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ABSTRACT

Objective: To investigate protective effects of Spilanthes acmella (S. acmella) Murr.
extracts against pesticide-induced neuronal cells death and to elucidate the underlying
molecular mechanism in dopaminergic (SH-SY5Y) cells lines.
Methods: Cell viability of SH-SY5Y cells was studied by treating the cells with various
concentration of pirimicarb for 24 h. Neuroprotective effect of S. acmella Murr. extracts
was investigated by adding the plant extracts to the medium for 24 h prior to the
incubation with 100 mM H2O2 or with pirimicarb for 24 h. Control-untreated cells were
incubated with the culture medium. Cell viability was measured by MTT assay,
calpain and calpastatin expressions were analyzed by Western blotting and
immunocytochemistry.
Results: Pretreatment of SH-SY5Y cells with S. acmella Murr. extracts (1 mg/mL) for
24 h significantly increased the dopaminergic neurons in pirimicarb-induced neurotox-
icity. In addition, pretreatment with the S. acmella Murr. extracts led to decreased calpain
but increased calpastatin protein levels.
Conclusion: S. acmella Murr. extracts exerted neuroprotective effect, via an alteration of
calcium homeostasis, against pirimicarb induced neurotoxicity. The S. acmella Murr.
might be a potential natural candidate with neuroprotective activity.
1. Introduction

Pesticides are widely used for crops protecting against insects,
fungi and pests. However, pesticides are potentially toxic to hu-
man nervous, cardiovascular, respiratory, and reproduction sys-
tems. In addition, toxicity of pesticides may be the cause of cancer.
It was estimated that over 3 million cases of acute and chronic
pesticide poisonings were reported in most developing countries
[1,2]. Exposures to pesticides such as organophosphates,
carbamates, pyrethroids and organochlorines might result in long
term health problems [3]. Therefore, contaminated pesticides in
food are controlled in a certain level such as an acceptable daily
intake of pirimicarb, a carbamate insecticide, is 0.02 mg/kg/day [4].
Carbamates cause neurotoxic effects by an inhibition of
acetylcholinesterase activity in the synaptic cleft, which lead to
an increase cholinergic activity. An excessive release of
acetylcholine contributes to dizziness, cramps, nausea, vomiting,
abdominal pain, numbness, fatigue, headaches, salivation, diar-
rhea, generalized weakness, respiratory problems and blurred
vision [5]. Furthermore, carbamates may cause a long term
adverse health effects including neuropsychological and
neurobehavioral changes [6], which lead to increased risk of
neurodegenerative development such as Alzheimer's,
Parkinson's and Huntington's diseases [7].

A homeostasis of calcium, in the brain, regulates neuronal
plasticity underlying learning – memory and neuronal survival.
Under physiological condition, cytosolic calcium concentration
is produced by an opening of calcium-permeable channels in the
plasma membrane, mitochondria and endoplasmic reticulum. An
excessive cytosolic calcium in the mitochondria can release
apoptogenic factors into the cytosol, which ultimately cause
dynamic alterations such as fission and fusion [8]. Calpains are a
family of intracellular calcium-dependent cysteine protease. In
the central nervous system, m- and m-calpains are ubiquitously
icle under the CC BY-NC-ND license (http://
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expressed in neuron and glia. Both calpains require different
calcium concentrations, 3–50 mM for m-calpain and 0.4–0.8 mM
for m-calpain [9]. Calpain activation has been implicated in
various neurodegenerations, thus, the calcium influx and
oxidative stress caused by carbamate pesticides may lead to
the neuronal cell death [10]. A number of natural antioxidants
i.e., flavonoid and phenolic compounds have been shown to
exhibit neuroprotective activity [11]. To search for novel
neuroprotectants, it is of interest to explore medicinal plants
with antioxidant property such as Spilanthes acmella
(S. acmella) Murr. [12].

