
HOSTED BY Contents lists available at ScienceDirect

Asian Pacific Journal of Tropical Medicine 2017; 10(1): 52–5652
Asian Pacific Journal of Tropical Medicine

journal homepage: http://ees.elsevier.com/apjtm
Original Research http://dx.doi.org/10.1016/j.apjtm.2016.10.005
First author: Wei Chen, Department of Dermatology, Chinese People's
Liberation Army General Hospital, Beijing, China.

✉Corresponding author: Rong-Ya Yang, Department of Dermatology, General
Hospital of Beijing Military Command, No. 5, Nanmencang Alley, Dongsishitiao
Street, Dongcheng District, Beijing, China.

Tel: +86 13161393868
E-mail: rongyay@yeah.net
Peer review under responsibility of Hainan Medical University.
# Both authors contributed equally to this work and should be considered co-first

authors.

1995-7645/Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. This is an open access arti
creativecommons.org/licenses/by-nc-nd/4.0/).
Adipose tissue-derived stem cells ameliorates dermal fibrosis in a mouse model of scleroderma
Wei Chen1,2,3,#, Zhi-Kuan Xia3,#, Man-Hui Zhang3, Gui-Chun Ding3, Xiao-Yan Zhang3, Zheng-Xu Wang3, Rong-Ya Yang3✉
1Department of Dermatology, Chinese People's Liberation Army General Hospital, Beijing, China

2Department of Dermatology, Zhu Ri He Base Hospital of Beijing Military Command, Inner Mongolia, China

3Department of Dermatology, Department of Ultrasound, General Hospital of Beijing Military Command, Beijing, China
ARTICLE INFO

Article history:
Received 1 Sep 2016
Received in revised form27 Sep 2016
Accepted 30 Oct 2016
Available online 9 Nov 2016

Keywords:
Adipose-derived stem cells
Limited cutaneous scleroderma
Mouse model
VEGF
TGF-b1
ABSTRACT

Objective: To investigate the therapeutic potential of adipose-derived stem cells
(ADSCs) for limited cutaneous scleroderma (LS) in mouse models.
Methods: ADSCs were isolated from pathogen-free female C57BL/6 mice and LS was
induced in wild type (WT) C57BL/6 mice via daily injection of bleomycin
(0.1 mL × 300 mg/mL) for 4 weeks; then the ADSCs were subcutaneously injected into
the dorsal area in the model treatment group, and 100 mL of phosphate-buffered saline
(PBS) solution was injected into the same site in the model control group. Green fluo-
rescent protein (GFP) was used to track the cells using an in vivo imaging system on days
7, 14, 21, and 28 after transplantation. All mice were sacrificed and histologic analyses
were performed after 4 weeks, and the skin thickness, collagen deposition and the total
content of hydroxyproline were evaluated. Additionally, immunohistochemistry were
performed to compare the tissue expression and distribution of TGF-b1 and VEGF be-
tween the ADSCs treatment group and the treatment control group.
Results: WT C57BL/6 LS mouse model were successfully established and GFP in vivo
fluorescence imaging showed that the translated ADSCs survived at the local for at least 4
weeks. Compared with the control group, the ADSCs treatment group significantly
attenuated bleomycin-induced dermal fibrosis, reduced the skin thickness and the total
content of hydroxyproline (P < 0.05). The ADSCs treatment group displayed signifi-
cantly lower levels of TGF-b1 and higher levels of VEGF than the control group
(P < 0.05).
Conclusions: ADSCs may provide a feasible and practical treatment for autoimmune
diseases such as LS and ameliorate dermal fibrosis.
1. Introduction

Scleroderma is an autoimmune disease that is classified into
the following two main subsets: limited cutaneous scleroderma
(LS) and diffuse cutaneous scleroderma (DS). LS primarily af-
fects the skin and is recognized to progress through two stages,
an early inflammatory stage and a late fibrotic stage [1].
Currently, the commonly used immunosuppressant treatments
lead to devastating long-term side effects and no established
curative treatments for LS are available.

