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ReviewArticle

I
INTRODUCTION

		  n 1974, the free-living, non-pathogenic, soil  
		  nematode Caenorhabditis elegans was intro- 
		  duced by Sydney Brenner as a model orga- 
nism to study development, neuroscience, and oth-
er biological processes.1 Since its introduction, C. 
elegans has become a widely used animal model. 
Nowadays, approximately a thousand laboratories 
worldwide exploit C. elegans as a model organ-
ism. Despite being an invertebrate, this nema-
tode’s powerful genetics and its physical char-
acteristics have facilitated many key discoveries 
in biology. The most recognized research works 
involving C. elegans include three Nobel prizes 
– the study of programmed cell death by Sydney 
Brenner, John E. Sulston, and H. Robert Hor-
vitz in 2002; the discovery of RNA interference 
(RNAi) by Andrew Z. Fire and Craig C. Mello in 

Caenorhabditis elegans, An Invertebrate Model 
Organism for Biomedical Research
Chanatip Metheetrairut, Ph.D., Wichit Suthammarak, M.D., Ph.D.
Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.

ABSTRACT
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2006; and the development of green fluorescent 
protein (GFP) by Osamu Shimomura, Martin 
Chalfie, and Roger Y. Tsien in 2008. Undoubtedly, 
C. elegans has been widely regarded as one of the 
major model organisms for biomedical research. 
	
A simple invertebrate as a model organism
		  Anatomy- C. elegans is a small roundworm, 
approximately 1 mm in length.2 Its simple body 
plan is made up of 959 cells in an adult hermaph-
rodite (excluding germ cells) or 1,031 cells in an 
adult male.2 Each cell division, programmed cell 
death, and terminal differentiation during develop-
ment has been well documented.3,4 In addition, the 
complete wiring of C. elegans’ 302 neurons (381 
in males) has been mapped.5 The invariant nature 
of cell numbers, cell lineages, and connections 
between cells in C. elegans is immensely useful 
to biological research, especially in developmental
biology and neuroscience. That is because it 
is possible to identify and follow each specific 
cell throughout the animal’s life and discern any  
deviation from the normal pattern. The C. elegans 
research community also benefits from having 
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these anatomical data collected and organized in 
a curated online database.2

		  Genetics- The genome of C. elegans con- 
tains 97 Mb (x106 base pairs) of DNAs, arranged 
into 5 pairs of autosomes (chr I-V) and a pair of 
sex chromosomes (XX) for hermaphrodites or 
a single sex chromosome for males. These chromo- 
somes host approximately 19,000 genes in total 
with median gene length of approximately1.9 
kilobase pairs.6 C. elegans is the first multicel-
lular organism that has had its whole genome 
sequenced. Comparative genomics between 
humans and nematodes reveals significant simi-
larities in genomic sequence and expression 
patterns of both protein-coding and non-coding 
genes, suggesting conservation of fundamental 
processes throughout evolution.6,7 The conserva- 
tion of biological pathways and genes across 
phyla underpins the use of C. elegans as a model 
organism in research related to human health.
	
		  Life cycle- Generally, C. elegans goes 
through 6 distinct developmental stages during its 
lifetime: hermaphrodite mothers lay eggs that un-
dergo embryonic development. Soon after, these 
eggs hatch and enter the first larval stage (L1); and 
specific developmental events occur at a specific 
time during each of the four larval stages (L1-L4), 
which are separated from each other by a molt 
(i.e. shedding and synthesis of new cuticles). 
Finally, animals complete their post-embryonic 
development and reach adult stage.8 Adult animals 
then lay ~100-300 eggs, completing C. elegans’ 
life cycle in approximately 2-3 days.9 This rapid 
reproduction of a great number of progeny is 
advantageous for research. At any given tempera-
ture, all wild-type animals develop synchronously, 
facilitating time-sensitive or developmental stage-
specific study.