S. acmellaMurr., known in Thai as Phak-Krad Hauwaen, has
been used in traditional medicines [13] for treatment of fever
[14,15], flu, cough, rabies diseases [16], tuberculosis, malaria
[17], bacterial infection [18], skin disease [19], scurvy [20] and
gastric ulcer [21]. S. acmella Murr. also has been noted for its
potential to control obesity [22], stimulate digestion [23], and
modulate immune response [20]. Furthermore, the plant species
has been widely used to relief dental pain regarding its local
anesthetic property [24]. Pharmacologically, S. acmella Murr.
exerted diverse bioactivities such as local anaesthetic [25],
antipyretic [26], anti-inflammatory [27], antifungal [28], diuretic
[29,30], vasorelaxant, antioxidant [31,32], antiplasmodial [17] and
antimicrobial [33] activities. Moreover, the extracts of
S. acmella Murr. were isolated to give diverse biologically
active compounds i.e., 3-acetylaleuritolic acid, vanillic acid, b-
sitostenone, scopoletin, ferulic acid and isoferulic acid [12].

However, the neuroprotective effect of S. acmella Murr.
against pesticide induced neurotoxicity has not been investigated.
This herbal medicinal plant might be a source of novel neuro-
protectant approached in neurodegenerative diseases. Herein, the
neuroprotective activity of S. acmella Murr. against pirimicarb
induced neurotoxicity in neuronal, SH-SY5Y, cells is reported.

2. Materials and methods

2.1. Chemicals and reagents

Dulbecco's Modified Eagle Medium (DMEM), fetal bovine
serum (FBS), penicillin and streptomycin were purchased from
Gibco BRL (Gaithersburg MD, USA). The mouse monoclonal
anti-b actinwas obtained fromChemicon International (Temecula,
CA,USA.). The rabbit polyclonal anti-calpain, anti-calpastatin and
horseradish peroxidase-conjugated goat anti-rabbit IgG antibody
were suppliedwith Cell Signaling (Beverly,MA,USA). Enhanced
chemiluminescence (ECL) Plus Western Blotting Reagent was
purchased from Amersham Biosciences (Piscataway, NJ, USA).
Nunclon™ culture flasks and Corning culture plates were obtained
from Corning Incorporated (Acton, MA, USA). The pesticide,
pirimicarb, was obtained from Dr. Ehrenstorfer GmbH (Augburg,
Germany). Human dopaminergic neuroblastoma (SH-SY5Y) cell
line was provided by American Type Culture Collection (Mana-
ssas, VA,USA). Other chemicals used in this studywere analytical
grade, and obtained essentially either from Sigma Aldrich or Lab-
scan analytical science (Dublin, Ireland).

2.2. Plant extracts preparation

Plant materials (S. acmella Murr.) were collected from
Nakornsrithammarat, Thailand. A voucher specimen [31] has
been deposited at the department of Chemistry, Faculty of
Science, Srinakharinwirote University, Bangkok, Thailand.
The dried aerial parts of S. acmella Murr. were extracted as
previously described [31] using hexane, chloroform, ethyl
acetate and methanol to give the corresponding plant extracts.

Chemical profiles of the plant extracts (hexane, chloroform,
ethyl acetate and methanol) include thin layer chromatography
as well as 1H NMR and HPLC [31]. Analytical TLC was
performed on silica gel 60 F254 aluminum sheets and
visualized under UV at 280 nm. 1H NMR spectra were
recorded on a Bruker AVANCE 300 NMR spectrometer
operating at 300 MHz using CDCl3 and CD3OD as solvents.

2.3. Cell lines

Human neuroblastoma (SH-SY5Y) cells were maintained
and cultured as previously described [34]. To perform the
experiments, cells were seeded in 96 wells and 6 wells plates,
and grown to 70–80% confluence. Before the start of
treatment, the medium was replaced with fresh media. The
above conditions were applied to all of the experiments
performed in this study.