Stem cell transplantation is a relatively new therapeutic
approach for the treatment of autoimmune and other diseases.
Mesenchymal stem cells (MSCs) have been shown to possess
immunomodulatory properties [2]. Therefore, MSCs
transplantation is a promising therapy for reactivating the
immune system to diminish fibrosis and restore the
microvasculature for LS. Recent studies have identified
adipose tissue as a new source of MSCs due to their
abundance, ease of collection [3], and similarity to bone
marrow stem cells (BMSCs) [4,5], including a comparable
potential to differentiate into diverse cell lineages [6], such as
endothelial cells [7]. Furthermore, ADSCs have been shown to
potentially exert immunosuppressive effects [8]. Studies of
cle under the CC BY-NC-ND license (http://
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human and murine ADSCs have documented their ability to
release paracrine factors associated with suppression of the
immune response [9,10].

In recent years, considerable attention has been paid on the
immunomodulatory mechanisms of the reparative function of
ADSCs. Our study aimed to evaluate the therapeutic potential of
stem cells from adipose tissue in mouse models of LS and to
determine the tissue expression and distribution of TGF-b1 and
VEGF.

2. Materials and methods

2.1. Animals

A total of 5 pathogen-free female C57BL/6 mice (6 weeks of
age, weighing 16–20 g) were presented by the Biological
Treatment Center at Beijing Military Command Hospital. Forty
wild type (WT) C57BL/6 mice were purchased from Beijing
Laboratory Animal Center of Beijing Weitonglihua Company
(Beijing, China). These WT C57BL/6 mice were randomly
divided into five groups [group A: blank control group with
normal mice, subjected to no disposal; group B: phosphate-
buffered saline (PBS) model control group, subcutaneously
injected PBS in the same dose as bleomycin; group C: bleo-
mycin local injection to establish LS model; group D: model
treatment group, bleomycin local injection to establish LS model
and ADSCs subcutaneous transplantation to treat LS; group E:
bleomycin local injection and PBS subcutaneous injection to set
up model control], with 8 mice in each group. All mice were
individually housed in separate clean rooms under controlled
light and temperature (22 �C) conditions and provided with food
and water ad libitum. The back skin of the mice was shaved, and
the mice of group C, D, and E were subcutaneously injected
with 300 mg/mL bleomycin in PBS (Nippon Kayaku Company,
Tokyo, Japan) [11] and the mice of group B were injected only
with PBS daily for 4 weeks. There wasn't any treatment to
make for group A. Four weeks later, the back skin tissue of
group A, B, and C were exsected, histological section was
conducted, and the pathologic change was observed.

2.2. Cultivation of ADSCs

ADSCs were isolated from the 5 pathogen-free female
C57BL/6 mice via a method based on cell density and adhesion,
as described by Zuk et al. [12]. The cultured ADSCs at passages
3–4 were used in the subsequent in vivo studies.

Before the cells were injected into mice, they were analyzed
for their capacity to proliferate and to differentiate toward adi-
pogenic, osteogenic, chondrogenic, and myogenic lineages as
described by Park IS et al. [13]. The ADSCs from passage 4 were
plated in 96-well plates, and cell proliferation activity was
evaluated after 1, 2, 3, 5, and 7 d using a MTT assay (C0009,
Beyotime Biotechnology, Shanghai, China).

2.3. ADSCs local transplantation

The mice of group D received a single subcutaneous injection
of ADSCs (2 × 106 cells in 100 mL of HBSS) in the back. The
group E received a single subcutaneous injection of HBSS,
100 mL/only.
2.4. In vivo fluorescence imaging

The ADSCs express enhanced green fluorescent protein
(GFP). In vivo fluorescence imaging was sequentially performed
on anesthetized mice on days 7, 14, 21, and 28 after trans-
plantation using an in vivo imaging system (IVIS,
LB983NC100, Berthold, Germany). The survival of the trans-
planted ADSCs was observed by CCD camera.