		  Maintenance- While C. elegans’ natu-
ral habitat is in the soil, they have been suc-
cessfully maintained in a laboratory setting 
on simple solid agar-based media with E. 
coli bacteria as food source.1 A large num-
ber of animals can also be reared in liquid 
media for larger-scale experiments.1 Starved  

C. elegans generally survives as a ‘dauer’ larva – 
an alternative to the L2 larval stage induced under 
harsh environments including starvation – when 
kept at ~20°C for several months. In addition, at 
least a small fraction of them will survive and 
recover from freezing condition (-80°C freezer 
or -196°C liquid nitrogen tank) even after many 
years, thus enabling long-term storage. The  
majority of C. elegans population comprises self-
fertilizing hermaphrodites; therefore each strain 
can easily be maintained in an isogenic manner.1 
Conversely, a small percentage of males found 
in C. elegans population can be crossed with 
hermaphrodites when research questions require 
progeny from two different transgenic or mutant 
strains. C. elegans is easy to maintain both on a 
short-term and long-term basis, making it an ideal 
model organism.

		  Availability of research tools- Not only 
does the advancement in microscopy allow single 
cell observation, but C. elegans’ transparent 
body means that any proteins with fluorescent 
tags are also visible. Additionally, inexpensive 
genetic techniques allow manipulation of genes 
of interest, for example, tagged gene expression 
or overexpression by microinjecting transgenes; 
gene silencing via ingested RNAi constructs; or 
deletion of DNA segments by chemical mutagen-
esis. Furthermore, cellular tools such as single cell 
ablation are useful in studying cell-cell interaction 
or its role within an organ. Many research tools 
are now available for C. elegans work to aid in 
answering many different biological questions.

Conservation between C. elegans and humans
		  Comparison of human genome to those 
of model organisms allows the identification of 
homologous/orthologous genes. According to 
OrthoDisease,10 an online database of human 
disease gene orthologs, 5,632 C. elegans genes 
are human homologs – of those, 1,186 genes are 
orthologous to human disease genes. This impres-
sive feature makes C. elegans a very useful model 
to study biological processes in humans as well as 
molecular pathologies of human diseases. Several 
genetic manipulation techniques have been used 
to study phenotypic alterations, which have helped 
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to build up the understanding of molecular mecha-
nism of many diseases in human. 

Relevance of the C. elegans model to human 
diseases
		  As C. elegans is a non-vertebrate model 
with no circulatory system, hesitation for using 
C. elegans in biomedical research remains as to 
how relevant this model can be. It is unavoidably 
challenging to identify C. elegans phenotypes that 
are directly comparable to disease manifestation, 
although it can be one of the best disease models if 
the disease is characterized on a molecular level. 
No animal models are perfect human disease 
models, not even mammalian model organisms. 
Non-mammalian models such as C. elegans have 
generally been used in the early phase of a study 
to deliver a quick clue to the answer. C. elegans 
is also one of the fastest and most cost-effective 
tools for high-throughput screening for gene func-
tions by RNAi screening. In addition, C. elegans 
allows us to approach each question in the context 
of a whole organism in which a complex interplay 
among tissue types or organ systems plays a role. 

Deciphering molecular pathogenesis of human 
diseases using C. elegans
		  We have collected some significant bio-
medical discoveries using C. elegans as follows:
		  Diabetes mellitus-In humans and other 
vertebrates, insulin plays an important role in 
regulating plasma glucose. Impairment of insulin 
production, secretion, or signaling ultimately 
results in diabetes mellitus. Intriguingly, the in-
sulin-signaling pathway, or so-called insulin-like 
signaling pathway, is also conserved in C. elegans. 
It controls metabolism, growth, and longevity 
of the nematode. daf-2 encodes the homolog of 
mammalian insulin receptor family in C. elegans 
whereas INS-1, an insulin-like peptide, has been 
shown to be its ligand.11,12 daf-16 was identified 
as one of the negative regulators of the insulin-
signaling pathway in C. elegans.13 Further analysis 
revealed that DAF-16 is an ortholog of the fork-
head transcription factor FOXO. Afterwards, a 
loss-of-function allele of FOXO was shown to 
restore insulin sensitivity and reversed the diabetic 
phenotypes of insulin-resistant mice.14 

		  Recently, De Haes et al,15 suggested that 
metformin, the most commonly used antidiabetic 
drug, increased longevity of C. elegans through 
peroxiredoxin PRDX-2 signaling. Interestingly, 
this pathway is evolutionarily conserved.16 It may 
then be plausible that metformin also elicits this 
effect in humans, resulting in an increased overall 
life expectancy.

