G/A), 99% (IL-10
−819 C/T) and 99% (IFNG +874 A/T).
s vs DF Controls vs DHF DF vs DHF

I) P OR (95% CI) P OR (95% CI) P

– 1.00 – 1.00 –

.10) 0.790 0.28 (0.08–0.90) 0.035 0.42 (0.17–1.05) 0.066

.41) 0.022 0.79 (0.23–2.71) 0.710 0.59 (0.24–1.46) 0.250

.23) 0.920 1.14 (0.48–2.67) 0.770 1.94 (0.92–4.10) 0.086

.38) 0.680 0.48 (0.09–2.72) 0.410 1.06 (0.31–3.57) 0.930

.40) 0.860 0.08 (0.00–4.91) 0.230 0.83 (0.13–5.23) 0.840

.00) 0.210 – – – –

not getting amplification of some samples.
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4. Discussion

We investigated the potential association of the TNFA
(−308G/A), IFNG (+874 A/T) and IL-10 (−819 C/T) poly-
morphism with the development of dengue in a Brazilian sam-
ple. Individual genetic variations may affect the host response to
infection, in this context, several studies have investigated the
role of cytokine gene polymorphisms in susceptibility to dis-
eases including dengue [22]. In infection dengue, the
polymorphisms genetics could mediate the production of
cytokines, and susceptibility or progression to infection. Here,
our findings suggested a role of genetic polymorphisms of the
TNFA (−308G/A), IL-10 (−819) and IFNG (+874 A/T) on
dengue infection in a sample from the Brazilian population.

The significant role of TNF-a in DENV immunopatho-
genesis has been reported [23]. In this study, we identified that
the dominant model GA + AA was linked with protection to
dengue, additionality to our results. In a case control study on
Malaysia, the G/A + A/A TNFA (−308G/A) genotype was
associated with reduced risk for DHF [24]. The presence of A
allele polymorphism has been related to a higher TNFA gene
expression level [25]. Therefore, our findings suggest a
possible correlation between the presence of high-expressing
TNFA −308A allele and protection against DF. The TNF-a
cytokine in high and medium concentrations may inhibit the
DENV replication in human dendritic cells and this inhibition
may decrease the dengue infection [23].

Interestingly, the Brazilian studies that investigated the role
of several cytokines polymorphisms concluded that TNFA
(−308G/A) were not related with predisposition to dengue
[26,27]. Studies conducted in population Thai [28] and Mexican
[29] did not identify association of the polymorphism of this
cytokine with dengue. Some studies have shown the
association of the A allele of TNFA (−308G/A) polymorphism
with severity of dengue in Cuban population with secondary
infection with DENV-2 [30]. In a study conducted in Thai
children, the same allele was associated with the risk of
bleeding [31]. Another study performed in Brazil identified a
significant association of TNFA allele A with no persistence of
the symptoms of dengue in convalescence [32]. In Sri Lanka,
the G/G genotype was identified as a risk factor for the
development of DHF [10]. In our study, the G/G genotype had
a high frequency in the case group compared with the control
group, however, there was no significantly statistical difference.

IL-10 is anti-inflammatory cytokine which has been consid-
ered as key in the control of host immune response by regulate
the production of several pro inflammatory cytokines [33]. Likely
the IL-10 is regulated at transcriptional level by several poly-
morphisms in the promotor region in this gene, among them the
polymorphism −819 [15,33]. In our study, the T/T genotype of the
SNP IL-10 (−819 C/T) was significantly associated with
susceptibility to DF infection, whereas the C/T genotype was
linked with the progression for DHF differently from other
studies performed which did not identify association in the
populations Brazilian [26], Singhalese [10] and Cuban [30].
Nevertheless, the heterozygous genotype was previously
associated with protection for DF in India [34]. In this study,
we found an association between C allele and protection
against the development for the DHF. Other studies, including
one performed in a sample from the Brazilian population, did
not find any allelic association [24,26,34].
Interferons are cytokines that play a complex role in host
resistance because of the action of pathogens, the IFN-g is able
to upregulate the expression of Fcg receptors on monocytes and
macrophages, thus, may facilitate viral replication [35]. The
presence of +874 A/T polymorphism in INF-g gene has been
shown to influence gene transcriptional level. Genotypes TT,
T/A and AA were associated with high, intermediate and low
production of IFNG, respectively, wherein the T allele was
associated high levels [36]. Our findings suggest a possible
association between heterozygosity for IFNG (+874 A/T)
polymorphism and a protector effect against DF and DHF.
The A allele previously showed a possible association with the
non-persistence of symptoms during thirty days, in primary
dengue and persistence of symptoms in secondary dengue [32],
in a Brazilian patients cohort. Yet in population Brazilian, the
genotype heterozygosity in comparison of group control and
dengue was linked with protection [27]. However, earlier
studies did not find associations between this SNP and dengue
severity [30,34]. The T allele has been associated with increased
indoleamine-pyrrole 2,3-dioxygenase activity [37], the growth
of this enzyme activity promotes a high conversion of
tryptophan to kynurenine, a molecule involved in DHF, for
present increased significantly in patients with DHF [38]. The
intermediate expression A/T genotype may not increase
indoleamine-pyrrole 2,3-dioxygenase activity, accordingly
causing a low level of kynurenine that may act in effect
protector against DHF.

We also performed a combinations analysis to investigate the
combinatory effect among the cytokines polymorphism. Our
findings showed an association between TNFA/IL-10/IFNG
GTA combinations and the susceptibility for dengue infection.
While the TNFA/IL-10/IFNG GCT combinations were associ-
ated with a protector effect against DHF. The diversity genetic
between populations and miscegenation of population Brazilian
may explain the different results presented in this study.

We identified associations between polymorphisms in TNFA
(−308G/A), IFNG (+874 A/T) and IL-10 (−819) genes with
dengue infection and clinical category for the disease. This
outcome provides evidence that genetic polymorphisms in im-
mune system affect susceptibility or protect to clinical pheno-
types of dengue and may be considered as good prognostic
markers. Yet it is important that further studies investigated
asymptomatic individuals and linked with factors clinical and
laboratorial, genetics, immunological are needed. In addition,
gene expression of cytokines in patients with dengue associated
with polymorphisms may be an opportunity to observe the
synchronized biological relevance and interaction of genes in
susceptibility, progression or protection a disease.
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