2.5. Immunohistochemistry

The mice of group D, E were killed by the method of cervical
dislocation 4 weeks later after the ADSCs treatment, the back
skin tissue were exsected and divided into several parts to
conduct hematoxylin–eosin (HE) coloration experiment, Masson
coloration experiment and to detect the skin thickness and hy-
droxyproline content.
2.6. Skin thickness and collagen fiber analysis

The skin thickness was measured by Image-Pro Plus 6.1
under the electron microscope after the HE coloration and
calculated from 5 parts averagely. Formalin-fixed sections were
embedded in paraffin and stained with MT to examine the ef-
fects of bleomycin or ADSC treatment on the number of
collagen fibers. Images were obtained using a Leica
DM2000B + DFC295 light microscope (Germany) and were
analyzed using Image-Pro Plus 6.1 software. The index of op-
tical density (OD) for each group was calculated for the quan-
titative analysis and statistical comparison of collagen
expression. The collagen fiber staining index of each specimen
was calculated as the positively stained area × the staining
intensity.

2.7. Hydroxyproline content

The total content of hydroxyproline were detected by using a
photoelectric colorimeter according to the manufacturer's in-
structions (Nanjing Jiancheng Bioengineering Institute) and was
calculated using the following equation: hydroxyproline content
(mg/mg wet weight) = (sample OD − blank OD)/(standard
OD − blank OD) × standard hydroxyproline content (5 mg/
mL) × total volume of the hydrolyzate (10 mL)/tissue wet
weight (mg).

2.8. Expression of TGF-b1 and VEGF

The samples were snap-frozen in liquid nitrogen, and 20 mm
sections were prepared in a cryostat for immunohistochemical
analysis. Finally, the sections were incubated with primary an-
tibodies. The following primary antibodies were used: anti-TGF-
b1 diluted 1:250 (ab92486, ABCAM, Cambridge, Britain) and
anti-VEGF diluted 1:200 (ab52917, ABCAM, Cambridge,
Britain). Digitalization was performed using a Pannoramic 250
FLASH digital slide scanner (3DHISTECH) and a CIS VCC-
F52U25CL 3CCD progressive scan color camera (resolution:
0.37 mm/pixel). The H-Score, the sum of the percentage of
positively stained cells multiplied by the weighted staining in-
tensity, was calculated.



Table 2

The skin thickness and hydroxyproline content of group A, B, C, D, and

E (n = 8).

Group Skin thickness (mm) Hydroxyproline content (mg/mg)

A 125.42 ± 7.16*# 2.63 ± 0.48*#

B 131.89 ± 2.44* 2.81 ± 0.46*

C 203.93 ± 20.39 7.13 ± 0.80
D 136.06 ± 4.49 3.80 ± 0.84
E 150.47 ± 5.16# 6.05 ± 0.78#

*P < 0.05, compared with group C. #P < 0.01, compared with group D.
Group A: Blank control group; B: PBS control group; C: Model
observation group; D: Model treatment group; E: Model treatment
control group.
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2.9. Statistics

All values are expressed as the mean ± SD. The group means
were compared using an independent sample t-test with
SPSS17.0 software. P < 0.05 was considered statistically sig-
nificant difference.

3. Results

3.1. Characterization of ADSCs

The cultured ADSCs derived from the adipose tissue of
GFP + transgenic mice showed a fibroblast-like morphology
with central nuclei, long spindle, spiral shaped, and in align-
ment. The ADSCs labeled with fluorescent markers were similar
with that under the optical microscope and were green
fluorescent.

3.2. Capacity of ADSCs for proliferation and
differentiation

The status of ADSC proliferation was observed to be in the
incubation phase within 2 d after plating. From 3 to 5 d in
culture, the cells were in the logarithmic phase, and cell prolif-
eration plateaued from 5 to 7 d in culture. Subsequently, cell
proliferation proceeded at a slower rate (Table 1). The plasticity
of the ADSCs was assessed after lineage induction at passage 4
[14]. The ability of the cultured ADSCs to differentiate toward
adipogenic, chondrogenic, and osteogenic lineages was
determined based on the presence of lipid vacuoles,
mucopolysaccharide-rich extracellular matrix proteins, and cal-
cium deposits, respectively. Furthermore, the differentiation of
ADSCs into adipogenic, chondrogenic, and osteogenic lineages
was assessed via Oil Red O staining, Alcian Blue staining, and
Alizarin Red staining, respectively. The results indicated that
these cells were multipotent.
Table 1

GFP-rADSCs cell growth.