		  Alzheimer’s disease (AD)-The nervous 
system of C. elegans is far less complicated than 
that of humans, allowing simpler genetic dissection 
of the nervous system. Presenilin, the protein that 
plays an important role in pathogenesis of AD, was 
first discovered in C. elegans.17 A few years after-
wards, mutations in human presenilin-1 were im-
plicated in early-onset familial AD.18,19 Wittenburg 
et al,20 showed that expression of human pre-
senilin-1 in C. elegans could rescue the mor-
phological and functional defects in cholinergic 
interneurons of C. elegans presinilin mutants, 
suggesting functional conservation of presenilin 
between in C. elegans and in humans.21 

		  Autosomal dominant polycystic kidney 
disease (ADPKD)-Cystic kidney is a distinct 
characteristic of ADPKD in humans. This patho-
logy results in gradual deterioration of kidney 
function, which ultimately leads to end-stage kid-
ney failure. Although C. elegans has only a very 
primitive kidney-like organ, i.e. a single secretory 
cell, this invertebrate in fact provided the first 
evidence about the underlying molecular defect 
of ADPKD. Knockdown of the C. elegans genes 
lov-1 and pkd-2, which are orthologs of human 
disease genes PKD1 and PKD2, led to abnormal 
mating behavior.22 This phenotype results from 
malfunctioning of the ciliated mechanosensory 
neurons in male tails, which are essential for 
proper mating behavior.23 These findings suggest
that ciliated cells require human polycystins  
(encoded by PKD-1 and PKD-2) to sense pressure 
or fluid flow.24 It was later confirmed in mice that 
polycystins contribute to fluid-flow sensing by 
the primary cilia in renal epithelium.25 It has been  
suggested that dysfunctional polycystins may lead 
to cystic formation in kidneys due to the inability 
of renal cells to sense fluid flow and pressure 
which normally regulate tissue morphogenesis.25
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		  Mitochondrial diseases-Dysfunction of 
mitochondria leads to a myriad of diseases that 
particularly involve organs with high-energy 
requirement. C. elegans is a useful model for 
mitochondrial disorders for several reasons. For 
instance, respiratory subunits of C. elegans mi-
tochondria share extensive homology with their 
human counterparts.26 There are classic mitochon-
drial mutants available, which include gas-1 and 
nuo-6 (complex I mutants), clk-1 (ubiquinone 
deficiency mutant), mev-1 (complex II mutant), 
and isp-1 and isp-1; ctb-1 (complex III mutants).   
		  It has been demonstrated that mitochon-
drial supercomplexes, the functional entity of 
the electron transport chain that are conserved 
in many species including humans, also exist in 
C. elegans.27 RNAi knockdown of subunits of 
the respiratory complex IV resulted in combined 
respiratory complex I and IV deficiencies in  
C. elegans despite normal level of complex I 27. 
Evidently, low levels of complex IV shift the 
ratio of complex I from supercomplex I:III:IV to 
I:III. Since supercomplex I:III:IV catalyzes the 
NADH-Q reductase activity (complex I) 3 times 
faster than complex I in supercomplex I:III.28,29 It 
was then proposed that this shift in supercomplex 
formation leads to a significant loss of enzymatic 
activity of complex I.27 Evidence from studies in 
C. elegans shed light on a mechanism of combined 
respiratory complex I and IV deficiencies, which 
are cited as the most common form of combined 
deficiencies of respiratory complex in humans.30-32

		  Recently, Chen et al, used C. elegans mito- 
chondria in quality assessment of respiratory 
complex assays, which are designed to be used 
as a diagnostic test for mitochondrial disorder 
in humans. The study emphasized the necessity 
of comparative testing of mitochondrial enzyme 
assays between laboratories.33 Clearly, C. elegans 
can be an inexhaustible source of mitochondria 
with defined defects for assay development and 
as a potential source of control specimens.