2.4. Cell viability

Cell viability was evaluated by 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) assay, which is based
on the conversion of MTT from yellow to dark blue formazan
crystals by mitochondrial dehydrogenases as previously
described [35]. Briefly, cells (1 × 105 cells/mL) were seeded in 96
well plates. After 24 h, the cells were treated with different
concentrations of pirimicarb (0.125, 1.25 and 12.5 ppm) for
24 h. To investigate the neuroprotective effect, S. acmella
Murr. extract was added to the medium for 24 h prior to the
incubation with 100 mM H2O2 or with pirimicarb for 24 h.
Control-untreated cells were incubated with the culture me-
dium. MTT in 0.1 mM phosphate buffer saline (PBS) were
added to each well and incubation at 37 �C for 3–4 h. The so-
lution was discarded then the extraction buffer (0.04 N HCl in
isopropanol) was added. The optimal densities were measured at
570 nm spectral wavelength using a microtiter plate reader.

2.5. Protein expression

Cellular proteins were detected mainly by Western blotting as
previously described [36] using the following antibody: anti-
calpain and anti-calpastatin antibody (1:2000) and anti-b actin
antibody (1:10000). The blots were developed with ECL Plus
Western Blotting detection reagents through an exposure of the
membrane to X-ray film. The specifically labeled protein bands
were scanned and quantified by densitometry using the image J
program. Data were normalized to b-actin.

2.6. Immunocytochemistry

Cells were grown in 24 well plate containing glass coverslips
at 37 �C for 24 h, then exposed to pirimicarb for 24 h. The cells
were incubated using MitoTracker®Red CMXRos for 30 min.
The medium was removed, and then the cells were washed with
ice-cold PBS. The cells were fixed with 4% paraformaldehyde in
PBS for 30 min at 4 �C, and washed with PBS three times for
5 min each time. Cells were permeabilized with 1% Triton X-
100 in PBS for 10 min at room temperature and rinsed with PBS
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three times. The cells were blocked by non-specific antibody
binding sites by incubating with 10% donkey serum in PBS,
containing 0.3% Triton X-100 and 1% bovine serum albumin
(BSA), for 10 min at room temperature. The cells were incu-
bated with primary antibody against calpain (1:1000 in PBS
containing 0.3% Triton X-100 and 0.25% BSA) overnight at
4 �C, followed by incubation in fluorescein isothiocyanate
(FITC)-conjugated with donkey anti-rabbit IgG (1:200 in PBS
containing 0.3% Triton X-100 and 0.25% BSA) for 2 h at room
temperature. The cells were washed three times with PBS. The
slides were mounted using antifade reagent in glycerol buffer
(Vector Laboratories, Burlingame, USA), and visualized under
fluorescence microscopy (Olympus, Tokyo, Japan).

2.7. Statistics

All results are presented as mean ± standard error of the mean
(SEM). Significance was assessed by one-way analysis of
variance (ANOVA) followed by a Tukey-Kramer test using the
scientific statistic software PASW version 18. Probability (P)
values of less than 0.05 were considered statistically significant.

3. Results

3.1. Effect of pirimicarb on cell viability in human
dopaminergic SH-SY5Y cells

To examine the effect of pirimicarb on cultured SH-SY5Y
cells, the cells were incubated with pirimicarb at various con-
centrations of 0.125, 1.25 and 12.5 ppm for 24 h. Cell viability
(Figure 1) was evaluated using the MTT assay, and results were
expressed as percentage of control cells which represented cells
incubation for 24 h in the culture medium (100% cell viability).
Pirimicarb induced significant cell death with dose dependent
manner at 1.25 ppm (81.50 ± 3.16%, P < 0.05) and 12.5 ppm
(79.50 ± 3.56%, P < 0.01).