Time/d 1 2 3 4 5 6 7

OD 0.37 0.45 0.68 0.75 0.94 0.69 0.60

Table 3

The collagen fiber staining index and the H-scores for VEGF and TGF-b1

of group A, D, and E (n = 8).

Group Collagen fiber staining index VEGF H-score TGF-b H-score

A 224256 ± 71570* 119.2 ± 18.6 121.6 ± 17.2
D 460653 ± 55877 133.8 ± 26.6#△ 113.5 ± 23.7#△

E 665838 ± 142431* 110.3 ± 12.8 143.2 ± 19.6#

*P < 0.05, compared with group D; #P < 0.05, compared with group A;
△P < 0.05, compared with group E.
3.3. Induction of LS animal model

Approximately 1 week later after the induction, the skin
began to lose its hair, locally thicken, and become less flexible.
At the fourth weekend, the skin at the site of the injection with
bleomycin was thickened and hardened and the hair was seri-
ously lost. The skin of PBS control group did not change
significantly in the skin.

MT staining demonstrated intense deposition of collagen in
the dermis after bleomycin treatment compared with PBS
treatment. MT staining showed that the density of collagen fibers
was increased in parallel with the induction of LS. Furthermore,
HE staining also showed an increased width of the dermis
following bleomycin treatment. Cutaneous fibrosis was quanti-
fied by analyzing the hydroxyproline content and the collagen
fiber staining index. The results showed that the hydroxyproline
content in the punch-biopsied skin samples was increased after
bleomycin treatment compared with PBS treatment.
The results of skin thickness and hydroxyproline content
were shown in Table 2.
3.4. Transplantation of ADSCs into mice with LS

According to fluorescence microscopic images captured on
days 7, 14, 21, and 28 after transplantation, the ADSCs were
localized to the injection site of the skin. A clear fluorescent
signal was detectable in the subcutaneous tissue, and this result
confirmed that the ADSCs survived for at least 4 weeks. At the
fourth weekend, the site of the transplantation softened the skin
significantly, and skin hair grew again. The skin of the control
group did not change significantly in the skin, No viral com-
plications or infections were detected. Using florescence mi-
croscopy, frozen skin sections were analyzed to validate the
IVIS results. GFP fluorescence in the transplanted cells was
easily detectable via direct fluorescence microscopy, and local-
ized colonies of ADSCs were detected in the subcutaneous tis-
sue 4 weeks after transplantation.

The result of skin thickness, hydroxyproline content and the
collagen fiber staining index were shown in Tables 2 and 3.
3.5. Expression and distribution of TGF-b1 and VEGF

Immunohistochemical staining using the anti-TGF-b1 anti-
body revealed significantly lower TGF-b1 levels in the model
treatment group than in the model control group (P < 0.05). The
H-Scores for TGF-b1 and VEGF were shown as Table 3.

4. Discussion

Scleroderma is an autoimmune disease characterized by
vascular injury, excessive accumulation of ECM in skin and
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various internal organs, and immunological abnormalities [15].
Scleroderma is classified into the following two main subsets:
LS and DS. In contrast to systemic sclerosis, LS does not
affect the internal organs but primarily affects the skin;
therefore, developing therapies to treat its skin-related symp-
toms has been the focus of many clinical trials. Recently, a few
studies have investigated the use of cell therapy for scleroderma.
Therefore, the authors evaluated the efficacy of a stem cell-based
therapy in an LS animal model.