		  Tumor-While it is impossible to recreate 
a full imitation of a tumor in a nematode, some 
fundamental aspects of it can be studied in isola-
tion. The most important one is programmed cell 
death. In C. elegans, programmed cell death is 
studied in the context of development – certain 
cells are destined to die at a specific stage in all 
wild-type animals. Therefore, it is feasible to iden-

tify abnormal cell fates, which allow researchers  
to examine the genetic components and influence 
of neighboring cells on programmed cell death. 
Some important apoptotic genes identified in  
C. elegans are: ced-3, a member of the caspase 
protein family which executes cell killing; ced-1 
and ced-2, homologs of human CD91 and CRKII, 
respectively, which function in cell corpse  
engulfment following cell death; and ced-9, an 
inhibitor of apoptosis, whose human homolog  
was later identified to be the tumor-suppressor 
Bcl-1.34   

		  Aging-Aging is a natural phenomenon 
for all species including humans. The lifespan of 
individuals may seem like a straightforward phe-
notype, but it results from the complex interplay 
between the accumulation of random damages 
throughout life and a myriad of genetic factors.35-36 
Model organisms such as C. elegans offer scien-
tists the opportunity to dissect these interactions 
in a more manageable manner due to their simple 
genetics and short lifespan of approximately 2-3 
weeks.36 
		  One of the main pathways that influences 
aging in C. elegans is the insulin/insulin-like 
growth factor signaling (IIS) pathway.36 This IIS 
pathway includes age-1, daf-2, and other genes 
that interact with or function upstream or down-
stream of these two genes.13,36,37 In general, overall 
decrease of insulin-like signaling increases life-
span of an organism, no matter if that decrease is 
due to changes in levels of expression or activity 
of any factors. This is true not only in C. elegans, 
but also in other species such as Drosophila and 
mice.38-41 In humans, longevity is associated 
with FOXO3A, a transcription factor in the IIS 
pathway; FOXO3’s homologu, daf-16, likewise 
affects lifespan in C. elegans.42-45

		  While the IIS pathway responds to both 
internal and external stimuli including nutrient 
availability, diet also affects lifespan through 
the nutrient-sensing TOR (target of rapamycin) 
signaling pathway and mitochondrial metabolism 
(see review).46 Not only does dietary restriction 
extends lifespan in C. elegans and several other 
species, but diet is also associated with mortality 
rate in humans (see review).47 Several studies 
revealed the effect of diet on mitochondrial me-
tabolism and energy generation: mild inhibition of 
mitochondrial respiratory chain activity lengthens 
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lifespan of yeast, C. elegans, Drosophila, and mice 
(see reviews)35,48. Furthermore, mitochondria are 
also a source of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). It was origi-
nally believed that increased oxygen and increased 
production of ROS and RNS cause oxidative stress 
and thus shorten lifespan, whereas other studies 
showed that modest increase in ROS produc-
tion has positive, if not neutral, impact on life-
span.35,49,50 In addition, mutations of several other 
components of the mitochondrial respiratory chain 
either shorten or lengthen lifespan.51,52 Further  
research is needed to reveal how the mutations 
that affect mitochondrial function in a similar 
manner produce seemingly opposite lifespan  
phenotypes as they may involve different down-
stream effectors we have yet to elucidate.

CONCLUSION

		  A plethora of human homologs and 
conserved biological processes have made  
C. elegans one of the most useful model organisms 
for biological study. Several important discover-
ies in biomedical research which stemmed from 
work done in C. elegans signify the success in 
applying this invertebrate for a disease model. 
Despite many advantages, research in C. elegans 
also has some limitations that preclude studies 
in certain aspects of human pathology. Yet, 
for many diseases, doing research in a simpler 
model could yield new insights that may lead to 
further development in disease prevention and 
treatment. Successful discovery depends upon 
defining specific research aims and being aware 
of the limitations of using C. elegans in a study.
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