3.2. Neuroprotective effect of S. acmella Murr. on
pirimicarb induced reduction of cell viability

To determine the neuroprotective effect of S. acmella Murr.
(hexane, chloroform, ethyl acetate and methanol) extracts, the
SH-SY5Y cells were exposed to different concentrations of
S. acmella Murr. extracts (1, 10, 100 and 1000 mg/mL). These
Figure 1. Effect of pirimicarb-induced reduction in cell viability.
S. acmella Murr. extracts decreased cell viability at 1000 mg/
mL. Antioxidant activity of S. acmella Murr. extracts, at the 4
different concentrations, on the cells with oxidative stress
(100 mM H2O2) was studied. S. acmella Murr. hexane extract at
1 mg/mL significantly decreased the loss of cell viability induced
by treatment with 100 mM H2O2. Therefore, S. acmella Murr.
hexane extract was selected for the following experiments.

The SH-SY5Y cells were exposed to different concentrations
of pirimicarb with or without pretreatment with S. acmellaMurr.
extracts. It was observed that cell viability reduction induced by
pirimicarb was attenuated by pretreatment the cells with 1 mg/
mL of S. acmella Murr. extracts for 24 h. Significantly, the
increased survival of cells exposed to pirimicarb at 1.25 ppm
was noted from (81.50 ± 3.16)% to (94.75 ± 4.96)% (P < 0.05)
(Figure 2A). However, treatment of the cells with S. acmella
Murr. extract alone had no effect on the cell viability (Figure 2
A). Cell shrinkage and less number of cells were noted for the
cells treated with pirimicarb. Pretreatment of the cells with
S. acmella Murr. (hexane extract) prior to and during exposure
Figure 2. Effect of S. acmella Murr. hexane extract on pirimicarb-induced
reduction in cell viability. (A) *P < 0.05 and **P < 0.01 compared with the
control and #P < 0.05 compared with pirimicarb-treated cells. (B) Cell
images were visualized under phase contrast microscope at 20×
magnifications.



Figure 4. Effect S. acmella Murr. on pirimicarb-induced increase in cal-
pastatin level. **P < 0.01 compared with the control.
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to pirimicarb, the cells did not shrink compared with the control
(Figure 2B).

Thus, the neuronal cell death induced by pirimicarb was
reversed by pretreatment with S. acmella Murr. extracts. The
hexane plant extract was shown to be the most effective one, and
was further explored for protein expressions.

3.3. Effect of S. acmella Murr. on pirimicarb induced
calpain expression in SH-SY5Y cells

Effects of pirimicarb on calpain and calpastatin protein ex-
pressions in SH-SY5Y cells were investigated. The cells were
incubated with 1.25 ppm pirimicarb for 24 h in the presence or
absence of 1 mg/mL S. acmella Murr. hexane extract. Incubation
of the cells with 1.25 ppm pirimicarb for 24 h, the level of
calpain significantly increased to (115.40 ± 4.95)% (P < 0.01)
compared with the control value. The pirimicarb induced calpain
expression was significantly attenuated by pretreating the cells
with the S. acmella Murr. hexane extract (1 mg/mL), and the
calpain level was decreased to (102.60 ± 0.73)% (P < 0.05)
(Figure 3). Conversely, the level of calpastatin was decreased to
(85.63 ± 1.41)% (P < 0.05) after the cells were treated with
1.25 ppm pirimicarb (Figure 4). These results suggested that the
hexane extract of S. acmella Murr. attenuated calpain expression
in SH-SY5Y cells during pirimicarb treatment. Consistently,
S. acmella Murr. hexane extract slightly induced calpastatin
expression in the cells exposed to pirimicarb.

To confirm the neuroprotective effect of S. acmella Murr. in
pirimicarb induced toxicity, immunocytochemistry was per-
formed using specific antibody for calpain. The control (un-
treated) cells showed minimal fluorescence compared with a
markedly increased signal for calpain after pirimicarb treatment
(Figure 5).
Figure 3. Effect S. acmella Murr. on pirimicarb-induced increase in cal-
pain level. **P < 0.01 compared with the control and #P < 0.05 compared
with pirimicarb-treated cells.
4. Discussion

Pesticides play significant roles in the development and
function of nervous systems including central and peripheral
nervous systems [37–39]. It is well known that pesticides target on
the nervous systems by inhibiting an acetylcholinesterase, which
can prolong the excitatory action of acetylcholine [40]. Hallmark
features of pesticide toxicity involved the damage of synaptic
proteins, synapse formation, and finally resulted in the
attenuation of neuronal circuit signaling. Pesticides can bind to
various targets such as enzyme, receptor, channel, protein, and
membrane that quickly disrupt the neurotransmission processes
leading to behavioral alterations [41].