MSCs have been shown to possess immune regulatory ca-
pabilities, anti-inflammatory activities, and angiogenic potential.
MSCs can secrete soluble factors such as IL-6, macrophage
colony-stimulating factor [16], IFN-g, TNF-a, and IL-10 [17].
Furthermore, MSCs have been shown to suppress the
activation and proliferation of T and B lymphocytes and to
interfere with the differentiation, maturation and function of
dendritic cells. MSCs can also release anti-inflammatory and
anti-apoptotic molecules and may therefore protect tissues
against damage [18]. In addition, studies have confirmed that
MSCs have low immunogenicity due to their low expression
levels of major histocompatibility complex (MHC)-Ⅰ and lack
of expression of MHC-Ⅱ and costimulatory molecules,
including B7-1 (CD80), B7-2 (CD86), and CD40 [19]. MSC
therapy has shown therapeutic potential for the treatment of
many diseases, including systemic lupus erythematosus (SLE),
rheumatoid arthritis (RA), multiple sclerosis (MS), and
thyroiditis [20–22].

Studies have shown that ADSCs resemble BMSCs in terms
of morphology, growth rate, and cell surface marker expression
profile [23]. Additionally, ADSCs have the ability to differentiate
into various lineages including adipocytes, osteoblasts,
chondrocytes, myoblasts, and endothelial cells [24]. In recent
years, increased interest has turned to the plasticity and
therapeutic potential of ADSCs isolated from adipose tissue
[25]. ADSCs can be collected from adipose tissue as a
byproduct of liposuction in esthetic surgeries [26] and easily
cultured; they also have a high capacity for rapid expansion
in vitro, and can be less immunogenic and immunosuppressive
than other cells, which show that they can be applied in
allogeneic transplantation [27]. Recently, several groups
reported the use of stem cells to treat scleroderma. Luis A.
Ortiz et al. demonstrated that engraftment of murine MSCs
into the lung reduced inflammation and collagen deposition in
the lung tissue of mice challenged with bleomycin [28].
Manizheh Azhdari et al. determined the therapeutic potential
of vascular derivatives of human-induced pluripotent stem
cell-derived ECs (hiPSCs) in a scleroderma model [29]. Finally,
Nicol�o Scuderi et al. suggested that ADSCs are a potentially
valuable source of cells for skin therapy in rare skin diseases
including scleroderma [30].

The underlying pathogenesis of scleroderma involves a
complex interplay of inflammation, fibrosis, and vasculopathy.
VEGF is a central regulatory factor for the formation of new
vessels that controls several steps of angiogenesis. Studies
indicate that VEGF has protective effects in SSc patients [31].
TGF-b1 is known to be a potent stimulus of fibrosis in
scleroderma, but ADSCs were shown to display the strongest
immunosuppressive and angiogenic capacities [32]. Therefore,
this study transplanted ADSCs into LS model mice and used
an IVIS to trace the transplanted cells and confirmed that the
GFP-labeled ADSCs were located in the subcutaneous tissue
of LS model mice for up to 4 weeks after transplantation. It was
showed that local injection of ADSCs improved the condition of
the skin and prevented hyperplasia of collagen fibers in LS
model mice. This study compared the tissue expression and
distribution of TGF-b1 and VEGF. The model treatment group
displayed significantly lower levels of TGF-b1 and higher levels
of VEGF than the control group. These findings indicate the
efficacy of the transplanted ADSCs in promoting skin repair.
VEGF, in concert with TGF-b1, is a crucial factor in the path-
ogenesis of scleroderma [33]. In accordance with this result,
Koch and Distler [34] showed increased production of VEGF
in the skin of SS patients. The results demonstrated the
antifibrotic and pro-angiogenic effects of local administration
of ADSCs in a mouse model of BLM-induced LS.

The results of present study suggested that ADSCs lessened
LS symptoms in the in vivo model studied. The ADSC-induced
alterations in the expression of TGF-b1 and VEGF, which play a
key role in the condition of the skin, prevented hyperplasia of
the collagen fibers and may have promoted formation of blood
vessels. Despite the promising potential of ADSCs for the
treatment of LS, future studies are needed to investigate the
mechanisms underlying the beneficial effects of ADSCs in LS
for the purpose of adapting their use to clinical applications.
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