This study revealed for the first time that pirimicarb induced
calpain expression in neuronal cells, and this may cause defec-
tive cell proliferation and cell death. Therefore, calpain plays an
important role in regulating neuronal cell death in the brain
damage and neurodegeneration [42,43]. However, an inhibition of
calpain promoted neuronal survival in neuronal injury [44].

These results were consistent with the previous studies on
other pesticides. For example, pesticide accumulation in the
brain can lead to oxidative stress and alter calcium homeostasis
[45]. Under pathological condition, excessive levels of
intracellular calcium associated with calpain activation were
observed prior to a sign of cell degeneration [46]. In human
brain, pesticide may directly disturb neurogenesis,
proliferation, migration, synaptogenesis, apoptosis and
myelination in neuronal development processes [47].

A potential use of natural herbs to improve impairments of
neuronal processes is widely discussed [48]. Herbal medicines
have been used as dietary supplements that enrich with
medicinal ingredients. S. acmella Murr. has been used as a
traditional medicine for various diseases [12]. Bioactive
metabolites were found in aerial parts, leaves, flowers, and
whole plants of S. acmella Murr. [12]. Its extracts have been
shown to exhibit antioxidant activities. Interestingly, the
highest cell survival effect of S. acmella Murr. was noted for
the hexane extract that exerted strong protection in SH-SY5Y
cells when treated with H2O2.



Figure 5. Imaging microscopic analysis of SH-SY5Y cells demonstrating the effect of S. acmella Murr. on pirimicarb-induced neurotoxicity in SH-SY5Y
cells. The blue color indicated cell nuclei stained with DAPI (A, E and I). The green color indicated calpain immunostaining using fluorescein-5-
isothiocyanate (FITC)-conjugated donkey anti-rabbit IgG (B, F and J), and the red color indicated mitochondria site using MitoTrackerRed (C, G and
K). The fluorescence (merge) images are shown in D, H and L.
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Obviously, neuroprotective effect of S. acmella Murr. ex-
tracts was resulted from their antioxidant properties. Bioactive
compounds presented in these plant extracts were triterpenoids
(hexane extract), triterpenoids glucosides (chloroform extract),
phenolic acid and coumarin derivatives (ethyl acetate and
methanol extracts) [12]. Triterpenoids such as b-sitosterol was
reported to exert neuroprotective effect [49,50]. Phenolic
compound, tran-ferulic acid [51,52], and coumarin namely
scopoletin [53] displayed neuroprotective activity. The highest
neuroprotective effect was noted for the hexane extract of
S. acmella Murr. It may be due to the nonpolar hexane extract
which has better penetration to the cells compared with other
polar S. acmella Murr. extracts (chloroform, ethyl acetate and
methanol).

The present study shows that the decreased calpain expres-
sion by S. acmella Murr. hexane extract effectively protected
pirimicarb induced neuronal cell death. Thus, the neuro-
protection was resulted from the decreased oxidative stress and
cell death. It remains unclear how the S. acmella Murr. extracts
ameliorate the neurotoxicity. These results indicate that
S. acmella Murr. extracts play a crucial role in maintaining
calpain and calpastatin levels caused by pirimicarb induced
neurotoxicity.

In conclusion, This study revealed that S. acmella Murr. may
have a potential role in neuroprotection by maintaining calcium
homeostasis mediated calpain and calpastatin regulations, which
may reduce cell degeneration in pirimicarb induced
neurotoxicity.
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